1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00

Refactor Network Usage

Continuing from PR #4968, this update improves how Stockfish handles network
usage, making it easier to manage and modify networks in the future.

With the introduction of a dedicated Network class, creating networks has become
straightforward. See uci.cpp:
```cpp
NN::NetworkBig({EvalFileDefaultNameBig, "None", ""}, NN::embeddedNNUEBig)
```

The new `Network` encapsulates all network-related logic, significantly reducing
the complexity previously required to support multiple network types, such as
the distinction between small and big networks #4915.

Non-Regression STC:
https://tests.stockfishchess.org/tests/view/65edd26c0ec64f0526c43584
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 33760 W: 8887 L: 8661 D: 16212
Ptnml(0-2): 143, 3795, 8808, 3961, 173

Non-Regression SMP STC:
https://tests.stockfishchess.org/tests/view/65ed71970ec64f0526c42fdd
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 59088 W: 15121 L: 14931 D: 29036
Ptnml(0-2): 110, 6640, 15829, 6880, 85

Compiled with `make -j profile-build`
```
bash ./bench_parallel.sh ./stockfish ./stockfish-nnue 13 50

sf_base =  1568540 +/-   7637 (95%)
sf_test =  1573129 +/-   7301 (95%)
diff    =     4589 +/-   8720 (95%)
speedup = 0.29260% +/- 0.556% (95%)
```

Compiled with `make -j build`
```
bash ./bench_parallel.sh ./stockfish ./stockfish-nnue 13 50

sf_base =  1472653 +/-   7293 (95%)
sf_test =  1491928 +/-   7661 (95%)
diff    =    19275 +/-   7154 (95%)
speedup = 1.30886% +/- 0.486% (95%)
```

closes https://github.com/official-stockfish/Stockfish/pull/5100

No functional change
This commit is contained in:
Disservin 2024-03-09 14:42:37 +01:00
parent f072634e24
commit 1a26d698de
18 changed files with 948 additions and 826 deletions

View file

@ -55,15 +55,15 @@ PGOBENCH = $(WINE_PATH) ./$(EXE) bench
SRCS = benchmark.cpp bitboard.cpp evaluate.cpp main.cpp \
misc.cpp movegen.cpp movepick.cpp position.cpp \
search.cpp thread.cpp timeman.cpp tt.cpp uci.cpp ucioption.cpp tune.cpp syzygy/tbprobe.cpp \
nnue/evaluate_nnue.cpp nnue/features/half_ka_v2_hm.cpp
nnue/nnue_misc.cpp nnue/features/half_ka_v2_hm.cpp nnue/network.cpp
HEADERS = benchmark.h bitboard.h evaluate.h misc.h movegen.h movepick.h \
nnue/evaluate_nnue.h nnue/features/half_ka_v2_hm.h nnue/layers/affine_transform.h \
nnue/nnue_misc.h nnue/features/half_ka_v2_hm.h nnue/layers/affine_transform.h \
nnue/layers/affine_transform_sparse_input.h nnue/layers/clipped_relu.h nnue/layers/simd.h \
nnue/layers/sqr_clipped_relu.h nnue/nnue_accumulator.h nnue/nnue_architecture.h \
nnue/nnue_common.h nnue/nnue_feature_transformer.h position.h \
search.h syzygy/tbprobe.h thread.h thread_win32_osx.h timeman.h \
tt.h tune.h types.h uci.h ucioption.h perft.h
tt.h tune.h types.h uci.h ucioption.h perft.h nnue/network.cpp
OBJS = $(notdir $(SRCS:.cpp=.o))
@ -502,7 +502,7 @@ endif
# In earlier NDK versions, you'll need to pass -fno-addrsig if using GNU binutils.
# Currently we don't know how to make PGO builds with the NDK yet.
ifeq ($(COMP),ndk)
CXXFLAGS += -stdlib=libc++ -fPIE
CXXFLAGS += -stdlib=libc++ -fPIE -mcmodel=large
comp=clang
ifeq ($(arch),armv7)
CXX=armv7a-linux-androideabi16-clang++

View file

@ -22,161 +22,18 @@
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <optional>
#include <sstream>
#include <unordered_map>
#include <vector>
#include "incbin/incbin.h"
#include "misc.h"
#include "nnue/evaluate_nnue.h"
#include "nnue/nnue_architecture.h"
#include "nnue/network.h"
#include "nnue/nnue_misc.h"
#include "position.h"
#include "types.h"
#include "uci.h"
#include "ucioption.h"
// Macro to embed the default efficiently updatable neural network (NNUE) file
// data in the engine binary (using incbin.h, by Dale Weiler).
// This macro invocation will declare the following three variables
// const unsigned char gEmbeddedNNUEData[]; // a pointer to the embedded data
// const unsigned char *const gEmbeddedNNUEEnd; // a marker to the end
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
// Note that this does not work in Microsoft Visual Studio.
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
INCBIN(EmbeddedNNUEBig, EvalFileDefaultNameBig);
INCBIN(EmbeddedNNUESmall, EvalFileDefaultNameSmall);
#else
const unsigned char gEmbeddedNNUEBigData[1] = {0x0};
const unsigned char* const gEmbeddedNNUEBigEnd = &gEmbeddedNNUEBigData[1];
const unsigned int gEmbeddedNNUEBigSize = 1;
const unsigned char gEmbeddedNNUESmallData[1] = {0x0};
const unsigned char* const gEmbeddedNNUESmallEnd = &gEmbeddedNNUESmallData[1];
const unsigned int gEmbeddedNNUESmallSize = 1;
#endif
namespace Stockfish {
namespace Eval {
// Tries to load a NNUE network at startup time, or when the engine
// receives a UCI command "setoption name EvalFile value nn-[a-z0-9]{12}.nnue"
// The name of the NNUE network is always retrieved from the EvalFile option.
// We search the given network in three locations: internally (the default
// network may be embedded in the binary), in the active working directory and
// in the engine directory. Distro packagers may define the DEFAULT_NNUE_DIRECTORY
// variable to have the engine search in a special directory in their distro.
NNUE::EvalFiles NNUE::load_networks(const std::string& rootDirectory,
const OptionsMap& options,
NNUE::EvalFiles evalFiles) {
for (auto& [netSize, evalFile] : evalFiles)
{
std::string user_eval_file = options[evalFile.optionName];
if (user_eval_file.empty())
user_eval_file = evalFile.defaultName;
#if defined(DEFAULT_NNUE_DIRECTORY)
std::vector<std::string> dirs = {"<internal>", "", rootDirectory,
stringify(DEFAULT_NNUE_DIRECTORY)};
#else
std::vector<std::string> dirs = {"<internal>", "", rootDirectory};
#endif
for (const std::string& directory : dirs)
{
if (evalFile.current != user_eval_file)
{
if (directory != "<internal>")
{
std::ifstream stream(directory + user_eval_file, std::ios::binary);
auto description = NNUE::load_eval(stream, netSize);
if (description.has_value())
{
evalFile.current = user_eval_file;
evalFile.netDescription = description.value();
}
}
if (directory == "<internal>" && user_eval_file == evalFile.defaultName)
{
// C++ way to prepare a buffer for a memory stream
class MemoryBuffer: public std::basic_streambuf<char> {
public:
MemoryBuffer(char* p, size_t n) {
setg(p, p, p + n);
setp(p, p + n);
}
};
MemoryBuffer buffer(
const_cast<char*>(reinterpret_cast<const char*>(
netSize == Small ? gEmbeddedNNUESmallData : gEmbeddedNNUEBigData)),
size_t(netSize == Small ? gEmbeddedNNUESmallSize : gEmbeddedNNUEBigSize));
(void) gEmbeddedNNUEBigEnd; // Silence warning on unused variable
(void) gEmbeddedNNUESmallEnd;
std::istream stream(&buffer);
auto description = NNUE::load_eval(stream, netSize);
if (description.has_value())
{
evalFile.current = user_eval_file;
evalFile.netDescription = description.value();
}
}
}
}
}
return evalFiles;
}
// Verifies that the last net used was loaded successfully
void NNUE::verify(const OptionsMap& options,
const std::unordered_map<Eval::NNUE::NetSize, EvalFile>& evalFiles) {
for (const auto& [netSize, evalFile] : evalFiles)
{
std::string user_eval_file = options[evalFile.optionName];
if (user_eval_file.empty())
user_eval_file = evalFile.defaultName;
if (evalFile.current != user_eval_file)
{
std::string msg1 =
"Network evaluation parameters compatible with the engine must be available.";
std::string msg2 =
"The network file " + user_eval_file + " was not loaded successfully.";
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
"including the directory name, to the network file.";
std::string msg4 = "The default net can be downloaded from: "
"https://tests.stockfishchess.org/api/nn/"
+ evalFile.defaultName;
std::string msg5 = "The engine will be terminated now.";
sync_cout << "info string ERROR: " << msg1 << sync_endl;
sync_cout << "info string ERROR: " << msg2 << sync_endl;
sync_cout << "info string ERROR: " << msg3 << sync_endl;
sync_cout << "info string ERROR: " << msg4 << sync_endl;
sync_cout << "info string ERROR: " << msg5 << sync_endl;
exit(EXIT_FAILURE);
}
sync_cout << "info string NNUE evaluation using " << user_eval_file << sync_endl;
}
}
}
// Returns a static, purely materialistic evaluation of the position from
// the point of view of the given color. It can be divided by PawnValue to get
// an approximation of the material advantage on the board in terms of pawns.
@ -188,7 +45,7 @@ int Eval::simple_eval(const Position& pos, Color c) {
// Evaluate is the evaluator for the outer world. It returns a static evaluation
// of the position from the point of view of the side to move.
Value Eval::evaluate(const Position& pos, int optimism) {
Value Eval::evaluate(const Eval::NNUE::Networks& networks, const Position& pos, int optimism) {
assert(!pos.checkers());
@ -198,8 +55,8 @@ Value Eval::evaluate(const Position& pos, int optimism) {
int nnueComplexity;
Value nnue = smallNet ? NNUE::evaluate<NNUE::Small>(pos, true, &nnueComplexity, psqtOnly)
: NNUE::evaluate<NNUE::Big>(pos, true, &nnueComplexity, false);
Value nnue = smallNet ? networks.small.evaluate(pos, true, &nnueComplexity, psqtOnly)
: networks.big.evaluate(pos, true, &nnueComplexity, false);
// Blend optimism and eval with nnue complexity and material imbalance
optimism += optimism * (nnueComplexity + std::abs(simpleEval - nnue)) / 512;
@ -222,23 +79,22 @@ Value Eval::evaluate(const Position& pos, int optimism) {
// a string (suitable for outputting to stdout) that contains the detailed
// descriptions and values of each evaluation term. Useful for debugging.
// Trace scores are from white's point of view
std::string Eval::trace(Position& pos) {
std::string Eval::trace(Position& pos, const Eval::NNUE::Networks& networks) {
if (pos.checkers())
return "Final evaluation: none (in check)";
std::stringstream ss;
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2);
ss << '\n' << NNUE::trace(pos) << '\n';
ss << '\n' << NNUE::trace(pos, networks) << '\n';
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
Value v;
v = NNUE::evaluate<NNUE::Big>(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
Value v = networks.big.evaluate(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "NNUE evaluation " << 0.01 * UCI::to_cp(v) << " (white side)\n";
v = evaluate(pos, VALUE_ZERO);
v = evaluate(networks, pos, VALUE_ZERO);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "Final evaluation " << 0.01 * UCI::to_cp(v) << " (white side)";
ss << " [with scaled NNUE, ...]";

