mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 00:33:09 +00:00
Retire one implementation of pop_lsb()
We have two implementations that are equivalent, so retire one. Plus usual tidy up of comments and code reshuffle. No functional change.
This commit is contained in:
parent
a6e292034a
commit
3fda064a66
6 changed files with 130 additions and 131 deletions
|
@ -71,7 +71,7 @@ namespace {
|
|||
} // namespace
|
||||
|
||||
|
||||
bool Bitbases::probe_kpk(Square wksq, Square wpsq, Square bksq, Color us) {
|
||||
bool Bitbases::probe(Square wksq, Square wpsq, Square bksq, Color us) {
|
||||
|
||||
assert(file_of(wpsq) <= FILE_D);
|
||||
|
||||
|
@ -80,7 +80,7 @@ bool Bitbases::probe_kpk(Square wksq, Square wpsq, Square bksq, Color us) {
|
|||
}
|
||||
|
||||
|
||||
void Bitbases::init_kpk() {
|
||||
void Bitbases::init() {
|
||||
|
||||
unsigned idx, repeat = 1;
|
||||
std::vector<KPKPosition> db;
|
||||
|
|
|
@ -24,15 +24,17 @@
|
|||
#include "bitcount.h"
|
||||
#include "misc.h"
|
||||
|
||||
Bitboard RookMasks[SQUARE_NB];
|
||||
Bitboard RookMagics[SQUARE_NB];
|
||||
Bitboard* RookAttacks[SQUARE_NB];
|
||||
unsigned RookShifts[SQUARE_NB];
|
||||
int SquareDistance[SQUARE_NB][SQUARE_NB];
|
||||
|
||||
Bitboard BishopMasks[SQUARE_NB];
|
||||
Bitboard BishopMagics[SQUARE_NB];
|
||||
Bitboard RookMasks [SQUARE_NB];
|
||||
Bitboard RookMagics [SQUARE_NB];
|
||||
Bitboard* RookAttacks[SQUARE_NB];
|
||||
unsigned RookShifts [SQUARE_NB];
|
||||
|
||||
Bitboard BishopMasks [SQUARE_NB];
|
||||
Bitboard BishopMagics [SQUARE_NB];
|
||||
Bitboard* BishopAttacks[SQUARE_NB];
|
||||
unsigned BishopShifts[SQUARE_NB];
|
||||
unsigned BishopShifts [SQUARE_NB];
|
||||
|
||||
Bitboard SquareBB[SQUARE_NB];
|
||||
Bitboard FileBB[FILE_NB];
|
||||
|
@ -42,51 +44,44 @@ Bitboard InFrontBB[COLOR_NB][RANK_NB];
|
|||
Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
|
||||
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
|
||||
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
|
||||
Bitboard DistanceRingsBB[SQUARE_NB][8];
|
||||
Bitboard DistanceRingBB[SQUARE_NB][8];
|
||||
Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
|
||||
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
|
||||
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
|
||||
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
|
||||
|
||||
int SquareDistance[SQUARE_NB][SQUARE_NB];
|
||||
|
||||
namespace {
|
||||
|
||||
// De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
|
||||
const uint64_t DeBruijn_64 = 0x3F79D71B4CB0A89ULL;
|
||||
const uint32_t DeBruijn_32 = 0x783A9B23;
|
||||
const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
|
||||
const uint32_t DeBruijn32 = 0x783A9B23;
|
||||
|
||||
int MS1BTable[256];
|
||||
Square BSFTable[SQUARE_NB];
|
||||
Bitboard RookTable[0x19000]; // Storage space for rook attacks
|
||||
Bitboard BishopTable[0x1480]; // Storage space for bishop attacks
|
||||
int MS1BTable[256]; // To implement software msb()
|
||||
Square BSFTable[SQUARE_NB]; // To implement software bitscan
|
||||
Bitboard RookTable[0x19000]; // To store rook attacks
|
||||
Bitboard BishopTable[0x1480]; // To store bishop attacks
|
||||
|
||||
typedef unsigned (Fn)(Square, Bitboard);
|
||||
|
||||
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
|
||||
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
|
||||
|
||||
FORCE_INLINE unsigned bsf_index(Bitboard b) {
|
||||
// bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
|
||||
// Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
|
||||
|
||||
// Matt Taylor's folding for 32 bit systems, extended to 64 bits by Kim Walisch
|
||||
b ^= (b - 1);
|
||||
return Is64Bit ? (b * DeBruijn_64) >> 58
|
||||
: ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn_32) >> 26;
|
||||
FORCE_INLINE unsigned bsf_index(Bitboard b) {
|
||||
b ^= b - 1;
|
||||
return Is64Bit ? (b * DeBruijn64) >> 58
|
||||
: ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
|
||||
}
|
||||
}
|
||||
|
||||
/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard.
