1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 16:53:09 +00:00

Rename Materials and Pawns hash stuff

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba 2012-03-31 09:43:16 +01:00
parent d84865eac3
commit 304deb5e83
8 changed files with 97 additions and 111 deletions

View file

@ -36,8 +36,8 @@ namespace {
struct EvalInfo {
// Pointers to material and pawn hash table entries
MaterialInfo* mi;
PawnInfo* pi;
MaterialEntry* mi;
PawnEntry* pi;
// attackedBy[color][piece type] is a bitboard representing all squares
// attacked by a given color and piece type, attackedBy[color][0] contains
@ -250,8 +250,7 @@ namespace {
Score evaluate_unstoppable_pawns(const Position& pos, EvalInfo& ei);
inline Score apply_weight(Score v, Score weight);
Value scale_by_game_phase(const Score& v, Phase ph, ScaleFactor sf);
Value interpolate(const Score& v, Phase ph, ScaleFactor sf);
Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight);
double to_cp(Value v);
void trace_add(int idx, Score term_w, Score term_b = SCORE_ZERO);
@ -372,7 +371,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
margins[WHITE] = margins[BLACK] = VALUE_ZERO;
// Probe the material hash table
ei.mi = Threads[pos.thread()].materialTable.material_info(pos);
ei.mi = Threads[pos.thread()].materialTable.probe(pos);
score += ei.mi->material_value();
// If we have a specialized evaluation function for the current material
@ -384,7 +383,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
}
// Probe the pawn hash table
ei.pi = Threads[pos.thread()].pawnTable.pawn_info(pos);
ei.pi = Threads[pos.thread()].pawnTable.probe(pos);
score += ei.pi->pawns_value();
// Initialize attack and king safety bitboards
@ -446,9 +445,8 @@ Value do_evaluate(const Position& pos, Value& margin) {
sf = ScaleFactor(50);
}
// Interpolate between the middle game and the endgame score
margin = margins[pos.side_to_move()];
Value v = scale_by_game_phase(score, ei.mi->game_phase(), sf);
Value v = interpolate(score, ei.mi->game_phase(), sf);
// In case of tracing add all single evaluation contributions for both white and black
if (Trace)
@ -1140,18 +1138,10 @@ Value do_evaluate(const Position& pos, Value& margin) {
}
// apply_weight() applies an evaluation weight to a value trying to prevent overflow
inline Score apply_weight(Score v, Score w) {
return make_score((int(mg_value(v)) * mg_value(w)) / 0x100,
(int(eg_value(v)) * eg_value(w)) / 0x100);
}
// scale_by_game_phase() interpolates between a middle game and an endgame score,
// interpolate() interpolates between a middle game and an endgame score,
// based on game phase. It also scales the return value by a ScaleFactor array.
Value scale_by_game_phase(const Score& v, Phase ph, ScaleFactor sf) {
Value interpolate(const Score& v, Phase ph, ScaleFactor sf) {
assert(mg_value(v) > -VALUE_INFINITE && mg_value(v) < VALUE_INFINITE);
assert(eg_value(v) > -VALUE_INFINITE && eg_value(v) < VALUE_INFINITE);

