1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00

Unify root_search() step 3

Retire root_search()

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba 2011-01-16 13:41:57 +01:00
parent 6b8026806c
commit 392c7f2ab6

View file

@ -289,7 +289,6 @@ namespace {
/// Local functions
Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove);
Value root_search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, RootMoveList& rml);
template <NodeType PvNode, bool SpNode, bool Root>
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
@ -406,7 +405,7 @@ int64_t perft(Position& pos, Depth depth)
/// think() is the external interface to Stockfish's search, and is called when
/// the program receives the UCI 'go' command. It initializes various
/// search-related global variables, and calls root_search(). It returns false
/// search-related global variables, and calls id_loop(). It returns false
/// when a quit command is received during the search.
bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[],
@ -548,7 +547,7 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
namespace {
// id_loop() is the main iterative deepening loop. It calls root_search
// id_loop() is the main iterative deepening loop. It calls search()
// repeatedly with increasing depth until the allocated thinking time has
// been consumed, the user stops the search, or the maximum search depth is
// reached.
@ -628,7 +627,6 @@ namespace {
rml.sort();
// Search to the current depth, rml is updated and sorted
//value = root_search(pos, ss, alpha, beta, depth, rml);
value = search<PV, false, true>(pos, ss, alpha, beta, depth, 0);
// Sort the moves before to return
@ -727,228 +725,6 @@ namespace {
}
// root_search() is the function which searches the root node. It is
// similar to search_pv except that it prints some information to the
// standard output and handles the fail low/high loops.
Value root_search(Position& pos, SearchStack* ss, Value alpha,
Value beta, Depth depth, RootMoveList& rml) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads());
Move movesSearched[MOVES_MAX];
StateInfo st;
Key posKey;
Move move;
Depth ext, newDepth;
ValueType vt;
Value bestValue, value, oldAlpha;
bool isCheck, moveIsCheck, captureOrPromotion, dangerous, isPvMove;
int moveCount = 0;
bestValue = value = -VALUE_INFINITE;
oldAlpha = alpha;
isCheck = pos.is_check();
// Step 1. Initialize node (polling is omitted at root)
ss->currentMove = ss->bestMove = MOVE_NONE;
(ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE;
// Step 2. Check for aborted search (omitted at root)
// Step 3. Mate distance pruning (omitted at root)
// Step 4. Transposition table lookup (omitted at root)
posKey = pos.get_key();
// Step 5. Evaluate the position statically
// At root we do this only to get reference value for child nodes
ss->evalMargin = VALUE_NONE;
ss->eval = isCheck ? VALUE_NONE : evaluate(pos, ss->evalMargin);
// Step 6. Razoring (omitted at root)
// Step 7. Static null move pruning (omitted at root)
// Step 8. Null move search with verification search (omitted at root)
// Step 9. Internal iterative deepening (omitted at root)
CheckInfo ci(pos);
int64_t nodes;
RootMoveList::iterator rm = rml.begin();
bestValue = alpha;
// Step 10. Loop through moves
// Loop through all legal moves until no moves remain or a beta cutoff occurs
while ( bestValue < beta
&& rm != rml.end()
&& !StopRequest)
{
move = ss->currentMove = rm->pv[0];
movesSearched[moveCount++] = move;
isPvMove = (moveCount <= MultiPV);
// This is used by time management
FirstRootMove = (rm == rml.begin());
// Save the current node count before the move is searched
nodes = pos.nodes_searched();
// If it's time to send nodes info, do it here where we have the
// correct accumulated node counts searched by each thread.
if (SendSearchedNodes)
{
SendSearchedNodes = false;
cout << "info nodes " << nodes
<< " nps " << nps(pos)
<< " time " << current_search_time() << endl;
}
if (current_search_time() >= 1000)
cout << "info currmove " << move
<< " currmovenumber " << moveCount << endl;
moveIsCheck = pos.move_is_check(move);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
// Step 11. Decide the new search depth
ext = extension<PV>(pos, move, captureOrPromotion, moveIsCheck, false, false, &dangerous);
newDepth = depth + ext;
// Step 12. Futility pruning (omitted at root)
// Step 13. Make the move
pos.do_move(move, st, ci, moveIsCheck);
// Step extra. pv search
// We do pv search for PV moves
if (isPvMove)
{
// Aspiration window is disabled in multi-pv case
if (MultiPV > 1)
alpha = -VALUE_INFINITE;
// Full depth PV search, done on first move or after a fail high
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
}
else
{
// Step 14. Reduced search
// if the move fails high will be re-searched at full depth
bool doFullDepthSearch = true;
if ( depth >= 3 * ONE_PLY
&& !captureOrPromotion
&& !dangerous
&& !move_is_castle(move)
&& ss->killers[0] != move
&& ss->killers[1] != move)
{
ss->reduction = reduction<PV>(depth, moveCount - MultiPV + 1);
if (ss->reduction)
{
Depth d = newDepth - ss->reduction;
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, 1);
doFullDepthSearch = (value > alpha);
}
ss->reduction = DEPTH_ZERO; // Restore original reduction
}
// Step 15. Full depth search
if (doFullDepthSearch)
{
// Full depth non-pv search using alpha as upperbound
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, 1);
// If we are above alpha then research at same depth but as PV
// to get a correct score or eventually a fail high above beta.
if (value > alpha)
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
}
}
// Step 16. Undo move
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Finished searching the move. If StopRequest is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we break out of the loop without updating the best
// move and/or PV.
if (StopRequest)
break;
// Remember searched nodes counts for this move
rm->nodes += pos.nodes_searched() - nodes;
// Step 17. Check for new best move
if (!isPvMove && value <= alpha)
rm->pv_score = -VALUE_INFINITE;
else
{
// PV move or new best move!
// Update PV
ss->bestMove = move;
rm->pv_score = value;
rm->extract_pv_from_tt(pos);
// We record how often the best move has been changed in each
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if (!isPvMove && MultiPV == 1)
BestMoveChangesByIteration[Iteration]++;
// Inform GUI that PV has changed, in case of multi-pv UCI protocol
// requires we send all the PV lines properly sorted.
rml.sort_multipv(moveCount);
for (int j = 0; j < Min(MultiPV, (int)rml.size()); j++)
cout << rml[j].pv_info_to_uci(pos, alpha, beta, j) << endl;
// Update alpha. In multi-pv we don't use aspiration window
if (MultiPV == 1)
{
// Raise alpha to setup proper non-pv search upper bound
if (value > alpha)
alpha = bestValue = value;
}
else // Set alpha equal to minimum score among the PV lines
alpha = bestValue = rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount?
} // PV move or new best move
++rm;
} // Root moves loop
// Step 20. Update tables
// If the search is not aborted, update the transposition table,
// history counters, and killer moves.
if (!StopRequest)
{
move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove;
vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER
: bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT;
TT.store(posKey, value_to_tt(bestValue, 0), vt, depth, move, ss->eval, ss->evalMargin);
// Update killers and history only for non capture moves that fails high
if ( bestValue >= beta
&& !pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss->killers);
}
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// search<>() is the main search function for both PV and non-PV nodes and for
// normal and SplitPoint nodes. When called just after a split point the search
// is simpler because we have already probed the hash table, done a null move