mirror of
https://github.com/sockspls/badfish
synced 2025-04-29 16:23:09 +00:00
Rename RootMoveList members removing 'move'
It is redundant being a move list ;-) Also better document the two scores used by root list. No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
e7ab3a0d16
commit
12eb27b6e9
1 changed files with 47 additions and 43 deletions
|
@ -104,26 +104,28 @@ namespace {
|
|||
};
|
||||
|
||||
|
||||
// RootMove struct is used for moves at the root at the tree. For each
|
||||
// root move, we store a score, a node count, and a PV (really a refutation
|
||||
// in the case of moves which fail low).
|
||||
// RootMove struct is used for moves at the root at the tree. For each root
|
||||
// move, we store two scores, a node count, and a PV (really a refutation
|
||||
// in the case of moves which fail low). Value pvScore is normally set at
|
||||
// -VALUE_INFINITE for all non-pv moves, while nonPvScore is computed
|
||||
// according to the order in which moves are returned by MovePicker.
|
||||
|
||||
struct RootMove {
|
||||
|
||||
RootMove() : mp_score(0), nodes(0) {}
|
||||
RootMove() : nodes(0) { pvScore = nonPvScore = -VALUE_INFINITE; }
|
||||
|
||||
// RootMove::operator<() is the comparison function used when
|
||||
// sorting the moves. A move m1 is considered to be better
|
||||
// than a move m2 if it has a higher score, or if the moves
|
||||
// have equal score but m1 has the higher beta cut-off count.
|
||||
// than a move m2 if it has an higher pvScore, or if it has
|
||||
// equal pvScore but m1 has the higher nonPvScore. In this way
|
||||
// we are guaranteed that PV moves are always sorted as first.
|
||||
bool operator<(const RootMove& m) const {
|
||||
|
||||
return score != m.score ? score < m.score : mp_score <= m.mp_score;
|
||||
return pvScore != m.pvScore ? pvScore < m.pvScore : nonPvScore <= m.nonPvScore;
|
||||
}
|
||||
|
||||
Move move;
|
||||
Value score;
|
||||
int mp_score;
|
||||
Value pvScore;
|
||||
Value nonPvScore;
|
||||
int64_t nodes;
|
||||
Move pv[PLY_MAX_PLUS_2];
|
||||
};
|
||||
|
@ -139,14 +141,14 @@ namespace {
|
|||
|
||||
Move move(int moveNum) const { return moves[moveNum].move; }
|
||||
Move move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; }
|
||||
int move_count() const { return count; }
|
||||
Value move_score(int moveNum) const { return moves[moveNum].score; }
|
||||
int64_t move_nodes(int moveNum) const { return moves[moveNum].nodes; }
|
||||
void add_move_nodes(int moveNum, int64_t nodes) { moves[moveNum].nodes += nodes; }
|
||||
void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; }
|
||||
int size() const { return count; }
|
||||
Value pv_score(int moveNum) const { return moves[moveNum].pvScore; }
|
||||
int64_t nodes(int moveNum) const { return moves[moveNum].nodes; }
|
||||
void add_nodes(int moveNum, int64_t n) { moves[moveNum].nodes += n; }
|
||||
void set_pv_score(int moveNum, Value v) { moves[moveNum].pvScore = v; }
|
||||
|
||||
void set_move_pv(int moveNum, const Move pv[]);
|
||||
void score_moves(const Position& pos);
|
||||
void set_pv(int moveNum, const Move pv[]);
|
||||
void set_non_pv_scores(const Position& pos);
|
||||
void sort();
|
||||
void sort_multipv(int n);
|
||||
|
||||
|
@ -527,7 +529,7 @@ namespace {
|
|||
RootMoveList rml(pos, searchMoves);
|
||||
|
||||
// Handle special case of searching on a mate/stale position
|
||||
if (rml.move_count() == 0)
|
||||
if (rml.size() == 0)
|
||||
{
|
||||
if (PonderSearch)
|
||||
wait_for_stop_or_ponderhit();
|
||||
|
@ -540,7 +542,7 @@ namespace {
|
|||
cout << set960(pos.is_chess960()) // Is enough to set once at the beginning
|
||||
<< "info depth " << 1
|
||||
<< "\ninfo depth " << 1
|
||||
<< " score " << value_to_uci(rml.move_score(0))
|
||||
<< " score " << value_to_uci(rml.pv_score(0))
|
||||
<< " time " << current_search_time()
|
||||
<< " nodes " << pos.nodes_searched()
|
||||
<< " nps " << nps(pos)
|
||||
|
@ -551,12 +553,12 @@ namespace {
|
|||
H.clear();
|
||||
init_ss_array(ss, PLY_MAX_PLUS_2);
|
||||
pv[0] = pv[1] = MOVE_NONE;
|
||||
ValueByIteration[1] = rml.move_score(0);
|
||||
ValueByIteration[1] = rml.pv_score(0);
|
||||
Iteration = 1;
|
||||
|
||||
// Is one move significantly better than others after initial scoring ?
