1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00

Small speedup in incremental accumulator updates

Instead of updating at most two accumulators, update all accumluators
during incremental updates. Tests have shown that this change yields a
small speedup of at least 0.5%, and up to 1% with shorter TC.

Passed STC:
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 54368 W: 14179 L: 13842 D: 26347
Ptnml(0-2): 173, 6122, 14262, 6449, 178
https://tests.stockfishchess.org/tests/view/66db038a9de3e7f9b33d1ad9

Passed 5+0.05:
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 55040 W: 14682 L: 14322 D: 26036
Ptnml(0-2): 303, 6364, 13856, 6664, 333
https://tests.stockfishchess.org/tests/view/66dbc325dc53972b68218ba7

Passed non-regression LTC:
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 57390 W: 14555 L: 14376 D: 28459
Ptnml(0-2): 37, 5876, 16683, 6069, 30
https://tests.stockfishchess.org/tests/view/66dbc30adc53972b68218ba5

closes https://github.com/official-stockfish/Stockfish/pull/5576

No functional change
This commit is contained in:
MinetaS 2024-09-06 22:14:47 +09:00 committed by Disservin
parent effa246071
commit 2680c9c799
3 changed files with 140 additions and 193 deletions

View file

@ -453,11 +453,10 @@ class FeatureTransformer {
private:
template<Color Perspective>
[[nodiscard]] std::pair<StateInfo*, StateInfo*>
try_find_computed_accumulator(const Position& pos) const {
StateInfo* try_find_computed_accumulator(const Position& pos) const {
// Look for a usable accumulator of an earlier position. We keep track
// of the estimated gain in terms of features to be added/subtracted.
StateInfo *st = pos.state(), *next = nullptr;
StateInfo* st = pos.state();
int gain = FeatureSet::refresh_cost(pos);
while (st->previous && !(st->*accPtr).computed[Perspective])
{
@ -466,30 +465,17 @@ class FeatureTransformer {
if (FeatureSet::requires_refresh(st, Perspective)
|| (gain -= FeatureSet::update_cost(st) + 1) < 0)
break;
next = st;
st = st->previous;
st = st->previous;
}
return {st, next};
return st;
}
// NOTE: The parameter states_to_update is an array of position states.
// All states must be sequential, that is states_to_update[i] must
// either be reachable by repeatedly applying ->previous from
// states_to_update[i+1], and computed_st must be reachable by
// repeatedly applying ->previous on states_to_update[0].
template<Color Perspective, size_t N>
void update_accumulator_incremental(const Position& pos,
StateInfo* computed_st,
StateInfo* states_to_update[N]) const {
static_assert(N > 0);
assert([&]() {
for (size_t i = 0; i < N; ++i)
{
if (states_to_update[i] == nullptr)
return false;
}
return true;
}());
// It computes the accumulator of the next position, or updates the
// current position's accumulator if CurrentOnly is true.
template<Color Perspective, bool CurrentOnly>
void update_accumulator_incremental(const Position& pos, StateInfo* computed) const {
assert((computed->*accPtr).computed[Perspective]);
assert(computed->next != nullptr);
#ifdef VECTOR
// Gcc-10.2 unnecessarily spills AVX2 registers if this array
@ -498,205 +484,186 @@ class FeatureTransformer {
psqt_vec_t psqt[NumPsqtRegs];
#endif
// Update incrementally going back through states_to_update.
// Gather all features to be updated.
const Square ksq = pos.square<KING>(Perspective);
// The size must be enough to contain the largest possible update.
// That might depend on the feature set and generally relies on the
// feature set's update cost calculation to be correct and never allow
// updates with more added/removed features than MaxActiveDimensions.
FeatureSet::IndexList removed[N], added[N];
FeatureSet::IndexList removed, added;
for (int i = N - 1; i >= 0; --i)
{
(states_to_update[i]->*accPtr).computed[Perspective] = true;
if constexpr (CurrentOnly)
for (StateInfo* st = pos.state(); st != computed; st = st->previous)
FeatureSet::append_changed_indices<Perspective>(ksq, st->dirtyPiece, removed,
added);
else
FeatureSet::append_changed_indices<Perspective>(ksq, computed->next->dirtyPiece,
removed, added);