View file

@ -20,51 +20,33 @@
#define EVALUATE_H_INCLUDED
#include <string>
#include <unordered_map>
#include "types.h"
namespace Stockfish {
class Position;
class OptionsMap;
namespace Eval {
constexpr inline int SmallNetThreshold = 1139, PsqtOnlyThreshold = 2500;
std::string trace(Position& pos);
int simple_eval(const Position& pos, Color c);
Value evaluate(const Position& pos, int optimism);
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
// name of the macro or the location where this macro is defined, as it is used
// in the Makefile/Fishtest.
#define EvalFileDefaultNameBig "nn-1ceb1ade0001.nnue"
#define EvalFileDefaultNameSmall "nn-baff1ede1f90.nnue"
struct EvalFile {
// UCI option name
std::string optionName;
// Default net name, will use one of the macros above
std::string defaultName;
// Selected net name, either via uci option or default
std::string current;
// Net description extracted from the net file
std::string netDescription;
};
namespace NNUE {
struct Networks;
}
enum NetSize : int;
std::string trace(Position& pos, const Eval::NNUE::Networks& networks);
using EvalFiles = std::unordered_map<Eval::NNUE::NetSize, EvalFile>;
int simple_eval(const Position& pos, Color c);
Value evaluate(const NNUE::Networks& networks, const Position& pos, int optimism);
EvalFiles load_networks(const std::string&, const OptionsMap&, EvalFiles);
void verify(const OptionsMap&, const EvalFiles&);
} // namespace NNUE
} // namespace Eval

View file

@ -19,7 +19,6 @@
#include <iostream>
#include "bitboard.h"
#include "evaluate.h"
#include "misc.h"
#include "position.h"
#include "tune.h"
@ -39,8 +38,6 @@ int main(int argc, char* argv[]) {
Tune::init(uci.options);
uci.evalFiles = Eval::NNUE::load_networks(uci.working_directory(), uci.options, uci.evalFiles);
uci.loop();
return 0;

View file

@ -25,6 +25,7 @@
#include <cstddef>
#include <cstdint>
#include <iosfwd>
#include <memory>
#include <string>
#include <vector>
@ -49,6 +50,30 @@ void* aligned_large_pages_alloc(size_t size);
// nop if mem == nullptr
void aligned_large_pages_free(void* mem);
// Deleter for automating release of memory area
template<typename T>
struct AlignedDeleter {
void operator()(T* ptr) const {
ptr->~T();
std_aligned_free(ptr);
}
};
template<typename T>
struct LargePageDeleter {
void operator()(T* ptr) const {
ptr->~T();
aligned_large_pages_free(ptr);
}
};
template<typename T>
using AlignedPtr = std::unique_ptr<T, AlignedDeleter<T>>;
template<typename T>
using LargePagePtr = std::unique_ptr<T, LargePageDeleter<T>>;
void dbg_hit_on(bool cond, int slot = 0);
void dbg_mean_of(int64_t value, int slot = 0);
void dbg_stdev_of(int64_t value, int slot = 0);