|
||||
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard.
|
||||
|
||||
#ifndef USE_BSFQ
|
||||
|
||||
Square lsb(Bitboard b) { return BSFTable[bsf_index(b)]; }
|
||||
/// Software fall-back of lsb() and msb() for CPU lacking hardware support
|
||||
|
||||
Square pop_lsb(Bitboard* b) {
|
||||
|
||||
Bitboard bb = *b;
|
||||
*b = bb & (bb - 1);
|
||||
return BSFTable[bsf_index(bb)];
|
||||
Square lsb(Bitboard b) {
|
||||
return BSFTable[bsf_index(b)];
|
||||
}
|
||||
|
||||
Square msb(Bitboard b) {
|
||||
|
@ -120,8 +115,8 @@ Square msb(Bitboard b) {
|
|||
#endif // ifndef USE_BSFQ
|
||||
|
||||
|
||||
/// Bitboards::pretty() returns an ASCII representation of a bitboard to be
|
||||
/// printed to standard output. This is sometimes useful for debugging.
|
||||
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
|
||||
/// to be printed to standard output. Useful for debugging.
|
||||
|
||||
const std::string Bitboards::pretty(Bitboard b) {
|
||||
|
||||
|
@ -178,7 +173,7 @@ void Bitboards::init() {
|
|||
if (s1 != s2)
|
||||
{
|
||||
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
|
||||
DistanceRingsBB[s1][SquareDistance[s1][s2] - 1] |= s2;
|
||||
DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
|
||||
}
|
||||
|
||||
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
|
||||
|
|
188
src/bitboard.h
188
src/bitboard.h
|
@ -25,6 +25,13 @@
|
|||
|
||||
#include "types.h"
|
||||
|
||||
namespace Bitbases {
|
||||
|
||||
void init();
|
||||
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
|
||||
|
||||
}
|
||||
|
||||
namespace Bitboards {
|
||||
|
||||
void init();
|
||||
|
@ -32,12 +39,7 @@ const std::string pretty(Bitboard b);
|
|||
|
||||
}
|
||||
|
||||
namespace Bitbases {
|
||||
|
||||
void init_kpk();
|
||||
bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color us);
|
||||
|
||||
}
|
||||
const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
|
||||
|
||||
const Bitboard FileABB = 0x0101010101010101ULL;
|
||||
const Bitboard FileBBB = FileABB << 1;
|
||||
|
@ -57,15 +59,17 @@ const Bitboard Rank6BB = Rank1BB << (8 * 5);
|
|||
const Bitboard Rank7BB = Rank1BB << (8 * 6);
|
||||
const Bitboard Rank8BB = Rank1BB << (8 * 7);
|
||||
|
||||
extern Bitboard RookMasks[SQUARE_NB];
|
||||
extern Bitboard RookMagics[SQUARE_NB];
|
||||
extern Bitboard* RookAttacks[SQUARE_NB];
|
||||
extern unsigned RookShifts[SQUARE_NB];
|
||||
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
|
||||
|
||||
extern Bitboard BishopMasks[SQUARE_NB];
|
||||
extern Bitboard BishopMagics[SQUARE_NB];
|
||||
extern Bitboard RookMasks [SQUARE_NB];
|
||||
extern Bitboard RookMagics [SQUARE_NB];
|
||||
extern Bitboard* RookAttacks[SQUARE_NB];
|
||||
extern unsigned RookShifts [SQUARE_NB];
|
||||
|
||||
extern Bitboard BishopMasks [SQUARE_NB];
|
||||
extern Bitboard BishopMagics [SQUARE_NB];
|
||||
extern Bitboard* BishopAttacks[SQUARE_NB];
|
||||
extern unsigned BishopShifts[SQUARE_NB];
|
||||
extern unsigned BishopShifts [SQUARE_NB];
|
||||
|
||||
extern Bitboard SquareBB[SQUARE_NB];
|
||||
extern Bitboard FileBB[FILE_NB];
|
||||
|
@ -75,15 +79,12 @@ extern Bitboard InFrontBB[COLOR_NB][RANK_NB];
|
|||
extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
|
||||
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
|
||||
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
|
||||
extern Bitboard DistanceRingsBB[SQUARE_NB][8];
|
||||
extern Bitboard DistanceRingBB[SQUARE_NB][8];
|
||||
extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
|
||||
extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
|
||||
extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
|
||||
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
|
||||
|
||||
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
|
||||
|
||||
const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
|
||||
|
||||
/// Overloads of bitwise operators between a Bitboard and a Square for testing
|
||||
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
|
||||
|
@ -92,14 +93,6 @@ inline Bitboard operator&(Bitboard b, Square s) {
|
|||
return b & SquareBB[s];
|
||||
}
|
||||
|
||||
inline Bitboard& operator|=(Bitboard& b, Square s) {
|
||||
return b |= SquareBB[s];
|
||||
}
|
||||
|
||||
inline Bitboard& operator^=(Bitboard& b, Square s) {
|
||||
return b ^= SquareBB[s];
|
||||
}
|
||||
|
||||
inline Bitboard operator|(Bitboard b, Square s) {
|
||||
return b | SquareBB[s];
|
||||
}
|
||||
|
@ -108,32 +101,21 @@ inline Bitboard operator^(Bitboard b, Square s) {
|
|||
return b ^ SquareBB[s];
|
||||
}
|
||||
|
||||
inline Bitboard& operator|=(Bitboard& b, Square s) {
|
||||
return b |= SquareBB[s];
|
||||
}
|
||||
|
||||
inline Bitboard& operator^=(Bitboard& b, Square s) {
|
||||
return b ^= SquareBB[s];
|
||||
}
|
||||
|
||||
inline bool more_than_one(Bitboard b) {
|
||||
return b & (b - 1);
|
||||
}
|
||||
|
||||
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
|
||||
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
|
||||
|
||||
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
|
||||
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
|
||||
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
|
||||
|
||||
|
||||
/// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns.
|
||||
|
||||
template<Square Delta>
|
||||
inline Bitboard shift_bb(Bitboard b) {
|
||||
|
||||
return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8
|
||||
: Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7
|
||||
: Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9
|
||||
: 0;
|
||||
}
|
||||
|
||||
|
||||
/// rank_bb() and file_bb() take a file or a square as input and return
|
||||
/// a bitboard representing all squares on the given file or rank.
|
||||
/// rank_bb() and file_bb() return a bitboard representing all the squares on
|
||||
/// the given file or rank.
|
||||
|
||||
inline Bitboard rank_bb(Rank r) {
|
||||
return RankBB[r];
|
||||
|
@ -152,83 +134,102 @@ inline Bitboard file_bb(Square s) {
|
|||
}
|
||||
|
||||
|
||||
/// adjacent_files_bb() takes a file as input and returns a bitboard representing
|
||||
/// all squares on the adjacent files.
|
||||
/// shift_bb() moves a bitboard one step along direction Delta. Mainly for pawns
|
||||
|
||||
template<Square Delta>
|
||||
inline Bitboard shift_bb(Bitboard b) {
|
||||
return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8
|
||||
: Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7
|
||||
: Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9
|
||||
: 0;
|
||||
}
|
||||
|
||||
|
||||
/// adjacent_files_bb() returns a bitboard representing all the squares on the
|
||||
/// adjacent files of the given one.
|
||||
|
||||
inline Bitboard adjacent_files_bb(File f) {
|
||||
return AdjacentFilesBB[f];
|
||||
}
|
||||
|
||||
|
||||
/// in_front_bb() takes a color and a rank as input, and returns a bitboard
|
||||
/// representing all the squares on all ranks in front of the rank, from the
|
||||
/// given color's point of view. For instance, in_front_bb(BLACK, RANK_3) will
|
||||
/// give all squares on ranks 1 and 2.
|
||||
|
||||
inline Bitboard in_front_bb(Color c, Rank r) {
|
||||
return InFrontBB[c][r];
|
||||
}
|
||||
|
||||
|
||||
/// between_bb() returns a bitboard representing all squares between two squares.
|
||||
/// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for
|
||||
/// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal,
|
||||
/// 0 is returned.
|
||||
/// between_bb() returns a bitboard representing all the squares between the two
|
||||
/// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
|
||||
/// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
|
||||
/// or diagonal, 0 is returned.
|
||||
|
||||
inline Bitboard between_bb(Square s1, Square s2) {
|
||||
return BetweenBB[s1][s2];
|
||||
}
|
||||
|
||||
|
||||
/// forward_bb() takes a color and a square as input, and returns a bitboard
|
||||
/// representing all squares along the line in front of the square, from the
|
||||
/// point of view of the given color. Definition of the table is:
|
||||
/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
|
||||
/// in_front_bb() returns a bitboard representing all the squares on all the ranks
|
||||
/// in front of the given one, from the point of view of the given color. For
|
||||
/// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2.
|
||||
|
||||
inline Bitboard in_front_bb(Color c, Rank r) {
|
||||
return InFrontBB[c][r];
|
||||
}
|
||||
|
||||
|
||||
/// forward_bb() returns a bitboard representing all the squares along the line
|
||||
/// in front of the given one, from the point of view of the given color:
|
||||
/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
|
||||
|
||||
inline Bitboard forward_bb(Color c, Square s) {
|
||||
return ForwardBB[c][s];
|
||||
}
|
||||
|
||||
|
||||
/// pawn_attack_span() takes a color and a square as input, and returns a bitboard
|
||||
/// representing all squares that can be attacked by a pawn of the given color
|
||||
/// when it moves along its file starting from the given square. Definition is:
|
||||
/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
|
||||
/// pawn_attack_span() returns a bitboard representing all the squares that can be
|
||||
/// attacked by a pawn of the given color when it moves along its file, starting
|
||||
/// from the given square:
|
||||
/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
|
||||
|
||||
inline Bitboard pawn_attack_span(Color c, Square s) {
|
||||
return PawnAttackSpan[c][s];
|
||||
}
|
||||
|
||||
|
||||
/// passed_pawn_mask() takes a color and a square as input, and returns a
|
||||
/// bitboard mask which can be used to test if a pawn of the given color on
|
||||
/// the given square is a passed pawn. Definition of the table is:
|
||||
/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
|
||||
/// passed_pawn_mask() returns a bitboard mask which can be used to test if a
|
||||
/// pawn of the given color and on the given square is a passed pawn:
|
||||
/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
|
||||
|
||||
inline Bitboard passed_pawn_mask(Color c, Square s) {
|
||||
return PassedPawnMask[c][s];
|
||||
}
|
||||
|
||||
|
||||
/// squares_of_color() returns a bitboard representing all squares with the same
|
||||
/// color of the given square.
|
||||
/// squares_of_color() returns a bitboard representing all the squares of the
|
||||
/// same color of the given one.
|
||||
|
||||
inline Bitboard squares_of_color(Square s) {
|
||||
return DarkSquares & s ? DarkSquares : ~DarkSquares;
|
||||
}
|
||||
|
||||
|
||||
/// aligned() returns true if the squares s1, s2 and s3 are aligned
|
||||
/// either on a straight or on a diagonal line.
|
||||
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
|
||||
/// straight or on a diagonal line.
|
||||
|
||||
inline bool aligned(Square s1, Square s2, Square s3) {
|
||||
return LineBB[s1][s2] & s3;
|
||||
}
|
||||
|
||||
|
||||
/// Functions for computing sliding attack bitboards. Function attacks_bb() takes
|
||||
/// a square and a bitboard of occupied squares as input, and returns a bitboard
|
||||
/// representing all squares attacked by Pt (bishop or rook) on the given square.
|
||||
/// distance() functions return the distance between x and y, defined as the
|
||||
/// number of steps for a king in x to reach y. Works with squares, ranks, files.
|
||||
|
||||
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
|
||||
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
|
||||
|
||||
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
|
||||
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
|
||||
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
|
||||
|
||||
|
||||
/// attacks_bb() returns a bitboard representing all the squares attacked by a
|
||||
/// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index()
|
||||
/// looks up the index using the 'magic bitboards' approach.
|
||||
template<PieceType Pt>
|
||||
FORCE_INLINE unsigned magic_index(Square s, Bitboard occupied) {
|
||||
|
||||
|
@ -263,8 +264,8 @@ inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) {
|
|||
}
|
||||
}
|
||||
|
||||
/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard.
|
||||
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard.
|
||||
|
||||
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
|
||||
|
||||
#ifdef USE_BSFQ
|
||||
|
||||
|
@ -297,7 +298,7 @@ FORCE_INLINE Square lsb(Bitboard b) {
|
|||
return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32)));
|
||||
}
|
||||
|
||||
# else
|
||||
# else // Assumed gcc or compatible compiler
|
||||
|
||||
FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen
|
||||
Bitboard idx;
|
||||
|
@ -313,21 +314,24 @@ FORCE_INLINE Square msb(Bitboard b) {
|
|||
|
||||
# endif
|
||||
|
||||
#else // ifdef(USE_BSFQ)
|
||||
|
||||
Square lsb(Bitboard b);
|
||||
Square msb(Bitboard b);
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
|
||||
|
||||
FORCE_INLINE Square pop_lsb(Bitboard* b) {
|
||||
const Square s = lsb(*b);
|
||||
*b &= *b - 1;
|
||||
return s;
|
||||
}
|
||||
|
||||
#else // if defined(USE_BSFQ)
|
||||
|
||||
extern Square msb(Bitboard b);
|
||||
extern Square lsb(Bitboard b);
|
||||
extern Square pop_lsb(Bitboard* b);
|
||||
|
||||
#endif
|
||||
|
||||
/// frontmost_sq() and backmost_sq() find the square corresponding to the
|
||||
/// frontmost_sq() and backmost_sq() return the square corresponding to the
|
||||
/// most/least advanced bit relative to the given color.
|
||||
|
||||
inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
|
||||
|
|
|
@ -217,7 +217,7 @@ Value Endgame<KPK>::operator()(const Position& pos) const {
|
|||
|
||||
Color us = strongSide == pos.side_to_move() ? WHITE : BLACK;
|
||||
|
||||
if (!Bitbases::probe_kpk(wksq, psq, bksq, us))
|
||||
if (!Bitbases::probe(wksq, psq, bksq, us))
|
||||
return VALUE_DRAW;
|
||||
|
||||
Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq));
|
||||
|
@ -852,5 +852,5 @@ ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const {
|
|||
|
||||
// Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw,
|
||||
// it's probably at least a draw even with the pawn.
|
||||
return Bitbases::probe_kpk(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
|
||||
return Bitbases::probe(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
|
||||
}
|
||||
|
|
|
@ -35,7 +35,7 @@ int main(int argc, char* argv[]) {
|
|||
UCI::init(Options);
|
||||
Bitboards::init();
|
||||
Position::init();
|
||||
Bitbases::init_kpk();
|
||||
Bitbases::init();
|
||||
Search::init();
|
||||
Eval::init();
|
||||
Pawns::init();
|
||||
|
|
|
@ -288,7 +288,7 @@ Score Entry::do_king_safety(const Position& pos, Square ksq) {
|
|||
|
||||
Bitboard pawns = pos.pieces(Us, PAWN);
|
||||
if (pawns)
|
||||
while (!(DistanceRingsBB[ksq][minKingPawnDistance[Us]++] & pawns)) {}
|
||||
while (!(DistanceRingBB[ksq][minKingPawnDistance[Us]++] & pawns)) {}
|
||||
|
||||
if (relative_rank(Us, ksq) > RANK_4)
|
||||
return make_score(0, -16 * minKingPawnDistance[Us]);
|
||||
|
|
Loading…
Add table
Reference in a new issue