View file

@ -84,16 +84,15 @@ namespace {
} // namespace
/// MaterialInfoTable::material_info() takes a position object as input,
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
/// If the material configuration is not already present in the table, it
/// is stored there, so we don't have to recompute everything when the
/// same material configuration occurs again.
/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry
/// object, and returns a pointer to it. If the material configuration is not
/// already present in the table, it is computed and stored there, so we don't
/// have to recompute everything when the same material configuration occurs again.
MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
MaterialEntry* MaterialTable::probe(const Position& pos) const {
Key key = pos.material_key();
MaterialInfo* mi = probe(key);
MaterialEntry* mi = Base::probe(key);
// If mi->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
@ -101,13 +100,10 @@ MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
if (mi->key == key)
return mi;
// Initialize MaterialInfo entry
memset(mi, 0, sizeof(MaterialInfo));
memset(mi, 0, sizeof(MaterialEntry));
mi->key = key;
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
// Store game phase
mi->gamePhase = MaterialInfoTable::game_phase(pos);
mi->gamePhase = MaterialTable::game_phase(pos);
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
@ -230,11 +226,11 @@ MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
}
/// MaterialInfoTable::imbalance() calculates imbalance comparing piece count of each
/// MaterialTable::imbalance() calculates imbalance comparing piece count of each
/// piece type for both colors.
template<Color Us>
int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
int MaterialTable::imbalance(const int pieceCount[][8]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
@ -266,11 +262,11 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
}
/// MaterialInfoTable::game_phase() calculates the phase given the current
/// MaterialTable::game_phase() calculates the phase given the current
/// position. Because the phase is strictly a function of the material, it
/// is stored in MaterialInfo.
/// is stored in MaterialEntry.
Phase MaterialInfoTable::game_phase(const Position& pos) {
Phase MaterialTable::game_phase(const Position& pos) {
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);

View file

@ -34,7 +34,7 @@ enum Phase {
};
/// MaterialInfo is a class which contains various information about a
/// MaterialEntry is a class which contains various information about a
/// material configuration. It contains a material balance evaluation,
/// a function pointer to a special endgame evaluation function (which in
/// most cases is NULL, meaning that the standard evaluation function will
@ -44,9 +44,9 @@ enum Phase {
/// For instance, in KRB vs KR endgames, the score is scaled down by a factor
/// of 4, which will result in scores of absolute value less than one pawn.
class MaterialInfo {
class MaterialEntry {
friend class MaterialInfoTable;
friend class MaterialTable;
public:
Score material_value() const;
@ -67,15 +67,15 @@ private:
};
/// The MaterialInfoTable class represents a pawn hash table. The most important
/// method is material_info(), which returns a pointer to a MaterialInfo object.
/// The MaterialTable class represents a material hash table. The most important
/// method is probe(), which returns a pointer to a MaterialEntry object.
class MaterialInfoTable : public SimpleHash<MaterialInfo, MaterialTableSize> {
class MaterialTable : public HashTable<MaterialEntry, MaterialTableSize> {
public:
MaterialInfoTable() : funcs(new Endgames()) {}
~MaterialInfoTable() { delete funcs; }
MaterialTable() : funcs(new Endgames()) {}
~MaterialTable() { delete funcs; }
MaterialInfo* material_info(const Position& pos) const;
MaterialEntry* probe(const Position& pos) const;
static Phase game_phase(const Position& pos);
private:
@ -86,14 +86,14 @@ private:
};
/// MaterialInfo::scale_factor takes a position and a color as input, and
/// MaterialEntry::scale_factor takes a position and a color as input, and
/// returns a scale factor for the given color. We have to provide the
/// position in addition to the color, because the scale factor need not
/// to be a constant: It can also be a function which should be applied to
/// the position. For instance, in KBP vs K endgames, a scaling function
/// which checks for draws with rook pawns and wrong-colored bishops.
inline ScaleFactor MaterialInfo::scale_factor(const Position& pos, Color c) const {
inline ScaleFactor MaterialEntry::scale_factor(const Position& pos, Color c) const {
if (!scalingFunction[c])
return ScaleFactor(factor[c]);
@ -102,23 +102,23 @@ inline ScaleFactor MaterialInfo::scale_factor(const Position& pos, Color c) cons
return sf == SCALE_FACTOR_NONE ? ScaleFactor(factor[c]) : sf;
}
inline Value MaterialInfo::evaluate(const Position& pos) const {
inline Value MaterialEntry::evaluate(const Position& pos) const {
return (*evaluationFunction)(pos);
}
inline Score MaterialInfo::material_value() const {
inline Score MaterialEntry::material_value() const {
return make_score(value, value);
}
inline int MaterialInfo::space_weight() const {
inline int MaterialEntry::space_weight() const {
return spaceWeight;
}
inline Phase MaterialInfo::game_phase() const {
inline Phase MaterialEntry::game_phase() const {
return gamePhase;
}
inline bool MaterialInfo::specialized_eval_exists() const {
inline bool MaterialEntry::specialized_eval_exists() const {
return evaluationFunction != NULL;
}