const StateInfo* end_state = i == 0 ? computed_st : states_to_update[i - 1];
StateInfo* next = CurrentOnly ? pos.state() : computed->next;
assert(!(next->*accPtr).computed[Perspective]);
for (StateInfo* st2 = states_to_update[i]; st2 != end_state; st2 = st2->previous)
FeatureSet::append_changed_indices<Perspective>(ksq, st2->dirtyPiece, removed[i],
added[i]);
}
StateInfo* st = computed_st;
// Now update the accumulators listed in states_to_update[],
// where the last element is a sentinel.
#ifdef VECTOR
if (N == 1 && (removed[0].size() == 1 || removed[0].size() == 2) && added[0].size() == 1)
if ((removed.size() == 1 || removed.size() == 2) && added.size() == 1)
{
assert(states_to_update[0]);
auto accIn =
reinterpret_cast<const vec_t*>(&(st->*accPtr).accumulation[Perspective][0]);
auto accOut = reinterpret_cast<vec_t*>(
&(states_to_update[0]->*accPtr).accumulation[Perspective][0]);
reinterpret_cast<const vec_t*>(&(computed->*accPtr).accumulation[Perspective][0]);
auto accOut = reinterpret_cast<vec_t*>(&(next->*accPtr).accumulation[Perspective][0]);
const IndexType offsetR0 = HalfDimensions * removed[0][0];
const IndexType offsetR0 = HalfDimensions * removed[0];
auto columnR0 = reinterpret_cast<const vec_t*>(&weights[offsetR0]);
const IndexType offsetA = HalfDimensions * added[0][0];
const IndexType offsetA = HalfDimensions * added[0];
auto columnA = reinterpret_cast<const vec_t*>(&weights[offsetA]);
if (removed[0].size() == 1)
if (removed.size() == 1)
{
for (IndexType k = 0; k < HalfDimensions * sizeof(std::int16_t) / sizeof(vec_t);
++k)
accOut[k] = vec_add_16(vec_sub_16(accIn[k], columnR0[k]), columnA[k]);
for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(vec_t); ++i)
accOut[i] = vec_add_16(vec_sub_16(accIn[i], columnR0[i]), columnA[i]);
}
else
{
const IndexType offsetR1 = HalfDimensions * removed[0][1];
const IndexType offsetR1 = HalfDimensions * removed[1];
auto columnR1 = reinterpret_cast<const vec_t*>(&weights[offsetR1]);
for (IndexType k = 0; k < HalfDimensions * sizeof(std::int16_t) / sizeof(vec_t);
++k)
accOut[k] = vec_sub_16(vec_add_16(accIn[k], columnA[k]),
vec_add_16(columnR0[k], columnR1[k]));
for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(vec_t); ++i)
accOut[i] = vec_sub_16(vec_add_16(accIn[i], columnA[i]),
vec_add_16(columnR0[i], columnR1[i]));
}
auto accPsqtIn =
reinterpret_cast<const psqt_vec_t*>(&(st->*accPtr).psqtAccumulation[Perspective][0]);
auto accPsqtOut = reinterpret_cast<psqt_vec_t*>(
&(states_to_update[0]->*accPtr).psqtAccumulation[Perspective][0]);
auto accPsqtIn = reinterpret_cast<const psqt_vec_t*>(
&(computed->*accPtr).psqtAccumulation[Perspective][0]);
auto accPsqtOut =
reinterpret_cast<psqt_vec_t*>(&(next->*accPtr).psqtAccumulation[Perspective][0]);
const IndexType offsetPsqtR0 = PSQTBuckets * removed[0][0];
const IndexType offsetPsqtR0 = PSQTBuckets * removed[0];
auto columnPsqtR0 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR0]);
const IndexType offsetPsqtA = PSQTBuckets * added[0][0];
const IndexType offsetPsqtA = PSQTBuckets * added[0];
auto columnPsqtA = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtA]);
if (removed[0].size() == 1)
if (removed.size() == 1)
{
for (std::size_t k = 0; k < PSQTBuckets * sizeof(std::int32_t) / sizeof(psqt_vec_t);
++k)
accPsqtOut[k] = vec_add_psqt_32(vec_sub_psqt_32(accPsqtIn[k], columnPsqtR0[k]),
columnPsqtA[k]);
for (std::size_t i = 0;
i < PSQTBuckets * sizeof(PSQTWeightType) / sizeof(psqt_vec_t); ++i)
accPsqtOut[i] = vec_add_psqt_32(vec_sub_psqt_32(accPsqtIn[i], columnPsqtR0[i]),
columnPsqtA[i]);
}
else
{
const IndexType offsetPsqtR1 = PSQTBuckets * removed[0][1];
const IndexType offsetPsqtR1 = PSQTBuckets * removed[1];
auto columnPsqtR1 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR1]);
for (std::size_t k = 0; k < PSQTBuckets * sizeof(std::int32_t) / sizeof(psqt_vec_t);
++k)
accPsqtOut[k] =
vec_sub_psqt_32(vec_add_psqt_32(accPsqtIn[k], columnPsqtA[k]),
vec_add_psqt_32(columnPsqtR0[k], columnPsqtR1[k]));
for (std::size_t i = 0;
i < PSQTBuckets * sizeof(PSQTWeightType) / sizeof(psqt_vec_t); ++i)