View file

@ -1,488 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Code for calculating NNUE evaluation function
#include "evaluate_nnue.h"
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <optional>
#include <sstream>
#include <string_view>
#include <type_traits>
#include "../evaluate.h"
#include "../misc.h"
#include "../position.h"
#include "../types.h"
#include "../uci.h"
#include "nnue_accumulator.h"
#include "nnue_common.h"
namespace Stockfish::Eval::NNUE {
// Input feature converter
LargePagePtr<FeatureTransformer<TransformedFeatureDimensionsBig, &StateInfo::accumulatorBig>>
featureTransformerBig;
LargePagePtr<FeatureTransformer<TransformedFeatureDimensionsSmall, &StateInfo::accumulatorSmall>>
featureTransformerSmall;
// Evaluation function
AlignedPtr<Network<TransformedFeatureDimensionsBig, L2Big, L3Big>> networkBig[LayerStacks];
AlignedPtr<Network<TransformedFeatureDimensionsSmall, L2Small, L3Small>> networkSmall[LayerStacks];
// Evaluation function file names
namespace Detail {
// Initialize the evaluation function parameters
template<typename T>
void initialize(AlignedPtr<T>& pointer) {
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
template<typename T>
void initialize(LargePagePtr<T>& pointer) {
static_assert(alignof(T) <= 4096,
"aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
// Read evaluation function parameters
template<typename T>
bool read_parameters(std::istream& stream, T& reference) {
std::uint32_t header;
header = read_little_endian<std::uint32_t>(stream);
if (!stream || header != T::get_hash_value())
return false;
return reference.read_parameters(stream);
}
// Write evaluation function parameters
template<typename T>
bool write_parameters(std::ostream& stream, const T& reference) {
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
return reference.write_parameters(stream);
}
} // namespace Detail
// Initialize the evaluation function parameters
static void initialize(NetSize netSize) {
if (netSize == Small)
{
Detail::initialize(featureTransformerSmall);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(networkSmall[i]);
}
else
{
Detail::initialize(featureTransformerBig);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(networkBig[i]);
}
}
// Read network header
static bool read_header(std::istream& stream, std::uint32_t* hashValue, std::string* desc) {
std::uint32_t version, size;
version = read_little_endian<std::uint32_t>(stream);
*hashValue = read_little_endian<std::uint32_t>(stream);
size = read_little_endian<std::uint32_t>(stream);
if (!stream || version != Version)
return false;
desc->resize(size);
stream.read(&(*desc)[0], size);
return !stream.fail();
}
// Write network header
static bool write_header(std::ostream& stream, std::uint32_t hashValue, const std::string& desc) {
write_little_endian<std::uint32_t>(stream, Version);
write_little_endian<std::uint32_t>(stream, hashValue);
write_little_endian<std::uint32_t>(stream, std::uint32_t(desc.size()));
stream.write(&desc[0], desc.size());
return !stream.fail();
}
// Read network parameters
static bool read_parameters(std::istream& stream, NetSize netSize, std::string& netDescription) {
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription))
return false;
if (hashValue != HashValue[netSize])
return false;
if (netSize == Big && !Detail::read_parameters(stream, *featureTransformerBig))
return false;
if (netSize == Small && !Detail::read_parameters(stream, *featureTransformerSmall))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
{
if (netSize == Big && !Detail::read_parameters(stream, *(networkBig[i])))
return false;
if (netSize == Small && !Detail::read_parameters(stream, *(networkSmall[i])))
return false;
}
return stream && stream.peek() == std::ios::traits_type::eof();
}
// Write network parameters
static bool
write_parameters(std::ostream& stream, NetSize netSize, const std::string& netDescription) {
if (!write_header(stream, HashValue[netSize], netDescription))
return false;
if (netSize == Big && !Detail::write_parameters(stream, *featureTransformerBig))
return false;
if (netSize == Small && !Detail::write_parameters(stream, *featureTransformerSmall))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
{
if (netSize == Big && !Detail::write_parameters(stream, *(networkBig[i])))
return false;
if (netSize == Small && !Detail::write_parameters(stream, *(networkSmall[i])))
return false;
}
return bool(stream);
}
void hint_common_parent_position(const Position& pos) {
int simpleEvalAbs = std::abs(simple_eval(pos, pos.side_to_move()));
if (simpleEvalAbs > Eval::SmallNetThreshold)
featureTransformerSmall->hint_common_access(pos, simpleEvalAbs > Eval::PsqtOnlyThreshold);
else
featureTransformerBig->hint_common_access(pos, false);
}
// Evaluation function. Perform differential calculation.
template<NetSize Net_Size>
Value evaluate(const Position& pos, bool adjusted, int* complexity, bool psqtOnly) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
constexpr int delta = 24;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer < Net_Size == Small ? TransformedFeatureDimensionsSmall
: TransformedFeatureDimensionsBig,
nullptr > ::BufferSize + alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType
transformedFeatures[FeatureTransformer < Net_Size == Small ? TransformedFeatureDimensionsSmall
: TransformedFeatureDimensionsBig,
nullptr > ::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt =
Net_Size == Small
? featureTransformerSmall->transform(pos, transformedFeatures, bucket, psqtOnly)
: featureTransformerBig->transform(pos, transformedFeatures, bucket, psqtOnly);
const auto positional =
!psqtOnly ? (Net_Size == Small ? networkSmall[bucket]->propagate(transformedFeatures)
: networkBig[bucket]->propagate(transformedFeatures))
: 0;
if (complexity)
*complexity = !psqtOnly ? std::abs(psqt - positional) / OutputScale : 0;
// Give more value to positional evaluation when adjusted flag is set
if (adjusted)
return static_cast<Value>(((1024 - delta) * psqt + (1024 + delta) * positional)
/ (1024 * OutputScale));
else
return static_cast<Value>((psqt + positional) / OutputScale);
}
template Value evaluate<Big>(const Position& pos, bool adjusted, int* complexity, bool psqtOnly);
template Value evaluate<Small>(const Position& pos, bool adjusted, int* complexity, bool psqtOnly);
struct NnueEvalTrace {
static_assert(LayerStacks == PSQTBuckets);
Value psqt[LayerStacks];
Value positional[LayerStacks];
std::size_t correctBucket;
};
static NnueEvalTrace trace_evaluate(const Position& pos) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer<TransformedFeatureDimensionsBig, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType
transformedFeatures[FeatureTransformer<TransformedFeatureDimensionsBig, nullptr>::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
NnueEvalTrace t{};
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
{
const auto materialist =
featureTransformerBig->transform(pos, transformedFeatures, bucket, false);
const auto positional = networkBig[bucket]->propagate(transformedFeatures);
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
}
return t;
}
constexpr std::string_view PieceToChar(" PNBRQK pnbrqk");
// Converts a Value into (centi)pawns and writes it in a buffer.
// The buffer must have capacity for at least 5 chars.
static void format_cp_compact(Value v, char* buffer) {
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
int cp = std::abs(UCI::to_cp(v));
if (cp >= 10000)
{
buffer[1] = '0' + cp / 10000;
cp %= 10000;
buffer[2] = '0' + cp / 1000;
cp %= 1000;
buffer[3] = '0' + cp / 100;
buffer[4] = ' ';
}
else if (cp >= 1000)
{
buffer[1] = '0' + cp / 1000;
cp %= 1000;
buffer[2] = '0' + cp / 100;
cp %= 100;
buffer[3] = '.';
buffer[4] = '0' + cp / 10;
}
else
{
buffer[1] = '0' + cp / 100;
cp %= 100;
buffer[2] = '.';
buffer[3] = '0' + cp / 10;
cp %= 10;
buffer[4] = '0' + cp / 1;
}
}
// Converts a Value into pawns, always keeping two decimals
static void format_cp_aligned_dot(Value v, std::stringstream& stream) {
const double pawns = std::abs(0.01 * UCI::to_cp(v));
stream << (v < 0 ? '-'
: v > 0 ? '+'
: ' ')
<< std::setiosflags(std::ios::fixed) << std::setw(6) << std::setprecision(2) << pawns;
}
// Returns a string with the value of each piece on a board,
// and a table for (PSQT, Layers) values bucket by bucket.
std::string trace(Position& pos) {
std::stringstream ss;
char board[3 * 8 + 1][8 * 8 + 2];
std::memset(board, ' ', sizeof(board));
for (int row = 0; row < 3 * 8 + 1; ++row)
board[row][8 * 8 + 1] = '\0';
// A lambda to output one box of the board
auto writeSquare = [&board](File file, Rank rank, Piece pc, Value value) {
const int x = int(file) * 8;
const int y = (7 - int(rank)) * 3;
for (int i = 1; i < 8; ++i)
board[y][x + i] = board[y + 3][x + i] = '-';
for (int i = 1; i < 3; ++i)
board[y + i][x] = board[y + i][x + 8] = '|';
board[y][x] = board[y][x + 8] = board[y + 3][x + 8] = board[y + 3][x] = '+';
if (pc != NO_PIECE)
board[y + 1][x + 4] = PieceToChar[pc];
if (value != VALUE_NONE)
format_cp_compact(value, &board[y + 2][x + 2]);
};
// We estimate the value of each piece by doing a differential evaluation from
// the current base eval, simulating the removal of the piece from its square.
Value base = evaluate<NNUE::Big>(pos);
base = pos.side_to_move() == WHITE ? base : -base;
for (File f = FILE_A; f <= FILE_H; ++f)
for (Rank r = RANK_1; r <= RANK_8; ++r)
{
Square sq = make_square(f, r);
Piece pc = pos.piece_on(sq);
Value v = VALUE_NONE;
if (pc != NO_PIECE && type_of(pc) != KING)
{
auto st = pos.state();
pos.remove_piece(sq);
st->accumulatorBig.computed[WHITE] = st->accumulatorBig.computed[BLACK] =
st->accumulatorBig.computedPSQT[WHITE] = st->accumulatorBig.computedPSQT[BLACK] =
false;
Value eval = evaluate<NNUE::Big>(pos);
eval = pos.side_to_move() == WHITE ? eval : -eval;
v = base - eval;
pos.put_piece(pc, sq);
st->accumulatorBig.computed[WHITE] = st->accumulatorBig.computed[BLACK] =
st->accumulatorBig.computedPSQT[WHITE] = st->accumulatorBig.computedPSQT[BLACK] =
false;
}
writeSquare(f, r, pc, v);
}
ss << " NNUE derived piece values:\n";
for (int row = 0; row < 3 * 8 + 1; ++row)
ss << board[row] << '\n';
ss << '\n';
auto t = trace_evaluate(pos);
ss << " NNUE network contributions "
<< (pos.side_to_move() == WHITE ? "(White to move)" : "(Black to move)") << std::endl
<< "+------------+------------+------------+------------+\n"
<< "| Bucket | Material | Positional | Total |\n"
<< "| | (PSQT) | (Layers) | |\n"
<< "+------------+------------+------------+------------+\n";
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket)
{
ss << "| " << bucket << " ";
ss << " | ";
format_cp_aligned_dot(t.psqt[bucket], ss);
ss << " "
<< " | ";
format_cp_aligned_dot(t.positional[bucket], ss);
ss << " "
<< " | ";
format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], ss);
ss << " "
<< " |";
if (bucket == t.correctBucket)
ss << " <-- this bucket is used";
ss << '\n';
}
ss << "+------------+------------+------------+------------+\n";
return ss.str();
}
// Load eval, from a file stream or a memory stream
std::optional<std::string> load_eval(std::istream& stream, NetSize netSize) {
initialize(netSize);
std::string netDescription;
return read_parameters(stream, netSize, netDescription) ? std::make_optional(netDescription)
: std::nullopt;
}
// Save eval, to a file stream or a memory stream
bool save_eval(std::ostream& stream,
NetSize netSize,
const std::string& name,
const std::string& netDescription) {
if (name.empty() || name == "None")
return false;
return write_parameters(stream, netSize, netDescription);
}
// Save eval, to a file given by its name
bool save_eval(const std::optional<std::string>& filename,
NetSize netSize,
const EvalFiles& evalFiles) {
std::string actualFilename;
std::string msg;
if (filename.has_value())
actualFilename = filename.value();
else
{
if (evalFiles.at(netSize).current
!= (netSize == Small ? EvalFileDefaultNameSmall : EvalFileDefaultNameBig))
{
msg = "Failed to export a net. "
"A non-embedded net can only be saved if the filename is specified";
sync_cout << msg << sync_endl;
return false;
}
actualFilename = (netSize == Small ? EvalFileDefaultNameSmall : EvalFileDefaultNameBig);
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save_eval(stream, netSize, evalFiles.at(netSize).current,
evalFiles.at(netSize).netDescription);
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
sync_cout << msg << sync_endl;
return saved;
}
} // namespace Stockfish::Eval::NNUE