View file

@ -80,23 +80,18 @@ namespace {
#undef S
#undef V
inline Score apply_weight(Score v, Score w) {
return make_score((int(mg_value(v)) * mg_value(w)) / 0x100,
(int(eg_value(v)) * eg_value(w)) / 0x100);
}
}
/// PawnInfoTable::pawn_info() takes a position object as input, computes
/// a PawnInfo object, and returns a pointer to it. The result is also stored
/// in an hash table, so we don't have to recompute everything when the same
/// pawn structure occurs again.
/// PawnTable::probe() takes a position object as input, computes a PawnEntry
/// object, and returns a pointer to it. The result is also stored in a hash
/// table, so we don't have to recompute everything when the same pawn structure
/// occurs again.
PawnInfo* PawnInfoTable::pawn_info(const Position& pos) const {
PawnEntry* PawnTable::probe(const Position& pos) const {
Key key = pos.pawn_key();
PawnInfo* pi = probe(key);
PawnEntry* pi = Base::probe(key);
// If pi->key matches the position's pawn hash key, it means that we
// have analysed this pawn structure before, and we can simply return
@ -104,19 +99,16 @@ PawnInfo* PawnInfoTable::pawn_info(const Position& pos) const {
if (pi->key == key)
return pi;
// Initialize PawnInfo entry
pi->key = key;
pi->passedPawns[WHITE] = pi->passedPawns[BLACK] = 0;
pi->kingSquares[WHITE] = pi->kingSquares[BLACK] = SQ_NONE;
pi->halfOpenFiles[WHITE] = pi->halfOpenFiles[BLACK] = 0xFF;
// Calculate pawn attacks
Bitboard wPawns = pos.pieces(PAWN, WHITE);
Bitboard bPawns = pos.pieces(PAWN, BLACK);
pi->pawnAttacks[WHITE] = ((wPawns << 9) & ~FileABB) | ((wPawns << 7) & ~FileHBB);
pi->pawnAttacks[BLACK] = ((bPawns >> 7) & ~FileABB) | ((bPawns >> 9) & ~FileHBB);
pi->pawnAttacks[WHITE] = ((wPawns & ~FileHBB) << 9) | ((wPawns & ~FileABB) << 7);
pi->pawnAttacks[BLACK] = ((bPawns & ~FileHBB) >> 7) | ((bPawns & ~FileABB) >> 9);
// Evaluate pawns for both colors and weight the result
pi->value = evaluate_pawns<WHITE>(pos, wPawns, bPawns, pi)
- evaluate_pawns<BLACK>(pos, bPawns, wPawns, pi);
@ -126,11 +118,11 @@ PawnInfo* PawnInfoTable::pawn_info(const Position& pos) const {
}
/// PawnInfoTable::evaluate_pawns() evaluates each pawn of the given color
/// PawnTable::evaluate_pawns() evaluates each pawn of the given color
template<Color Us>
Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
Bitboard theirPawns, PawnInfo* pi) {
Score PawnTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
Bitboard theirPawns, PawnEntry* pi) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
@ -158,11 +150,11 @@ Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
// Flag the pawn as passed, isolated, doubled or member of a pawn
// chain (but not the backward one).
passed = !(theirPawns & passed_pawn_mask(Us, s));
chain = ourPawns & adjacent_files_bb(f) & b;
isolated = !(ourPawns & adjacent_files_bb(f));
doubled = ourPawns & squares_in_front_of(Us, s);
opposed = theirPawns & squares_in_front_of(Us, s);
isolated = !(ourPawns & adjacent_files_bb(f));
chain = ourPawns & adjacent_files_bb(f) & b;
passed = !(theirPawns & passed_pawn_mask(Us, s));
// Test for backward pawn
backward = false;
@ -222,15 +214,16 @@ Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
if (candidate)
value += CandidateBonus[relative_rank(Us, s)];
}
return value;
}
/// PawnInfo::shelter_storm() calculates shelter and storm penalties for the file
/// PawnEntry::shelter_storm() calculates shelter and storm penalties for the file
/// the king is on, as well as the two adjacent files.
template<Color Us>
Value PawnInfo::shelter_storm(const Position& pos, Square ksq) {
Value PawnEntry::shelter_storm(const Position& pos, Square ksq) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
@ -260,16 +253,16 @@ Value PawnInfo::shelter_storm(const Position& pos, Square ksq) {
}
/// PawnInfo::update_safety() calculates and caches a bonus for king safety. It is
/// PawnEntry::update_safety() calculates and caches a bonus for king safety. It is
/// called only when king square changes, about 20% of total king_safety() calls.
template<Color Us>
Score PawnInfo::update_safety(const Position& pos, Square ksq) {
Score PawnEntry::update_safety(const Position& pos, Square ksq) {
kingSquares[Us] = ksq;
if (relative_rank(Us, ksq) > RANK_4)
return kingShelters[Us] = SCORE_ZERO;
return kingSafety[Us] = SCORE_ZERO;
Value bonus = shelter_storm<Us>(pos, ksq);
@ -280,9 +273,9 @@ Score PawnInfo::update_safety(const Position& pos, Square ksq) {
if (pos.can_castle(Us == WHITE ? WHITE_OOO : BLACK_OOO))
bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_C1)));
return kingShelters[Us] = make_score(bonus, 0);
return kingSafety[Us] = make_score(bonus, 0);
}
// Explicit template instantiation
template Score PawnInfo::update_safety<WHITE>(const Position& pos, Square ksq);
template Score PawnInfo::update_safety<BLACK>(const Position& pos, Square ksq);
template Score PawnEntry::update_safety<WHITE>(const Position& pos, Square ksq);
template Score PawnEntry::update_safety<BLACK>(const Position& pos, Square ksq);