accPsqtOut[i] =
vec_sub_psqt_32(vec_add_psqt_32(accPsqtIn[i], columnPsqtA[i]),
vec_add_psqt_32(columnPsqtR0[i], columnPsqtR1[i]));
}
}
else
{
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
for (IndexType i = 0; i < HalfDimensions / TileHeight; ++i)
{
// Load accumulator
auto accTileIn = reinterpret_cast<const vec_t*>(
&(st->*accPtr).accumulation[Perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_load(&accTileIn[k]);
&(computed->*accPtr).accumulation[Perspective][i * TileHeight]);
for (IndexType j = 0; j < NumRegs; ++j)
acc[j] = vec_load(&accTileIn[j]);
for (IndexType i = 0; i < N; ++i)
// Difference calculation for the deactivated features
for (const auto index : removed)
{
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_sub_16(acc[k], column[k]);
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_add_16(acc[k], column[k]);
}
// Store accumulator
auto accTileOut = reinterpret_cast<vec_t*>(
&(states_to_update[i]->*accPtr).accumulation[Perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_store(&accTileOut[k], acc[k]);
const IndexType offset = HalfDimensions * index + i * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType j = 0; j < NumRegs; ++j)
acc[j] = vec_sub_16(acc[j], column[j]);
}
// Difference calculation for the activated features
for (const auto index : added)
{
const IndexType offset = HalfDimensions * index + i * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType j = 0; j < NumRegs; ++j)
acc[j] = vec_add_16(acc[j], column[j]);
}
// Store accumulator
auto accTileOut = reinterpret_cast<vec_t*>(
&(next->*accPtr).accumulation[Perspective][i * TileHeight]);
for (IndexType j = 0; j < NumRegs; ++j)
vec_store(&accTileOut[j], acc[j]);
}
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
for (IndexType i = 0; i < PSQTBuckets / PsqtTileHeight; ++i)
{
// Load accumulator
auto accTilePsqtIn = reinterpret_cast<const psqt_vec_t*>(
&(st->*accPtr).psqtAccumulation[Perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_load_psqt(&accTilePsqtIn[k]);
&(computed->*accPtr).psqtAccumulation[Perspective][i * PsqtTileHeight]);
for (std::size_t j = 0; j < NumPsqtRegs; ++j)
psqt[j] = vec_load_psqt(&accTilePsqtIn[j]);
for (IndexType i = 0; i < N; ++i)
// Difference calculation for the deactivated features
for (const auto index : removed)
{
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
}
// Store accumulator
auto accTilePsqtOut = reinterpret_cast<psqt_vec_t*>(
&(states_to_update[i]->*accPtr)
.psqtAccumulation[Perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&accTilePsqtOut[k], psqt[k]);
const IndexType offset = PSQTBuckets * index + i * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t j = 0; j < NumPsqtRegs; ++j)
psqt[j] = vec_sub_psqt_32(psqt[j], columnPsqt[j]);
}
// Difference calculation for the activated features
for (const auto index : added)
{
const IndexType offset = PSQTBuckets * index + i * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t j = 0; j < NumPsqtRegs; ++j)
psqt[j] = vec_add_psqt_32(psqt[j], columnPsqt[j]);
}
// Store accumulator
auto accTilePsqtOut = reinterpret_cast<psqt_vec_t*>(
&(next->*accPtr).psqtAccumulation[Perspective][i * PsqtTileHeight]);
for (std::size_t j = 0; j < NumPsqtRegs; ++j)
vec_store_psqt(&accTilePsqtOut[j], psqt[j]);
}
}
#else
for (IndexType i = 0; i < N; ++i)
std::memcpy((next->*accPtr).accumulation[Perspective],
(computed->*accPtr).accumulation[Perspective],
HalfDimensions * sizeof(BiasType));
std::memcpy((next->*accPtr).psqtAccumulation[Perspective],
(computed->*accPtr).psqtAccumulation[Perspective],
PSQTBuckets * sizeof(PSQTWeightType));
// Difference calculation for the deactivated features
for (const auto index : removed)
{
std::memcpy((states_to_update[i]->*accPtr).accumulation[Perspective],
(st->*accPtr).accumulation[Perspective], HalfDimensions * sizeof(BiasType));
const IndexType offset = HalfDimensions * index;
for (IndexType i = 0; i < HalfDimensions; ++i)
(next->*accPtr).accumulation[Perspective][i] -= weights[offset + i];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