View file

@ -1,89 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// header used in NNUE evaluation function
#ifndef NNUE_EVALUATE_NNUE_H_INCLUDED
#define NNUE_EVALUATE_NNUE_H_INCLUDED
#include <cstdint>
#include <iosfwd>
#include <memory>
#include <optional>
#include <string>
#include "../evaluate.h"
#include "../misc.h"
#include "../types.h"
#include "nnue_architecture.h"
#include "nnue_feature_transformer.h"
namespace Stockfish {
class Position;
}
namespace Stockfish::Eval::NNUE {
// Hash value of evaluation function structure
constexpr std::uint32_t HashValue[2] = {
FeatureTransformer<TransformedFeatureDimensionsBig, nullptr>::get_hash_value()
^ Network<TransformedFeatureDimensionsBig, L2Big, L3Big>::get_hash_value(),
FeatureTransformer<TransformedFeatureDimensionsSmall, nullptr>::get_hash_value()
^ Network<TransformedFeatureDimensionsSmall, L2Small, L3Small>::get_hash_value()};
// Deleter for automating release of memory area
template<typename T>
struct AlignedDeleter {
void operator()(T* ptr) const {
ptr->~T();
std_aligned_free(ptr);
}
};
template<typename T>
struct LargePageDeleter {
void operator()(T* ptr) const {
ptr->~T();
aligned_large_pages_free(ptr);
}
};
template<typename T>
using AlignedPtr = std::unique_ptr<T, AlignedDeleter<T>>;
template<typename T>
using LargePagePtr = std::unique_ptr<T, LargePageDeleter<T>>;
std::string trace(Position& pos);
template<NetSize Net_Size>
Value evaluate(const Position& pos,
bool adjusted = false,
int* complexity = nullptr,
bool psqtOnly = false);
void hint_common_parent_position(const Position& pos);
std::optional<std::string> load_eval(std::istream& stream, NetSize netSize);
bool save_eval(std::ostream& stream,
NetSize netSize,
const std::string& name,
const std::string& netDescription);
bool save_eval(const std::optional<std::string>& filename, NetSize netSize, const EvalFiles&);
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_EVALUATE_NNUE_H_INCLUDED

422
src/nnue/network.cpp Normal file
View file

@ -0,0 +1,422 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "network.h"
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <optional>
#include <type_traits>
#include <vector>
#include "../evaluate.h"
#include "../incbin/incbin.h"
#include "../misc.h"
#include "../position.h"
#include "../types.h"
#include "nnue_architecture.h"
#include "nnue_common.h"
#include "nnue_misc.h"
namespace {
// Macro to embed the default efficiently updatable neural network (NNUE) file
// data in the engine binary (using incbin.h, by Dale Weiler).
// This macro invocation will declare the following three variables
// const unsigned char gEmbeddedNNUEData[]; // a pointer to the embedded data
// const unsigned char *const gEmbeddedNNUEEnd; // a marker to the end
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
// Note that this does not work in Microsoft Visual Studio.
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
INCBIN(EmbeddedNNUEBig, EvalFileDefaultNameBig);
INCBIN(EmbeddedNNUESmall, EvalFileDefaultNameSmall);
#else
const unsigned char gEmbeddedNNUEBigData[1] = {0x0};
const unsigned char* const gEmbeddedNNUEBigEnd = &gEmbeddedNNUEBigData[1];
const unsigned int gEmbeddedNNUEBigSize = 1;
const unsigned char gEmbeddedNNUESmallData[1] = {0x0};
const unsigned char* const gEmbeddedNNUESmallEnd = &gEmbeddedNNUESmallData[1];
const unsigned int gEmbeddedNNUESmallSize = 1;
#endif
}
namespace Stockfish::Eval::NNUE {
const EmbeddedNNUE embeddedNNUEBig(gEmbeddedNNUEBigData, gEmbeddedNNUEBigEnd, gEmbeddedNNUEBigSize);
const EmbeddedNNUE
embeddedNNUESmall(gEmbeddedNNUESmallData, gEmbeddedNNUESmallEnd, gEmbeddedNNUESmallSize);
namespace Detail {
// Initialize the evaluation function parameters
template<typename T>
void initialize(AlignedPtr<T>& pointer) {
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
template<typename T>
void initialize(LargePagePtr<T>& pointer) {
static_assert(alignof(T) <= 4096,
"aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
// Read evaluation function parameters
template<typename T>
bool read_parameters(std::istream& stream, T& reference) {
std::uint32_t header;
header = read_little_endian<std::uint32_t>(stream);
if (!stream || header != T::get_hash_value())
return false;
return reference.read_parameters(stream);
}
// Write evaluation function parameters
template<typename T>
bool write_parameters(std::ostream& stream, const T& reference) {
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
return reference.write_parameters(stream);
}
} // namespace Detail
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::load(const std::string& rootDirectory, std::string evalfilePath) {
#if defined(DEFAULT_NNUE_DIRECTORY)
std::vector<std::string> dirs = {"<internal>", "", rootDirectory,
stringify(DEFAULT_NNUE_DIRECTORY)};
#else
std::vector<std::string> dirs = {"<internal>", "", rootDirectory};
#endif
if (evalfilePath.empty())
evalfilePath = evalFile.defaultName;
for (const auto& directory : dirs)
{
if (evalFile.current != evalfilePath)
{
if (directory != "<internal>")
{
load_user_net(directory, evalfilePath);
}
if (directory == "<internal>" && evalfilePath == evalFile.defaultName)
{
load_internal();
}
}
}
}
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::save(const std::optional<std::string>& filename) const {
std::string actualFilename;
std::string msg;
if (filename.has_value())
actualFilename = filename.value();
else
{
if (evalFile.current != evalFile.defaultName)
{
msg = "Failed to export a net. "
"A non-embedded net can only be saved if the filename is specified";
sync_cout << msg << sync_endl;
return false;
}
actualFilename = evalFile.defaultName;
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save(stream, evalFile.current, evalFile.netDescription);
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
sync_cout << msg << sync_endl;
return saved;
}
template<typename Arch, typename Transformer>
Value Network<Arch, Transformer>::evaluate(const Position& pos,
bool adjusted,
int* complexity,
bool psqtOnly) const {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
constexpr int delta = 24;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket, psqtOnly);
const auto positional = !psqtOnly ? (network[bucket]->propagate(transformedFeatures)) : 0;
if (complexity)
*complexity = !psqtOnly ? std::abs(psqt - positional) / OutputScale : 0;
// Give more value to positional evaluation when adjusted flag is set
if (adjusted)
return static_cast<Value>(((1024 - delta) * psqt + (1024 + delta) * positional)
/ (1024 * OutputScale));
else
return static_cast<Value>((psqt + positional) / OutputScale);
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::verify(std::string evalfilePath) const {
if (evalfilePath.empty())
evalfilePath = evalFile.defaultName;
if (evalFile.current != evalfilePath)
{
std::string msg1 =
"Network evaluation parameters compatible with the engine must be available.";
std::string msg2 = "The network file " + evalfilePath + " was not loaded successfully.";
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
"including the directory name, to the network file.";
std::string msg4 = "The default net can be downloaded from: "
"https://tests.stockfishchess.org/api/nn/"
+ evalFile.defaultName;
std::string msg5 = "The engine will be terminated now.";
sync_cout << "info string ERROR: " << msg1 << sync_endl;
sync_cout << "info string ERROR: " << msg2 << sync_endl;
sync_cout << "info string ERROR: " << msg3 << sync_endl;
sync_cout << "info string ERROR: " << msg4 << sync_endl;
sync_cout << "info string ERROR: " << msg5 << sync_endl;
exit(EXIT_FAILURE);
}
sync_cout << "info string NNUE evaluation using " << evalfilePath << sync_endl;
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::hint_common_access(const Position& pos, bool psqtOnl) const {
featureTransformer->hint_common_access(pos, psqtOnl);
}
template<typename Arch, typename Transformer>
NnueEvalTrace Network<Arch, Transformer>::trace_evaluate(const Position& pos) const {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
NnueEvalTrace t{};
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
{
const auto materialist =
featureTransformer->transform(pos, transformedFeatures, bucket, false);
const auto positional = network[bucket]->propagate(transformedFeatures);
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
}
return t;
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::load_user_net(const std::string& dir,
const std::string& evalfilePath) {
std::ifstream stream(dir + evalfilePath, std::ios::binary);
auto description = load(stream);
if (description.has_value())
{
evalFile.current = evalfilePath;
evalFile.netDescription = description.value();
}
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::load_internal() {
// C++ way to prepare a buffer for a memory stream
class MemoryBuffer: public std::basic_streambuf<char> {
public:
MemoryBuffer(char* p, size_t n) {
setg(p, p, p + n);
setp(p, p + n);
}
};
MemoryBuffer buffer(const_cast<char*>(reinterpret_cast<const char*>(embedded.data)),
size_t(embedded.size));
std::istream stream(&buffer);
auto description = load(stream);
if (description.has_value())
{
evalFile.current = evalFile.defaultName;
evalFile.netDescription = description.value();
}
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::initialize() {
Detail::initialize(featureTransformer);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(network[i]);
}
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::save(std::ostream& stream,
const std::string& name,
const std::string& netDescription) const {
if (name.empty() || name == "None")
return false;
return write_parameters(stream, netDescription);
}
template<typename Arch, typename Transformer>
std::optional<std::string> Network<Arch, Transformer>::load(std::istream& stream) {
initialize();
std::string description;
return read_parameters(stream, description) ? std::make_optional(description) : std::nullopt;
}
// Read network header
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::read_header(std::istream& stream,
std::uint32_t* hashValue,
std::string* desc) const {
std::uint32_t version, size;
version = read_little_endian<std::uint32_t>(stream);
*hashValue = read_little_endian<std::uint32_t>(stream);
size = read_little_endian<std::uint32_t>(stream);
if (!stream || version != Version)
return false;
desc->resize(size);
stream.read(&(*desc)[0], size);
return !stream.fail();
}
// Write network header
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::write_header(std::ostream& stream,
std::uint32_t hashValue,
const std::string& desc) const {
write_little_endian<std::uint32_t>(stream, Version);
write_little_endian<std::uint32_t>(stream, hashValue);
write_little_endian<std::uint32_t>(stream, std::uint32_t(desc.size()));
stream.write(&desc[0], desc.size());
return !stream.fail();
}
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::read_parameters(std::istream& stream,
std::string& netDescription) const {
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription))
return false;
if (hashValue != Network::hash)
return false;
if (!Detail::read_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
{
if (!Detail::read_parameters(stream, *(network[i])))
return false;
}
return stream && stream.peek() == std::ios::traits_type::eof();
}
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::write_parameters(std::ostream& stream,
const std::string& netDescription) const {
if (!write_header(stream, Network::hash, netDescription))
return false;
if (!Detail::write_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
{
if (!Detail::write_parameters(stream, *(network[i])))
return false;
}
return bool(stream);
}
// Explicit template instantiation
template class Network<
NetworkArchitecture<TransformedFeatureDimensionsBig, L2Big, L3Big>,
FeatureTransformer<TransformedFeatureDimensionsBig, &StateInfo::accumulatorBig>>;
template class Network<
NetworkArchitecture<TransformedFeatureDimensionsSmall, L2Small, L3Small>,
FeatureTransformer<TransformedFeatureDimensionsSmall, &StateInfo::accumulatorSmall>>;
} // namespace Stockfish::Eval::NNUE

128
src/nnue/network.h Normal file
View file

@ -0,0 +1,128 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef NETWORK_H_INCLUDED
#define NETWORK_H_INCLUDED
#include <cstdint>
#include <iostream>
#include <optional>
#include <string>
#include <utility>
#include "../misc.h"
#include "../position.h"
#include "../types.h"
#include "nnue_architecture.h"
#include "nnue_feature_transformer.h"
#include "nnue_misc.h"
namespace Stockfish::Eval::NNUE {
struct EmbeddedNNUE {
EmbeddedNNUE(const unsigned char* embeddedData,
const unsigned char* embeddedEnd,
const unsigned int embeddedSize) :
data(embeddedData),
end(embeddedEnd),
size(embeddedSize) {}
const unsigned char* data;
const unsigned char* end;
const unsigned int size;
};
extern const EmbeddedNNUE embeddedNNUEBig;
extern const EmbeddedNNUE embeddedNNUESmall;
template<typename Arch, typename Transformer>
class Network {
public:
Network(EvalFile file, EmbeddedNNUE embeddedEval) :
evalFile(file),
embedded(embeddedEval) {}
void load(const std::string& rootDirectory, std::string evalfilePath);
bool save(const std::optional<std::string>& filename) const;
Value evaluate(const Position& pos,
bool adjusted = false,
int* complexity = nullptr,
bool psqtOnly = false) const;
void hint_common_access(const Position& pos, bool psqtOnl) const;
void verify(std::string evalfilePath) const;
NnueEvalTrace trace_evaluate(const Position& pos) const;
private:
void load_user_net(const std::string&, const std::string&);
void load_internal();
void initialize();
bool save(std::ostream&, const std::string&, const std::string&) const;
std::optional<std::string> load(std::istream&);
bool read_header(std::istream&, std::uint32_t*, std::string*) const;
bool write_header(std::ostream&, std::uint32_t, const std::string&) const;
bool read_parameters(std::istream&, std::string&) const;
bool write_parameters(std::ostream&, const std::string&) const;
// Input feature converter
LargePagePtr<Transformer> featureTransformer;
// Evaluation function
AlignedPtr<Arch> network[LayerStacks];
EvalFile evalFile;
EmbeddedNNUE embedded;
// Hash value of evaluation function structure
static constexpr std::uint32_t hash = Transformer::get_hash_value() ^ Arch::get_hash_value();
};
// Definitions of the network types
using SmallFeatureTransformer =
FeatureTransformer<TransformedFeatureDimensionsSmall, &StateInfo::accumulatorSmall>;
using SmallNetworkArchitecture =
NetworkArchitecture<TransformedFeatureDimensionsSmall, L2Small, L3Small>;
using BigFeatureTransformer =
FeatureTransformer<TransformedFeatureDimensionsBig, &StateInfo::accumulatorBig>;
using BigNetworkArchitecture = NetworkArchitecture<TransformedFeatureDimensionsBig, L2Big, L3Big>;
using NetworkBig = Network<BigNetworkArchitecture, BigFeatureTransformer>;
using NetworkSmall = Network<SmallNetworkArchitecture, SmallFeatureTransformer>;
struct Networks {
Networks(NetworkBig&& nB, NetworkSmall&& nS) :
big(std::move(nB)),
small(std::move(nS)) {}
NetworkBig big;
NetworkSmall small;
};
} // namespace Stockfish
#endif

View file

@ -37,11 +37,6 @@ namespace Stockfish::Eval::NNUE {
// Input features used in evaluation function
using FeatureSet = Features::HalfKAv2_hm;
enum NetSize : int {
Big,
Small
};
// Number of input feature dimensions after conversion
constexpr IndexType TransformedFeatureDimensionsBig = 2560;
constexpr int L2Big = 15;
@ -55,7 +50,7 @@ constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;
template<IndexType L1, int L2, int L3>
struct Network {
struct NetworkArchitecture {
static constexpr IndexType TransformedFeatureDimensions = L1;
static constexpr int FC_0_OUTPUTS = L2;
static constexpr int FC_1_OUTPUTS = L3;

202
src/nnue/nnue_misc.cpp Normal file
View file

@ -0,0 +1,202 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Code for calculating NNUE evaluation function
#include "nnue_misc.h"
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iosfwd>
#include <iostream>
#include <sstream>
#include <string_view>
#include "../evaluate.h"
#include "../position.h"
#include "../types.h"
#include "../uci.h"
#include "network.h"
#include "nnue_accumulator.h"
namespace Stockfish::Eval::NNUE {
constexpr std::string_view PieceToChar(" PNBRQK pnbrqk");
void hint_common_parent_position(const Position& pos, const Networks& networks) {
int simpleEvalAbs = std::abs(simple_eval(pos, pos.side_to_move()));
if (simpleEvalAbs > Eval::SmallNetThreshold)
networks.small.hint_common_access(pos, simpleEvalAbs > Eval::PsqtOnlyThreshold);
else
networks.big.hint_common_access(pos, false);
}
// Converts a Value into (centi)pawns and writes it in a buffer.
// The buffer must have capacity for at least 5 chars.
static void format_cp_compact(Value v, char* buffer) {
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
int cp = std::abs(UCI::to_cp(v));
if (cp >= 10000)
{
buffer[1] = '0' + cp / 10000;
cp %= 10000;
buffer[2] = '0' + cp / 1000;
cp %= 1000;
buffer[3] = '0' + cp / 100;
buffer[4] = ' ';
}
else if (cp >= 1000)
{
buffer[1] = '0' + cp / 1000;
cp %= 1000;
buffer[2] = '0' + cp / 100;
cp %= 100;
buffer[3] = '.';
buffer[4] = '0' + cp / 10;
}
else
{
buffer[1] = '0' + cp / 100;
cp %= 100;
buffer[2] = '.';
buffer[3] = '0' + cp / 10;
cp %= 10;
buffer[4] = '0' + cp / 1;
}
}
// Converts a Value into pawns, always keeping two decimals
static void format_cp_aligned_dot(Value v, std::stringstream& stream) {
const double pawns = std::abs(0.01 * UCI::to_cp(v));
stream << (v < 0 ? '-'
: v > 0 ? '+'
: ' ')
<< std::setiosflags(std::ios::fixed) << std::setw(6) << std::setprecision(2) << pawns;
}
// Returns a string with the value of each piece on a board,
// and a table for (PSQT, Layers) values bucket by bucket.
std::string trace(Position& pos, const Eval::NNUE::Networks& networks) {
std::stringstream ss;
char board[3 * 8 + 1][8 * 8 + 2];
std::memset(board, ' ', sizeof(board));
for (int row = 0; row < 3 * 8 + 1; ++row)
board[row][8 * 8 + 1] = '\0';
// A lambda to output one box of the board
auto writeSquare = [&board](File file, Rank rank, Piece pc, Value value) {
const int x = int(file) * 8;
const int y = (7 - int(rank)) * 3;
for (int i = 1; i < 8; ++i)
board[y][x + i] = board[y + 3][x + i] = '-';
for (int i = 1; i < 3; ++i)
board[y + i][x] = board[y + i][x + 8] = '|';
board[y][x] = board[y][x + 8] = board[y + 3][x + 8] = board[y + 3][x] = '+';
if (pc != NO_PIECE)
board[y + 1][x + 4] = PieceToChar[pc];
if (value != VALUE_NONE)
format_cp_compact(value, &board[y + 2][x + 2]);
};
// We estimate the value of each piece by doing a differential evaluation from
// the current base eval, simulating the removal of the piece from its square.
Value base = networks.big.evaluate(pos);
base = pos.side_to_move() == WHITE ? base : -base;
for (File f = FILE_A; f <= FILE_H; ++f)
for (Rank r = RANK_1; r <= RANK_8; ++r)
{
Square sq = make_square(f, r);
Piece pc = pos.piece_on(sq);
Value v = VALUE_NONE;
if (pc != NO_PIECE && type_of(pc) != KING)
{
auto st = pos.state();
pos.remove_piece(sq);
st->accumulatorBig.computed[WHITE] = st->accumulatorBig.computed[BLACK] =
st->accumulatorBig.computedPSQT[WHITE] = st->accumulatorBig.computedPSQT[BLACK] =
false;
Value eval = networks.big.evaluate(pos);
eval = pos.side_to_move() == WHITE ? eval : -eval;
v = base - eval;
pos.put_piece(pc, sq);
st->accumulatorBig.computed[WHITE] = st->accumulatorBig.computed[BLACK] =
st->accumulatorBig.computedPSQT[WHITE] = st->accumulatorBig.computedPSQT[BLACK] =
false;
}
writeSquare(f, r, pc, v);
}
ss << " NNUE derived piece values:\n";
for (int row = 0; row < 3 * 8 + 1; ++row)
ss << board[row] << '\n';
ss << '\n';
auto t = networks.big.trace_evaluate(pos);
ss << " NNUE network contributions "
<< (pos.side_to_move() == WHITE ? "(White to move)" : "(Black to move)") << std::endl
<< "+------------+------------+------------+------------+\n"
<< "| Bucket | Material | Positional | Total |\n"
<< "| | (PSQT) | (Layers) | |\n"
<< "+------------+------------+------------+------------+\n";
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket)
{
ss << "| " << bucket << " ";
ss << " | ";
format_cp_aligned_dot(t.psqt[bucket], ss);
ss << " "
<< " | ";
format_cp_aligned_dot(t.positional[bucket], ss);
ss << " "
<< " | ";
format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], ss);
ss << " "
<< " |";
if (bucket == t.correctBucket)
ss << " <-- this bucket is used";
ss << '\n';
}
ss << "+------------+------------+------------+------------+\n";
return ss.str();
}
} // namespace Stockfish::Eval::NNUE

63
src/nnue/nnue_misc.h Normal file
View file

@ -0,0 +1,63 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef NNUE_MISC_H_INCLUDED
#define NNUE_MISC_H_INCLUDED
#include <cstddef>
#include <string>
#include "../types.h"
#include "nnue_architecture.h"
namespace Stockfish {
class Position;
namespace Eval::NNUE {
struct EvalFile {
// Default net name, will use one of the EvalFileDefaultName* macros defined
// in evaluate.h
std::string defaultName;
// Selected net name, either via uci option or default
std::string current;
// Net description extracted from the net file
std::string netDescription;
};
struct NnueEvalTrace {
static_assert(LayerStacks == PSQTBuckets);
Value psqt[LayerStacks];
Value positional[LayerStacks];
std::size_t correctBucket;
};
struct Networks;
std::string trace(Position& pos, const Networks& networks);
void hint_common_parent_position(const Position& pos, const Networks& networks);
} // namespace Stockfish::Eval::NNUE
} // namespace Stockfish
#endif // #ifndef NNUE_MISC_H_INCLUDED

View file

@ -27,15 +27,15 @@
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <utility>
#include <sstream>
#include <utility>
#include "evaluate.h"
#include "misc.h"
#include "movegen.h"
#include "movepick.h"
#include "nnue/evaluate_nnue.h"
#include "nnue/nnue_common.h"
#include "nnue/nnue_misc.h"
#include "position.h"
#include "syzygy/tbprobe.h"
#include "thread.h"
@ -135,7 +135,8 @@ Search::Worker::Worker(SharedState& sharedState,
manager(std::move(sm)),
options(sharedState.options),
threads(sharedState.threads),
tt(sharedState.tt) {
tt(sharedState.tt),
networks(sharedState.networks) {
clear();
}
@ -566,8 +567,9 @@ Value Search::Worker::search(
// Step 2. Check for aborted search and immediate draw
if (threads.stop.load(std::memory_order_relaxed) || pos.is_draw(ss->ply)
|| ss->ply >= MAX_PLY)
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos, thisThread->optimism[us])
: value_draw(thisThread->nodes);
return (ss->ply >= MAX_PLY && !ss->inCheck)
? evaluate(networks, pos, thisThread->optimism[us])
: value_draw(thisThread->nodes);
// Step 3. Mate distance pruning. Even if we mate at the next move our score
// would be at best mate_in(ss->ply + 1), but if alpha is already bigger because
@ -700,7 +702,7 @@ Value Search::Worker::search(
{
// Providing the hint that this node's accumulator will be used often
// brings significant Elo gain (~13 Elo).
Eval::NNUE::hint_common_parent_position(pos);
Eval::NNUE::hint_common_parent_position(pos, networks);
unadjustedStaticEval = eval = ss->staticEval;
}
else if (ss->ttHit)
@ -708,9 +710,9 @@ Value Search::Worker::search(
// Never assume anything about values stored in TT
unadjustedStaticEval = tte->eval();
if (unadjustedStaticEval == VALUE_NONE)
unadjustedStaticEval = evaluate(pos, thisThread->optimism[us]);
unadjustedStaticEval = evaluate(networks, pos, thisThread->optimism[us]);
else if (PvNode)
Eval::NNUE::hint_common_parent_position(pos);
Eval::NNUE::hint_common_parent_position(pos, networks);
ss->staticEval = eval = to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos);
@ -720,7 +722,7 @@ Value Search::Worker::search(
}
else
{
unadjustedStaticEval = evaluate(pos, thisThread->optimism[us]);
unadjustedStaticEval = evaluate(networks, pos, thisThread->optimism[us]);
ss->staticEval = eval = to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos);
// Static evaluation is saved as it was before adjustment by correction history
@ -877,7 +879,7 @@ Value Search::Worker::search(
}
}
Eval::NNUE::hint_common_parent_position(pos);
Eval::NNUE::hint_common_parent_position(pos, networks);
}
moves_loop: // When in check, search starts here
@ -1413,8 +1415,9 @@ Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta,
// Step 2. Check for an immediate draw or maximum ply reached
if (pos.is_draw(ss->ply) || ss->ply >= MAX_PLY)
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos, thisThread->optimism[us])
: VALUE_DRAW;
return (ss->ply >= MAX_PLY && !ss->inCheck)
? evaluate(networks, pos, thisThread->optimism[us])
: VALUE_DRAW;
assert(0 <= ss->ply && ss->ply < MAX_PLY);
@ -1445,7 +1448,7 @@ Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta,
// Never assume anything about values stored in TT
unadjustedStaticEval = tte->eval();
if (unadjustedStaticEval == VALUE_NONE)
unadjustedStaticEval = evaluate(pos, thisThread->optimism[us]);
unadjustedStaticEval = evaluate(networks, pos, thisThread->optimism[us]);
ss->staticEval = bestValue =
to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos);
@ -1458,7 +1461,7 @@ Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta,
{
// In case of null move search, use previous static eval with a different sign
unadjustedStaticEval = (ss - 1)->currentMove != Move::null()
? evaluate(pos, thisThread->optimism[us])
? evaluate(networks, pos, thisThread->optimism[us])
: -(ss - 1)->staticEval;
ss->staticEval = bestValue =
to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos);

View file

@ -25,8 +25,8 @@
#include <cstddef>
#include <cstdint>
#include <memory>
#include <vector>
#include <string>
#include <vector>
#include "misc.h"
#include "movepick.h"
@ -37,6 +37,10 @@
namespace Stockfish {
namespace Eval::NNUE {
struct Networks;
}
// Different node types, used as a template parameter
enum NodeType {
NonPV,
@ -125,16 +129,20 @@ struct LimitsType {
// The UCI stores the uci options, thread pool, and transposition table.
// This struct is used to easily forward data to the Search::Worker class.
struct SharedState {
SharedState(const OptionsMap& optionsMap,
ThreadPool& threadPool,
TranspositionTable& transpositionTable) :
SharedState(const OptionsMap& optionsMap,
ThreadPool& threadPool,
TranspositionTable& transpositionTable,
const Eval::NNUE::Networks& nets) :
options(optionsMap),
threads(threadPool),
tt(transpositionTable) {}
tt(transpositionTable),
networks(nets) {}
const OptionsMap& options;
ThreadPool& threads;
TranspositionTable& tt;
const OptionsMap& options;
ThreadPool& threads;
TranspositionTable& tt;
const Eval::NNUE::Networks& networks;
};
class Worker;
@ -176,6 +184,7 @@ class NullSearchManager: public ISearchManager {
void check_time(Search::Worker&) override {}
};
// Search::Worker is the class that does the actual search.
// It is instantiated once per thread, and it is responsible for keeping track
// of the search history, and storing data required for the search.
@ -247,9 +256,10 @@ class Worker {
Tablebases::Config tbConfig;
const OptionsMap& options;
ThreadPool& threads;
TranspositionTable& tt;
const OptionsMap& options;
ThreadPool& threads;
TranspositionTable& tt;
const Eval::NNUE::Networks& networks;
friend class Stockfish::ThreadPool;
friend class SearchManager;

View file

@ -19,12 +19,12 @@
#include "thread.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <deque>
#include <memory>
#include <unordered_map>
#include <utility>
#include <array>
#include "misc.h"
#include "movegen.h"
@ -62,6 +62,7 @@ Thread::~Thread() {
stdThread.join();
}
// Wakes up the thread that will start the search
void Thread::start_searching() {
mutex.lock();
@ -109,6 +110,13 @@ void Thread::idle_loop() {
}
}
Search::SearchManager* ThreadPool::main_manager() {
return static_cast<Search::SearchManager*>(main_thread()->worker.get()->manager.get());
}
uint64_t ThreadPool::nodes_searched() const { return accumulate(&Search::Worker::nodes); }
uint64_t ThreadPool::tb_hits() const { return accumulate(&Search::Worker::tbHits); }
// Creates/destroys threads to match the requested number.
// Created and launched threads will immediately go to sleep in idle_loop.
// Upon resizing, threads are recreated to allow for binding if necessary.

View file

@ -33,6 +33,7 @@
namespace Stockfish {
class OptionsMap;
using Value = int;
@ -83,15 +84,13 @@ class ThreadPool {
void clear();
void set(Search::SharedState);
Search::SearchManager* main_manager() const {
return static_cast<Search::SearchManager*>(main_thread()->worker.get()->manager.get());
};
Thread* main_thread() const { return threads.front(); }
uint64_t nodes_searched() const { return accumulate(&Search::Worker::nodes); }
uint64_t tb_hits() const { return accumulate(&Search::Worker::tbHits); }
Thread* get_best_thread() const;
void start_searching();
void wait_for_search_finished() const;
Search::SearchManager* main_manager();
Thread* main_thread() const { return threads.front(); }
uint64_t nodes_searched() const;
uint64_t tb_hits() const;
Thread* get_best_thread() const;
void start_searching();
void wait_for_search_finished() const;
std::atomic_bool stop, abortedSearch, increaseDepth;

View file

@ -22,25 +22,25 @@
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <deque>
#include <memory>
#include <optional>
#include <sstream>
#include <vector>
#include <cstdint>
#include "benchmark.h"
#include "evaluate.h"
#include "movegen.h"
#include "nnue/evaluate_nnue.h"
#include "nnue/nnue_architecture.h"
#include "nnue/network.h"
#include "nnue/nnue_common.h"
#include "perft.h"
#include "position.h"
#include "search.h"
#include "syzygy/tbprobe.h"
#include "types.h"
#include "ucioption.h"
#include "perft.h"
namespace Stockfish {
@ -48,17 +48,20 @@ constexpr auto StartFEN = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKB
constexpr int NormalizeToPawnValue = 356;
constexpr int MaxHashMB = Is64Bit ? 33554432 : 2048;
namespace NN = Eval::NNUE;
UCI::UCI(int argc, char** argv) :
networks(NN::Networks(
NN::NetworkBig({EvalFileDefaultNameBig, "None", ""}, NN::embeddedNNUEBig),
NN::NetworkSmall({EvalFileDefaultNameSmall, "None", ""}, NN::embeddedNNUESmall))),
cli(argc, argv) {
evalFiles = {{Eval::NNUE::Big, {"EvalFile", EvalFileDefaultNameBig, "None", ""}},
{Eval::NNUE::Small, {"EvalFileSmall", EvalFileDefaultNameSmall, "None", ""}}};
options["Debug Log File"] << Option("", [](const Option& o) { start_logger(o); });
options["Threads"] << Option(1, 1, 1024, [this](const Option&) {
threads.set({options, threads, tt});
threads.set({options, threads, tt, networks});
});
options["Hash"] << Option(16, 1, MaxHashMB, [this](const Option& o) {
@ -80,14 +83,17 @@ UCI::UCI(int argc, char** argv) :
options["SyzygyProbeDepth"] << Option(1, 1, 100);
options["Syzygy50MoveRule"] << Option(true);
options["SyzygyProbeLimit"] << Option(7, 0, 7);
options["EvalFile"] << Option(EvalFileDefaultNameBig, [this](const Option&) {
evalFiles = Eval::NNUE::load_networks(cli.binaryDirectory, options, evalFiles);
options["EvalFile"] << Option(EvalFileDefaultNameBig, [this](const Option& o) {
networks.big.load(cli.binaryDirectory, o);
});
options["EvalFileSmall"] << Option(EvalFileDefaultNameSmall, [this](const Option&) {
evalFiles = Eval::NNUE::load_networks(cli.binaryDirectory, options, evalFiles);
options["EvalFileSmall"] << Option(EvalFileDefaultNameSmall, [this](const Option& o) {
networks.small.load(cli.binaryDirectory, o);
});
threads.set({options, threads, tt});
networks.big.load(cli.binaryDirectory, options["EvalFile"]);
networks.small.load(cli.binaryDirectory, options["EvalFileSmall"]);
threads.set({options, threads, tt, networks});
search_clear(); // After threads are up
}
@ -157,7 +163,7 @@ void UCI::loop() {
std::string f;
if (is >> std::skipws >> f)
filename = f;
Eval::NNUE::save_eval(filename, Eval::NNUE::Big, evalFiles);
networks.big.save(filename);
}
else if (token == "--help" || token == "help" || token == "--license" || token == "license")
sync_cout
@ -218,7 +224,8 @@ void UCI::go(Position& pos, std::istringstream& is, StateListPtr& states) {
Search::LimitsType limits = parse_limits(pos, is);
Eval::NNUE::verify(options, evalFiles);
networks.big.verify(options["EvalFile"]);
networks.small.verify(options["EvalFileSmall"]);
if (limits.perft)
{
@ -283,9 +290,11 @@ void UCI::trace_eval(Position& pos) {
Position p;
p.set(pos.fen(), options["UCI_Chess960"], &states->back());
Eval::NNUE::verify(options, evalFiles);
networks.big.verify(options["EvalFile"]);
networks.small.verify(options["EvalFileSmall"]);
sync_cout << "\n" << Eval::trace(p) << sync_endl;
sync_cout << "\n" << Eval::trace(p, networks) << sync_endl;
}
void UCI::search_clear() {

View file

@ -22,13 +22,13 @@
#include <iostream>
#include <string>
#include "evaluate.h"
#include "misc.h"
#include "nnue/network.h"
#include "position.h"
#include "search.h"
#include "thread.h"
#include "tt.h"
#include "ucioption.h"
#include "search.h"
namespace Stockfish {
@ -53,8 +53,8 @@ class UCI {
const std::string& working_directory() const { return cli.workingDirectory; }
OptionsMap options;
Eval::NNUE::EvalFiles evalFiles;
OptionsMap options;
Eval::NNUE::Networks networks;
private:
TranspositionTable tt;