View file

@ -26,16 +26,16 @@
const int PawnTableSize = 16384;
/// PawnInfo is a class which contains various information about a pawn
/// PawnEntry is a class which contains various information about a pawn
/// structure. Currently, it only includes a middle game and an end game
/// pawn structure evaluation, and a bitboard of passed pawns. We may want
/// to add further information in the future. A lookup to the pawn hash
/// table (performed by calling the pawn_info method in a PawnInfoTable
/// object) returns a pointer to a PawnInfo object.
/// table (performed by calling the probe method in a PawnTable object)
/// returns a pointer to a PawnEntry object.
class PawnInfo {
class PawnEntry {
friend class PawnInfoTable;
friend class PawnTable;
public:
Score pawns_value() const;
@ -61,50 +61,51 @@ private:
Square kingSquares[2];
Score value;
int halfOpenFiles[2];
Score kingShelters[2];
Score kingSafety[2];
};
/// The PawnInfoTable class represents a pawn hash table. The most important
/// method is pawn_info, which returns a pointer to a PawnInfo object.
/// The PawnTable class represents a pawn hash table. The most important
/// method is probe, which returns a pointer to a PawnEntry object.
class PawnInfoTable : public SimpleHash<PawnInfo, PawnTableSize> {
class PawnTable : public HashTable<PawnEntry, PawnTableSize> {
public:
PawnInfo* pawn_info(const Position& pos) const;
PawnEntry* probe(const Position& pos) const;
private:
template<Color Us>
static Score evaluate_pawns(const Position& pos, Bitboard ourPawns, Bitboard theirPawns, PawnInfo* pi);
static Score evaluate_pawns(const Position& pos, Bitboard ourPawns,
Bitboard theirPawns, PawnEntry* pi);
};
inline Score PawnInfo::pawns_value() const {
inline Score PawnEntry::pawns_value() const {
return value;
}
inline Bitboard PawnInfo::pawn_attacks(Color c) const {
inline Bitboard PawnEntry::pawn_attacks(Color c) const {
return pawnAttacks[c];
}
inline Bitboard PawnInfo::passed_pawns(Color c) const {
inline Bitboard PawnEntry::passed_pawns(Color c) const {
return passedPawns[c];
}
inline int PawnInfo::file_is_half_open(Color c, File f) const {
inline int PawnEntry::file_is_half_open(Color c, File f) const {
return halfOpenFiles[c] & (1 << int(f));
}
inline int PawnInfo::has_open_file_to_left(Color c, File f) const {
inline int PawnEntry::has_open_file_to_left(Color c, File f) const {
return halfOpenFiles[c] & ((1 << int(f)) - 1);
}
inline int PawnInfo::has_open_file_to_right(Color c, File f) const {
inline int PawnEntry::has_open_file_to_right(Color c, File f) const {
return halfOpenFiles[c] & ~((1 << int(f+1)) - 1);
}
template<Color Us>
inline Score PawnInfo::king_safety(const Position& pos, Square ksq) {
return kingSquares[Us] == ksq ? kingShelters[Us] : update_safety<Us>(pos, ksq);
inline Score PawnEntry::king_safety(const Position& pos, Square ksq) {
return kingSquares[Us] == ksq ? kingSafety[Us] : update_safety<Us>(pos, ksq);
}
#endif // !defined(PAWNS_H_INCLUDED)