(states_to_update[i]->*accPtr).psqtAccumulation[Perspective][k] =
(st->*accPtr).psqtAccumulation[Perspective][k];
for (std::size_t i = 0; i < PSQTBuckets; ++i)
(next->*accPtr).psqtAccumulation[Perspective][i] -=
psqtWeights[index * PSQTBuckets + i];
}
st = states_to_update[i];
// Difference calculation for the activated features
for (const auto index : added)
{
const IndexType offset = HalfDimensions * index;
for (IndexType i = 0; i < HalfDimensions; ++i)
(next->*accPtr).accumulation[Perspective][i] += weights[offset + i];
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
(st->*accPtr).accumulation[Perspective][j] -= weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
(st->*accPtr).psqtAccumulation[Perspective][k] -=
psqtWeights[index * PSQTBuckets + k];
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
(st->*accPtr).accumulation[Perspective][j] += weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
(st->*accPtr).psqtAccumulation[Perspective][k] +=
psqtWeights[index * PSQTBuckets + k];
}
for (std::size_t i = 0; i < PSQTBuckets; ++i)
(next->*accPtr).psqtAccumulation[Perspective][i] +=
psqtWeights[index * PSQTBuckets + i];
}
#endif
(next->*accPtr).computed[Perspective] = true;
if (!CurrentOnly && next != pos.state())
update_accumulator_incremental<Perspective, false>(pos, next);
}
template<Color Perspective>
@ -871,14 +838,10 @@ class FeatureTransformer {
if ((pos.state()->*accPtr).computed[Perspective])
return;
auto [oldest_st, _] = try_find_computed_accumulator<Perspective>(pos);
StateInfo* oldest = try_find_computed_accumulator<Perspective>(pos);
if ((oldest_st->*accPtr).computed[Perspective])
{
// Only update current position accumulator to minimize work
StateInfo* states_to_update[1] = {pos.state()};
update_accumulator_incremental<Perspective, 1>(pos, oldest_st, states_to_update);
}
if ((oldest->*accPtr).computed[Perspective] && oldest != pos.state())
update_accumulator_incremental<Perspective, true>(pos, oldest);
else
update_accumulator_refresh_cache<Perspective>(pos, cache);
}
@ -887,31 +850,12 @@ class FeatureTransformer {
void update_accumulator(const Position& pos,
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
auto [oldest_st, next] = try_find_computed_accumulator<Perspective>(pos);
StateInfo* oldest = try_find_computed_accumulator<Perspective>(pos);
if ((oldest_st->*accPtr).computed[Perspective])
{
if (next == nullptr)
return;
// Now update the accumulators listed in states_to_update[], where
// the last element is a sentinel. Currently we update two accumulators:
// 1. for the current position
// 2. the next accumulator after the computed one
// The heuristic may change in the future.
if (next == pos.state())
{
StateInfo* states_to_update[1] = {next};
update_accumulator_incremental<Perspective, 1>(pos, oldest_st, states_to_update);
}
else
{
StateInfo* states_to_update[2] = {next, pos.state()};
update_accumulator_incremental<Perspective, 2>(pos, oldest_st, states_to_update);
}
}
if ((oldest->*accPtr).computed[Perspective] && oldest != pos.state())
// Start from the oldest computed accumulator, update all the
// accumulators up to the current position.
update_accumulator_incremental<Perspective, false>(pos, oldest);
else
update_accumulator_refresh_cache<Perspective>(pos, cache);
}

View file

@ -671,6 +671,7 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
// our state pointer to point to the new (ready to be updated) state.
std::memcpy(&newSt, st, offsetof(StateInfo, key));
newSt.previous = st;
st->next = &newSt;
st = &newSt;
// Increment ply counters. In particular, rule50 will be reset to zero later on
@ -963,6 +964,7 @@ void Position::do_null_move(StateInfo& newSt, TranspositionTable& tt) {
std::memcpy(&newSt, st, offsetof(StateInfo, accumulatorBig));
newSt.previous = st;
st->next = &newSt;
st = &newSt;
st->dirtyPiece.dirty_num = 0;

View file

@ -53,6 +53,7 @@ struct StateInfo {
Key key;
Bitboard checkersBB;
StateInfo* previous;
StateInfo* next;
Bitboard blockersForKing[COLOR_NB];
Bitboard pinners[COLOR_NB];
Bitboard checkSquares[PIECE_TYPE_NB];