1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00

Retire one implementation of pop_lsb()

We have two implementations that are equivalent,
so retire one.

Plus usual tidy up of comments and code reshuffle.

No functional change.
This commit is contained in:
Marco Costalba 2015-01-03 16:39:17 +01:00
parent a6e292034a
commit 3fda064a66
6 changed files with 130 additions and 131 deletions

View file

@ -71,7 +71,7 @@ namespace {
} // namespace } // namespace
bool Bitbases::probe_kpk(Square wksq, Square wpsq, Square bksq, Color us) { bool Bitbases::probe(Square wksq, Square wpsq, Square bksq, Color us) {
assert(file_of(wpsq) <= FILE_D); assert(file_of(wpsq) <= FILE_D);
@ -80,7 +80,7 @@ bool Bitbases::probe_kpk(Square wksq, Square wpsq, Square bksq, Color us) {
} }
void Bitbases::init_kpk() { void Bitbases::init() {
unsigned idx, repeat = 1; unsigned idx, repeat = 1;
std::vector<KPKPosition> db; std::vector<KPKPosition> db;

View file

@ -24,15 +24,17 @@
#include "bitcount.h" #include "bitcount.h"
#include "misc.h" #include "misc.h"
Bitboard RookMasks[SQUARE_NB]; int SquareDistance[SQUARE_NB][SQUARE_NB];
Bitboard RookMagics[SQUARE_NB];
Bitboard* RookAttacks[SQUARE_NB];
unsigned RookShifts[SQUARE_NB];
Bitboard BishopMasks[SQUARE_NB]; Bitboard RookMasks [SQUARE_NB];
Bitboard BishopMagics[SQUARE_NB]; Bitboard RookMagics [SQUARE_NB];
Bitboard* RookAttacks[SQUARE_NB];
unsigned RookShifts [SQUARE_NB];
Bitboard BishopMasks [SQUARE_NB];
Bitboard BishopMagics [SQUARE_NB];
Bitboard* BishopAttacks[SQUARE_NB]; Bitboard* BishopAttacks[SQUARE_NB];
unsigned BishopShifts[SQUARE_NB]; unsigned BishopShifts [SQUARE_NB];
Bitboard SquareBB[SQUARE_NB]; Bitboard SquareBB[SQUARE_NB];
Bitboard FileBB[FILE_NB]; Bitboard FileBB[FILE_NB];
@ -42,51 +44,44 @@ Bitboard InFrontBB[COLOR_NB][RANK_NB];
Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB]; Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard DistanceRingsBB[SQUARE_NB][8]; Bitboard DistanceRingBB[SQUARE_NB][8];
Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
int SquareDistance[SQUARE_NB][SQUARE_NB];
namespace { namespace {
// De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
const uint64_t DeBruijn_64 = 0x3F79D71B4CB0A89ULL; const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
const uint32_t DeBruijn_32 = 0x783A9B23; const uint32_t DeBruijn32 = 0x783A9B23;
int MS1BTable[256]; int MS1BTable[256]; // To implement software msb()
Square BSFTable[SQUARE_NB]; Square BSFTable[SQUARE_NB]; // To implement software bitscan
Bitboard RookTable[0x19000]; // Storage space for rook attacks Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // Storage space for bishop attacks Bitboard BishopTable[0x1480]; // To store bishop attacks
typedef unsigned (Fn)(Square, Bitboard); typedef unsigned (Fn)(Square, Bitboard);
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
FORCE_INLINE unsigned bsf_index(Bitboard b) { // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
// Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
// Matt Taylor's folding for 32 bit systems, extended to 64 bits by Kim Walisch FORCE_INLINE unsigned bsf_index(Bitboard b) {
b ^= (b - 1); b ^= b - 1;
return Is64Bit ? (b * DeBruijn_64) >> 58 return Is64Bit ? (b * DeBruijn64) >> 58
: ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn_32) >> 26; : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
} }
} }
/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard.
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard.
#ifndef USE_BSFQ #ifndef USE_BSFQ
Square lsb(Bitboard b) { return BSFTable[bsf_index(b)]; } /// Software fall-back of lsb() and msb() for CPU lacking hardware support
Square pop_lsb(Bitboard* b) { Square lsb(Bitboard b) {
return BSFTable[bsf_index(b)];
Bitboard bb = *b;
*b = bb & (bb - 1);
return BSFTable[bsf_index(bb)];
} }
Square msb(Bitboard b) { Square msb(Bitboard b) {
@ -120,8 +115,8 @@ Square msb(Bitboard b) {
#endif // ifndef USE_BSFQ #endif // ifndef USE_BSFQ
/// Bitboards::pretty() returns an ASCII representation of a bitboard to be /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
/// printed to standard output. This is sometimes useful for debugging. /// to be printed to standard output. Useful for debugging.
const std::string Bitboards::pretty(Bitboard b) { const std::string Bitboards::pretty(Bitboard b) {
@ -178,7 +173,7 @@ void Bitboards::init() {
if (s1 != s2) if (s1 != s2)
{ {
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
DistanceRingsBB[s1][SquareDistance[s1][s2] - 1] |= s2; DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
} }
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },

View file

@ -25,6 +25,13 @@
#include "types.h" #include "types.h"
namespace Bitbases {
void init();
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
}
namespace Bitboards { namespace Bitboards {
void init(); void init();
@ -32,12 +39,7 @@ const std::string pretty(Bitboard b);
} }
namespace Bitbases { const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
void init_kpk();
bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color us);
}
const Bitboard FileABB = 0x0101010101010101ULL; const Bitboard FileABB = 0x0101010101010101ULL;
const Bitboard FileBBB = FileABB << 1; const Bitboard FileBBB = FileABB << 1;
@ -57,15 +59,17 @@ const Bitboard Rank6BB = Rank1BB << (8 * 5);
const Bitboard Rank7BB = Rank1BB << (8 * 6); const Bitboard Rank7BB = Rank1BB << (8 * 6);
const Bitboard Rank8BB = Rank1BB << (8 * 7); const Bitboard Rank8BB = Rank1BB << (8 * 7);
extern Bitboard RookMasks[SQUARE_NB]; extern int SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard RookMagics[SQUARE_NB];
extern Bitboard* RookAttacks[SQUARE_NB];
extern unsigned RookShifts[SQUARE_NB];
extern Bitboard BishopMasks[SQUARE_NB]; extern Bitboard RookMasks [SQUARE_NB];
extern Bitboard BishopMagics[SQUARE_NB]; extern Bitboard RookMagics [SQUARE_NB];
extern Bitboard* RookAttacks[SQUARE_NB];
extern unsigned RookShifts [SQUARE_NB];
extern Bitboard BishopMasks [SQUARE_NB];
extern Bitboard BishopMagics [SQUARE_NB];
extern Bitboard* BishopAttacks[SQUARE_NB]; extern Bitboard* BishopAttacks[SQUARE_NB];
extern unsigned BishopShifts[SQUARE_NB]; extern unsigned BishopShifts [SQUARE_NB];
extern Bitboard SquareBB[SQUARE_NB]; extern Bitboard SquareBB[SQUARE_NB];
extern Bitboard FileBB[FILE_NB]; extern Bitboard FileBB[FILE_NB];
@ -75,15 +79,12 @@ extern Bitboard InFrontBB[COLOR_NB][RANK_NB];
extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard DistanceRingsBB[SQUARE_NB][8]; extern Bitboard DistanceRingBB[SQUARE_NB][8];
extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
/// Overloads of bitwise operators between a Bitboard and a Square for testing /// Overloads of bitwise operators between a Bitboard and a Square for testing
/// whether a given bit is set in a bitboard, and for setting and clearing bits. /// whether a given bit is set in a bitboard, and for setting and clearing bits.
@ -92,14 +93,6 @@ inline Bitboard operator&(Bitboard b, Square s) {
return b & SquareBB[s]; return b & SquareBB[s];
} }
inline Bitboard& operator|=(Bitboard& b, Square s) {
return b |= SquareBB[s];
}
inline Bitboard& operator^=(Bitboard& b, Square s) {
return b ^= SquareBB[s];
}
inline Bitboard operator|(Bitboard b, Square s) { inline Bitboard operator|(Bitboard b, Square s) {
return b | SquareBB[s]; return b | SquareBB[s];
} }
@ -108,32 +101,21 @@ inline Bitboard operator^(Bitboard b, Square s) {
return b ^ SquareBB[s]; return b ^ SquareBB[s];
} }
inline Bitboard& operator|=(Bitboard& b, Square s) {
return b |= SquareBB[s];
}
inline Bitboard& operator^=(Bitboard& b, Square s) {
return b ^= SquareBB[s];
}
inline bool more_than_one(Bitboard b) { inline bool more_than_one(Bitboard b) {
return b & (b - 1); return b & (b - 1);
} }
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
template<typename T1, typename T2> inline int distance(T2 x, T2 y); /// rank_bb() and file_bb() return a bitboard representing all the squares on
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); } /// the given file or rank.
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
/// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns.
template<Square Delta>
inline Bitboard shift_bb(Bitboard b) {
return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8
: Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7
: Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9
: 0;
}
/// rank_bb() and file_bb() take a file or a square as input and return
/// a bitboard representing all squares on the given file or rank.
inline Bitboard rank_bb(Rank r) { inline Bitboard rank_bb(Rank r) {
return RankBB[r]; return RankBB[r];
@ -152,83 +134,102 @@ inline Bitboard file_bb(Square s) {
} }