View file

@ -85,8 +85,8 @@ public:
void wait_for_stop_or_ponderhit();
SplitPoint splitPoints[MAX_SPLITPOINTS_PER_THREAD];
MaterialInfoTable materialTable;
PawnInfoTable pawnTable;
MaterialTable materialTable;
PawnTable pawnTable;
int threadID;
int maxPly;
Lock sleepLock;
@ -111,7 +111,7 @@ class ThreadsManager {
static storage duration are automatically set to zero before enter main()
*/
public:
void init(); // No c'tor becuase Threads is static and we need stuff initialized
void init(); // No c'tor becuase Threads is static and we need engine initialized
~ThreadsManager();
Thread& operator[](int id) { return *threads[id]; }

View file

@ -137,16 +137,16 @@ inline void TranspositionTable::refresh(const TTEntry* tte) const {
}
/// A simple fixed size hash table used to store pawns and material
/// configurations. It is basically just an array of Entry objects.
/// Without cluster concept, overwrite policy nor resizing.
/// A simple hash table used to store pawns and material configurations. It is
/// basically just an array of Entry objects. Without cluster concept, overwrite
/// policy nor resizing.
template<class Entry, int HashSize>
struct SimpleHash {
struct HashTable {
typedef SimpleHash<Entry, HashSize> Base;
typedef HashTable<Entry, HashSize> Base;
SimpleHash() {
HashTable() {
entries = new (std::nothrow) Entry[HashSize];
if (!entries)
@ -158,12 +158,12 @@ struct SimpleHash {
memset(entries, 0, HashSize * sizeof(Entry));
}
virtual ~SimpleHash() { delete [] entries; }
virtual ~HashTable() { delete [] entries; }
Entry* probe(Key key) const { return entries + ((uint32_t)key & (HashSize - 1)); }
void prefetch(Key key) const { ::prefetch((char*)probe(key)); }
protected:
private:
Entry* entries;
};

View file

@ -297,6 +297,12 @@ inline Score operator/(Score s, int i) {
return make_score(mg_value(s) / i, eg_value(s) / i);
}
/// Weight score v by score w trying to prevent overflow
inline Score apply_weight(Score v, Score w) {
return make_score((int(mg_value(v)) * mg_value(w)) / 0x100,
(int(eg_value(v)) * eg_value(w)) / 0x100);
}
#undef ENABLE_OPERATORS_ON
#undef ENABLE_SAFE_OPERATORS_ON