|
||||
if ( rml.move_count() == 1
|
||||
|| rml.move_score(0) > rml.move_score(1) + EasyMoveMargin)
|
||||
if ( rml.size() == 1
|
||||
|| rml.pv_score(0) > rml.pv_score(1) + EasyMoveMargin)
|
||||
EasyMove = rml.move(0);
|
||||
|
||||
// Iterative deepening loop
|
||||
|
@ -605,7 +607,7 @@ namespace {
|
|||
|
||||
// Stop search early if there is only a single legal move,
|
||||
// we search up to Iteration 6 anyway to get a proper score.
|
||||
if (Iteration >= 6 && rml.move_count() == 1)
|
||||
if (Iteration >= 6 && rml.size() == 1)
|
||||
stopSearch = true;
|
||||
|
||||
// Stop search early when the last two iterations returned a mate score
|
||||
|
@ -617,9 +619,9 @@ namespace {
|
|||
// Stop search early if one move seems to be much better than the others
|
||||
if ( Iteration >= 8
|
||||
&& EasyMove == pv[0]
|
||||
&& ( ( rml.move_nodes(0) > (pos.nodes_searched() * 85) / 100
|
||||
&& ( ( rml.nodes(0) > (pos.nodes_searched() * 85) / 100
|
||||
&& current_search_time() > TimeMgr.available_time() / 16)
|
||||
||( rml.move_nodes(0) > (pos.nodes_searched() * 98) / 100
|
||||
||( rml.nodes(0) > (pos.nodes_searched() * 98) / 100
|
||||
&& current_search_time() > TimeMgr.available_time() / 32)))
|
||||
stopSearch = true;
|
||||
|
||||
|
@ -691,7 +693,7 @@ namespace {
|
|||
<< move_to_san(pos, pv[1]) // Works also with MOVE_NONE
|
||||
<< endl;
|
||||
}
|
||||
return rml.move_score(0);
|
||||
return rml.pv_score(0);
|
||||
}
|
||||
|
||||
|
||||
|
@ -740,11 +742,11 @@ namespace {
|
|||
while (1)
|
||||
{
|
||||
// Sort the moves before to (re)search
|
||||
rml.score_moves(pos);
|
||||
rml.set_non_pv_scores(pos);
|
||||
rml.sort();
|
||||
|
||||
// Step 10. Loop through all moves in the root move list
|
||||
for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
|
||||
for (int i = 0; i < rml.size() && !AbortSearch; i++)
|
||||
{
|
||||
// This is used by time management
|
||||
FirstRootMove = (i == 0);
|
||||
|
@ -848,10 +850,10 @@ namespace {
|
|||
|
||||
// We are failing high and going to do a research. It's important to update
|
||||
// the score before research in case we run out of time while researching.