/// adjacent_files_bb() takes a file as input and returns a bitboard representing /// shift_bb() moves a bitboard one step along direction Delta. Mainly for pawns
/// all squares on the adjacent files.
template<Square Delta>
inline Bitboard shift_bb(Bitboard b) {
return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8
: Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7
: Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9
: 0;
}
/// adjacent_files_bb() returns a bitboard representing all the squares on the
/// adjacent files of the given one.
inline Bitboard adjacent_files_bb(File f) { inline Bitboard adjacent_files_bb(File f) {
return AdjacentFilesBB[f]; return AdjacentFilesBB[f];
} }
/// in_front_bb() takes a color and a rank as input, and returns a bitboard /// between_bb() returns a bitboard representing all the squares between the two
/// representing all the squares on all ranks in front of the rank, from the /// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
/// given color's point of view. For instance, in_front_bb(BLACK, RANK_3) will /// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
/// give all squares on ranks 1 and 2. /// or diagonal, 0 is returned.
inline Bitboard in_front_bb(Color c, Rank r) {
return InFrontBB[c][r];
}
/// between_bb() returns a bitboard representing all squares between two squares.
/// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for
/// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal,
/// 0 is returned.
inline Bitboard between_bb(Square s1, Square s2) { inline Bitboard between_bb(Square s1, Square s2) {
return BetweenBB[s1][s2]; return BetweenBB[s1][s2];
} }
/// forward_bb() takes a color and a square as input, and returns a bitboard /// in_front_bb() returns a bitboard representing all the squares on all the ranks
/// representing all squares along the line in front of the square, from the /// in front of the given one, from the point of view of the given color. For
/// point of view of the given color. Definition of the table is: /// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2.
/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
inline Bitboard in_front_bb(Color c, Rank r) {
return InFrontBB[c][r];
}
/// forward_bb() returns a bitboard representing all the squares along the line
/// in front of the given one, from the point of view of the given color:
/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
inline Bitboard forward_bb(Color c, Square s) { inline Bitboard forward_bb(Color c, Square s) {
return ForwardBB[c][s]; return ForwardBB[c][s];
} }
/// pawn_attack_span() takes a color and a square as input, and returns a bitboard /// pawn_attack_span() returns a bitboard representing all the squares that can be
/// representing all squares that can be attacked by a pawn of the given color /// attacked by a pawn of the given color when it moves along its file, starting
/// when it moves along its file starting from the given square. Definition is: /// from the given square:
/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); /// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
inline Bitboard pawn_attack_span(Color c, Square s) { inline Bitboard pawn_attack_span(Color c, Square s) {
return PawnAttackSpan[c][s]; return PawnAttackSpan[c][s];
} }
/// passed_pawn_mask() takes a color and a square as input, and returns a /// passed_pawn_mask() returns a bitboard mask which can be used to test if a
/// bitboard mask which can be used to test if a pawn of the given color on /// pawn of the given color and on the given square is a passed pawn:
/// the given square is a passed pawn. Definition of the table is: /// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
inline Bitboard passed_pawn_mask(Color c, Square s) { inline Bitboard passed_pawn_mask(Color c, Square s) {
return PassedPawnMask[c][s]; return PassedPawnMask[c][s];
} }
/// squares_of_color() returns a bitboard representing all squares with the same /// squares_of_color() returns a bitboard representing all the squares of the
/// color of the given square. /// same color of the given one.
inline Bitboard squares_of_color(Square s) { inline Bitboard squares_of_color(Square s) {
