mirror of
https://github.com/sockspls/badfish
synced 2025-05-02 09:39:36 +00:00
Reformat pick_random() in magics calculation
No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
764d3f44b6
commit
0446fc85de
1 changed files with 13 additions and 17 deletions
|
@ -50,7 +50,6 @@ Bitboard PassedPawnMask[2][64];
|
||||||
Bitboard AttackSpanMask[2][64];
|
Bitboard AttackSpanMask[2][64];
|
||||||
Bitboard PseudoAttacks[6][64];
|
Bitboard PseudoAttacks[6][64];
|
||||||
|
|
||||||
uint8_t BitCount8Bit[256];
|
|
||||||
int SquareDistance[64][64];
|
int SquareDistance[64][64];
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
|
@ -61,6 +60,7 @@ namespace {
|
||||||
int MS1BTable[256];
|
int MS1BTable[256];
|
||||||
Bitboard RTable[0x19000]; // Storage space for rook attacks
|
Bitboard RTable[0x19000]; // Storage space for rook attacks
|
||||||
Bitboard BTable[0x1480]; // Storage space for bishop attacks
|
Bitboard BTable[0x1480]; // Storage space for bishop attacks
|
||||||
|
uint8_t BitCount8Bit[256];
|
||||||
|
|
||||||
typedef unsigned (Fn)(Square, Bitboard);
|
typedef unsigned (Fn)(Square, Bitboard);
|
||||||
|
|
||||||
|
@ -142,7 +142,7 @@ void Bitboards::print(Bitboard b) {
|
||||||
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
|
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
|
||||||
|
|
||||||
for (File file = FILE_A; file <= FILE_H; file++)
|
for (File file = FILE_A; file <= FILE_H; file++)
|
||||||
std::cout << "| " << ((b & make_square(file, rank)) ? "X " : " ");
|
std::cout << "| " << (b & make_square(file, rank) ? "X " : " ");
|
||||||
|
|
||||||
std::cout << "|\n";
|
std::cout << "|\n";
|
||||||
}
|
}
|
||||||
|
@ -265,25 +265,17 @@ namespace {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) {
|
Bitboard pick_random(RKISS& rk, int booster) {
|
||||||
|
|
||||||
Bitboard magic;
|
|
||||||
|
|
||||||
// Values s1 and s2 are used to rotate the candidate magic of a
|
// Values s1 and s2 are used to rotate the candidate magic of a
|
||||||
// quantity known to be the optimal to quickly find the magics.
|
// quantity known to be the optimal to quickly find the magics.
|
||||||
int s1 = booster & 63, s2 = (booster >> 6) & 63;
|
int s1 = booster & 63, s2 = (booster >> 6) & 63;
|
||||||
|
|
||||||
while (true)
|
Bitboard m = rk.rand<Bitboard>();
|
||||||
{
|
m = (m >> s1) | (m << (64 - s1));
|
||||||
magic = rk.rand<Bitboard>();
|
m &= rk.rand<Bitboard>();
|
||||||
magic = (magic >> s1) | (magic << (64 - s1));
|
m = (m >> s2) | (m << (64 - s2));
|
||||||
magic &= rk.rand<Bitboard>();
|
return m & rk.rand<Bitboard>();
|
||||||
magic = (magic >> s2) | (magic << (64 - s2));
|
|
||||||
magic &= rk.rand<Bitboard>();
|
|
||||||
|
|
||||||
if (BitCount8Bit[(mask * magic) >> 56] >= 6)
|
|
||||||
return magic;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -336,7 +328,9 @@ namespace {
|
||||||
// Find a magic for square 's' picking up an (almost) random number
|
// Find a magic for square 's' picking up an (almost) random number
|
||||||
// until we find the one that passes the verification test.
|
// until we find the one that passes the verification test.
|
||||||
do {
|
do {
|
||||||
magics[s] = pick_random(masks[s], rk, booster);
|
do magics[s] = pick_random(rk, booster);
|
||||||
|
while (BitCount8Bit[(magics[s] * masks[s]) >> 56] < 6);
|
||||||
|
|
||||||
memset(attacks[s], 0, size * sizeof(Bitboard));
|
memset(attacks[s], 0, size * sizeof(Bitboard));
|
||||||
|
|
||||||
// A good magic must map every possible occupancy to an index that
|
// A good magic must map every possible occupancy to an index that
|
||||||
|
@ -350,6 +344,8 @@ namespace {
|
||||||
if (attack && attack != reference[i])
|
if (attack && attack != reference[i])
|
||||||
break;
|
break;
|
||||||
|
|
||||||
|
assert(reference[i] != 0);
|
||||||
|
|
||||||
attack = reference[i];
|
attack = reference[i];
|
||||||
}
|
}
|
||||||
} while (i != size);
|
} while (i != size);
|
||||||
|
|
Loading…
Add table
Reference in a new issue