|
||||
rml.set_move_score(i, value);
|
||||
rml.set_pv_score(i, value);
|
||||
ss->bestMove = move;
|
||||
extract_pv_from_tt(pos, move, pv);
|
||||
rml.set_move_pv(i, pv);
|
||||
rml.set_pv(i, pv);
|
||||
|
||||
// Print information to the standard output
|
||||
print_pv_info(pos, pv, alpha, beta, value);
|
||||
|
@ -871,23 +873,23 @@ namespace {
|
|||
break;
|
||||
|
||||
// Remember searched nodes counts for this move
|
||||
rml.add_move_nodes(i, pos.nodes_searched() - nodes);
|
||||
rml.add_nodes(i, pos.nodes_searched() - nodes);
|
||||
|
||||
assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
|
||||
assert(value < beta);
|
||||
|
||||
// Step 17. Check for new best move
|
||||
if (value <= alpha && i >= MultiPV)
|
||||
rml.set_move_score(i, -VALUE_INFINITE);
|
||||
rml.set_pv_score(i, -VALUE_INFINITE);
|
||||
else
|
||||
{
|
||||
// PV move or new best move!
|
||||
|
||||
// Update PV
|
||||
rml.set_move_score(i, value);
|
||||
rml.set_pv_score(i, value);
|
||||
ss->bestMove = move;
|
||||
extract_pv_from_tt(pos, move, pv);
|
||||
rml.set_move_pv(i, pv);
|
||||
rml.set_pv(i, pv);
|
||||
|
||||
if (MultiPV == 1)
|
||||
{
|
||||
|
@ -907,10 +909,10 @@ namespace {
|
|||
else // MultiPV > 1
|
||||
{
|
||||
rml.sort_multipv(i);
|
||||
for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
|
||||
for (int j = 0; j < Min(MultiPV, rml.size()); j++)
|
||||
{
|
||||
cout << "info multipv " << j + 1
|
||||
<< " score " << value_to_uci(rml.move_score(j))
|
||||
<< " score " << value_to_uci(rml.pv_score(j))
|
||||
<< " depth " << (j <= i ? Iteration : Iteration - 1)
|
||||
<< " time " << current_search_time()
|
||||
<< " nodes " << pos.nodes_searched()
|
||||
|
@ -922,7 +924,7 @@ namespace {
|
|||
|
||||
cout << endl;
|
||||
}
|
||||
alpha = rml.move_score(Min(i, MultiPV - 1));
|
||||
alpha = rml.pv_score(Min(i, MultiPV - 1));
|
||||
}
|
||||
} // PV move or new best move
|
||||
|
||||
|
@ -2697,7 +2699,7 @@ split_point_start: // At split points actual search starts from here
|
|||
moves[count].move = ss[0].currentMove = moves[count].pv[0] = cur->move;
|
||||
moves[count].pv[1] = MOVE_NONE;
|
||||
pos.do_move(cur->move, st);
|
||||
moves[count].score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO, 1);
|
||||
moves[count].pvScore = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO, 1);
|
||||
pos.undo_move(cur->move);
|
||||
count++;
|
||||
}
|
||||
|
@ -2706,25 +2708,27 @@ split_point_start: // At split points actual search starts from here
|
|||
|
||||
// Score root moves using the standard way used in main search, the moves
|
||||
// are scored according to the order in which are returned by MovePicker.
|
||||
// This is the second order score that is used to compare the moves when
|
||||
// the first order pv scores of both moves are equal.
|
||||
|
||||
void RootMoveList::score_moves(const Position& pos)
|
||||
void RootMoveList::set_non_pv_scores(const Position& pos)
|
||||
{
|
||||
Move move;
|
||||
int score = 1000;
|
||||
Value score = VALUE_ZERO;
|
||||
MovePicker mp(pos, MOVE_NONE, ONE_PLY, H);
|
||||
|
||||
while ((move = mp.get_next_move()) != MOVE_NONE)
|
||||
for (int i = 0; i < count; i++)
|
||||
if (moves[i].move == move)
|
||||
{
|
||||
moves[i].mp_score = score--;
|
||||
moves[i].nonPvScore = score--;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// RootMoveList simple methods definitions
|
||||
|
||||
void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
|
||||
void RootMoveList::set_pv(int moveNum, const Move pv[]) {
|
||||
|
||||
int j;
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue