1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00

Fix indentations

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Joona Kiiski 2010-02-02 19:25:20 +02:00 committed by Marco Costalba
parent 95d33aef9f
commit 21d32aa7fe

View file

@ -875,187 +875,120 @@ namespace {
while (1) // Fail low loop
{
// Loop through all the moves in the root move list
for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
{
if (alpha >= beta)
// Loop through all the moves in the root move list
for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
{
// We failed high, invalidate and skip next moves, leave node-counters
// and beta-counters as they are and quickly return, we will try to do
// a research at the next iteration with a bigger aspiration window.
rml.set_move_score(i, -VALUE_INFINITE);
continue;
}
RootMoveNumber = i + 1;
FailHigh = false;
// Save the current node count before the move is searched
nodes = nodes_searched();
// Reset beta cut-off counters
BetaCounter.clear();
// Pick the next root move, and print the move and the move number to
// the standard output.
move = ss[0].currentMove = rml.get_move(i);
if (current_search_time() >= 1000)
cout << "info currmove " << move
<< " currmovenumber " << RootMoveNumber << endl;
// Decide search depth for this move
moveIsCheck = pos.move_is_check(move);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
depth = (Iteration - 2) * OnePly + InitialDepth;
ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
newDepth = depth + ext;
value = - VALUE_INFINITE;
// Precalculate reduction parameters
float LogLimit, Gradient, BaseReduction = 0.5;
reduction_parameters(BaseReduction, 6.0, depth, LogLimit, Gradient);
while (1) // Fail high loop
{
// Make the move, and search it
pos.do_move(move, st, ci, moveIsCheck);
if (i < MultiPV || value > alpha)
{
// Aspiration window is disabled in multi-pv case
if (MultiPV > 1)
alpha = -VALUE_INFINITE;
value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
// If the value has dropped a lot compared to the last iteration,
// set the boolean variable Problem to true. This variable is used
// for time managment: When Problem is true, we try to complete the
// current iteration before playing a move.
Problem = ( Iteration >= 2
&& value <= ValueByIteration[Iteration - 1] - ProblemMargin);
if (Problem && StopOnPonderhit)
StopOnPonderhit = false;
}
else
{
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( depth >= 3*OnePly // FIXME was newDepth
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move))
if (alpha >= beta)
{
ss[0].reduction = reduction(RootMoveNumber - MultiPV + 1, LogLimit, BaseReduction, Gradient);
if (ss[0].reduction)
{
value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0);
doFullDepthSearch = (value > alpha);
}
// We failed high, invalidate and skip next moves, leave node-counters
// and beta-counters as they are and quickly return, we will try to do
// a research at the next iteration with a bigger aspiration window.
rml.set_move_score(i, -VALUE_INFINITE);
continue;
}
if (doFullDepthSearch)
{
ss[0].reduction = Depth(0);
value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
RootMoveNumber = i + 1;
FailHigh = false;
if (value > alpha)
// Save the current node count before the move is searched
nodes = nodes_searched();
// Reset beta cut-off counters
BetaCounter.clear();
// Pick the next root move, and print the move and the move number to
// the standard output.
move = ss[0].currentMove = rml.get_move(i);
if (current_search_time() >= 1000)
cout << "info currmove " << move
<< " currmovenumber " << RootMoveNumber << endl;
// Decide search depth for this move
moveIsCheck = pos.move_is_check(move);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
depth = (Iteration - 2) * OnePly + InitialDepth;
ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
newDepth = depth + ext;
value = - VALUE_INFINITE;
// Precalculate reduction parameters
float LogLimit, Gradient, BaseReduction = 0.5;
reduction_parameters(BaseReduction, 6.0, depth, LogLimit, Gradient);
while (1) // Fail high loop
{
// Make the move, and search it
pos.do_move(move, st, ci, moveIsCheck);
if (i < MultiPV || value > alpha)
{
// Fail high! Set the boolean variable FailHigh to true, and
// re-search the move using a PV search. The variable FailHigh
// is used for time managment: We try to avoid aborting the
// search prematurely during a fail high research.
FailHigh = true;
// Aspiration window is disabled in multi-pv case
if (MultiPV > 1)
alpha = -VALUE_INFINITE;
value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
// If the value has dropped a lot compared to the last iteration,
// set the boolean variable Problem to true. This variable is used
// for time managment: When Problem is true, we try to complete the
// current iteration before playing a move.
Problem = ( Iteration >= 2
&& value <= ValueByIteration[Iteration - 1] - ProblemMargin);
if (Problem && StopOnPonderhit)
StopOnPonderhit = false;
}
}
}
else
{
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
pos.undo_move(move);
if ( depth >= 3*OnePly // FIXME was newDepth
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move))
{
ss[0].reduction = reduction(RootMoveNumber - MultiPV + 1, LogLimit, BaseReduction, Gradient);
if (ss[0].reduction)
{
value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0);
doFullDepthSearch = (value > alpha);
}
}
// Can we exit fail high loop ?
if (AbortSearch || value < beta)
break;
if (doFullDepthSearch)
{
ss[0].reduction = Depth(0);
value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
// We are failing high and going to do a research. It's important to update score
// before research in case we run out of time while researching.
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
if (value > alpha)
{
// Fail high! Set the boolean variable FailHigh to true, and
// re-search the move using a PV search. The variable FailHigh
// is used for time managment: We try to avoid aborting the
// search prematurely during a fail high research.
FailHigh = true;
value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
}
}
}
// Print search information to the standard output
cout << "info depth " << Iteration
<< " score " << value_to_string(value)
<< ((value >= beta) ? " lowerbound" :
((value <= alpha)? " upperbound" : ""))
<< " time " << current_search_time()
<< " nodes " << nodes_searched()
<< " nps " << nps()
<< " pv ";
pos.undo_move(move);
for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
cout << ss[0].pv[j] << " ";
// Can we exit fail high loop ?
if (AbortSearch || value < beta)
break;
cout << endl;
if (UseLogFile)
{
ValueType type = (value >= beta ? VALUE_TYPE_LOWER
: (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
LogFile << pretty_pv(pos, current_search_time(), Iteration,
nodes_searched(), value, type, ss[0].pv) << endl;
}
// Prepare for a research after a fail high, each time with a wider window
researchCount++;
beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE);
} // End of fail high loop
// Finished searching the move. If AbortSearch is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we break out of the loop without updating the best
// move and/or PV.
if (AbortSearch)
break;
// Remember beta-cutoff and searched nodes counts for this move. The
// info is used to sort the root moves at the next iteration.
int64_t our, their;
BetaCounter.read(pos.side_to_move(), our, their);
rml.set_beta_counters(i, our, their);
rml.set_move_nodes(i, nodes_searched() - nodes);
assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
if (value <= alpha && i >= MultiPV)
rml.set_move_score(i, -VALUE_INFINITE);
else
{
// PV move or new best move!
// Update PV
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
if (MultiPV == 1)
{
// We record how often the best move has been changed in each
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if (i > 0)
BestMoveChangesByIteration[Iteration]++;
// We are failing high and going to do a research. It's important to update score
// before research in case we run out of time while researching.
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
// Print search information to the standard output
cout << "info depth " << Iteration
@ -1080,49 +1013,116 @@ namespace {
LogFile << pretty_pv(pos, current_search_time(), Iteration,
nodes_searched(), value, type, ss[0].pv) << endl;
}
if (value > alpha)
alpha = value;
// Reset the global variable Problem to false if the value isn't too
// far below the final value from the last iteration.
if (value > ValueByIteration[Iteration - 1] - NoProblemMargin)
Problem = false;
}
else // MultiPV > 1
// Prepare for a research after a fail high, each time with a wider window
researchCount++;
beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE);
} // End of fail high loop
// Finished searching the move. If AbortSearch is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we break out of the loop without updating the best
// move and/or PV.
if (AbortSearch)
break;
// Remember beta-cutoff and searched nodes counts for this move. The
// info is used to sort the root moves at the next iteration.
int64_t our, their;
BetaCounter.read(pos.side_to_move(), our, their);
rml.set_beta_counters(i, our, their);
rml.set_move_nodes(i, nodes_searched() - nodes);
assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
if (value <= alpha && i >= MultiPV)
rml.set_move_score(i, -VALUE_INFINITE);
else
{
rml.sort_multipv(i);
for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
// PV move or new best move!
// Update PV
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
if (MultiPV == 1)
{
cout << "info multipv " << j + 1
<< " score " << value_to_string(rml.get_move_score(j))
<< " depth " << ((j <= i)? Iteration : Iteration - 1)
<< " time " << current_search_time()
// We record how often the best move has been changed in each
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if (i > 0)
BestMoveChangesByIteration[Iteration]++;
// Print search information to the standard output
cout << "info depth " << Iteration
<< " score " << value_to_string(value)
<< ((value >= beta) ? " lowerbound" :
((value <= alpha)? " upperbound" : ""))
<< " time " << current_search_time()
<< " nodes " << nodes_searched()
<< " nps " << nps()
<< " nps " << nps()
<< " pv ";
for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
cout << rml.get_move_pv(j, k) << " ";
for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
cout << ss[0].pv[j] << " ";
cout << endl;
if (UseLogFile)
{
ValueType type = (value >= beta ? VALUE_TYPE_LOWER
: (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
LogFile << pretty_pv(pos, current_search_time(), Iteration,
nodes_searched(), value, type, ss[0].pv) << endl;
}
if (value > alpha)
alpha = value;
// Reset the global variable Problem to false if the value isn't too
// far below the final value from the last iteration.
if (value > ValueByIteration[Iteration - 1] - NoProblemMargin)
Problem = false;
}
alpha = rml.get_move_score(Min(i, MultiPV-1));
}
} // PV move or new best move
else // MultiPV > 1
{
rml.sort_multipv(i);
for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
{
cout << "info multipv " << j + 1
<< " score " << value_to_string(rml.get_move_score(j))
<< " depth " << ((j <= i)? Iteration : Iteration - 1)
<< " time " << current_search_time()
<< " nodes " << nodes_searched()
<< " nps " << nps()
<< " pv ";
assert(alpha >= oldAlpha);
for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
cout << rml.get_move_pv(j, k) << " ";
FailLow = (alpha == oldAlpha);
}
cout << endl;
}
alpha = rml.get_move_score(Min(i, MultiPV-1));
}
} // PV move or new best move
// Can we exit fail low loop ?
if (AbortSearch || alpha > oldAlpha)
break;
assert(alpha >= oldAlpha);
// Prepare for a research after a fail low, each time with a wider window
researchCount++;
alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE);
oldAlpha = alpha;
FailLow = (alpha == oldAlpha);
}
// Can we exit fail low loop ?
if (AbortSearch || alpha > oldAlpha)
break;
// Prepare for a research after a fail low, each time with a wider window
researchCount++;
alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE);
oldAlpha = alpha;
} // Fail low loop