return DarkSquares & s ? DarkSquares : ~DarkSquares; return DarkSquares & s ? DarkSquares : ~DarkSquares;
} }
/// aligned() returns true if the squares s1, s2 and s3 are aligned /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
/// either on a straight or on a diagonal line. /// straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) { inline bool aligned(Square s1, Square s2, Square s3) {
return LineBB[s1][s2] & s3; return LineBB[s1][s2] & s3;
} }
/// Functions for computing sliding attack bitboards. Function attacks_bb() takes /// distance() functions return the distance between x and y, defined as the
/// a square and a bitboard of occupied squares as input, and returns a bitboard /// number of steps for a king in x to reach y. Works with squares, ranks, files.
/// representing all squares attacked by Pt (bishop or rook) on the given square.
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
/// attacks_bb() returns a bitboard representing all the squares attacked by a
/// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index()
/// looks up the index using the 'magic bitboards' approach.
template<PieceType Pt> template<PieceType Pt>
FORCE_INLINE unsigned magic_index(Square s, Bitboard occupied) { FORCE_INLINE unsigned magic_index(Square s, Bitboard occupied) {
@ -263,8 +264,8 @@ inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) {
} }
} }
/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard.
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. /// lsb() and msb() return the least/most significant bit in a non-zero bitboard
#ifdef USE_BSFQ #ifdef USE_BSFQ
@ -297,7 +298,7 @@ FORCE_INLINE Square lsb(Bitboard b) {
return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32))); return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32)));
} }
# else # else // Assumed gcc or compatible compiler
FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen
Bitboard idx; Bitboard idx;
@ -313,21 +314,24 @@ FORCE_INLINE Square msb(Bitboard b) {
# endif # endif
#else // ifdef(USE_BSFQ)
Square lsb(Bitboard b);
Square msb(Bitboard b);
#endif
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
FORCE_INLINE Square pop_lsb(Bitboard* b) { FORCE_INLINE Square pop_lsb(Bitboard* b) {
const Square s = lsb(*b); const Square s = lsb(*b);
*b &= *b - 1; *b &= *b - 1;
return s; return s;
} }
#else // if defined(USE_BSFQ)
extern Square msb(Bitboard b); /// frontmost_sq() and backmost_sq() return the square corresponding to the
extern Square lsb(Bitboard b);
extern Square pop_lsb(Bitboard* b);
#endif
/// frontmost_sq() and backmost_sq() find the square corresponding to the
/// most/least advanced bit relative to the given color. /// most/least advanced bit relative to the given color.
inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); } inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }

View file

@ -217,7 +217,7 @@ Value Endgame<KPK>::operator()(const Position& pos) const {
Color us = strongSide == pos.side_to_move() ? WHITE : BLACK; Color us = strongSide == pos.side_to_move() ? WHITE : BLACK;
if (!Bitbases::probe_kpk(wksq, psq, bksq, us)) if (!Bitbases::probe(wksq, psq, bksq, us))
return VALUE_DRAW; return VALUE_DRAW;
Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq)); Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq));
@ -852,5 +852,5 @@ ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const {
// Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw, // Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw,
// it's probably at least a draw even with the pawn. // it's probably at least a draw even with the pawn.
return Bitbases::probe_kpk(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW; return Bitbases::probe(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
} }

View file

@ -35,7 +35,7 @@ int main(int argc, char* argv[]) {
UCI::init(Options); UCI::init(Options);
Bitboards::init(); Bitboards::init();
Position::init(); Position::init();
Bitbases::init_kpk(); Bitbases::init();
Search::init(); Search::init();
Eval::init(); Eval::init();
Pawns::init(); Pawns::init();

View file

@ -288,7 +288,7 @@ Score Entry::do_king_safety(const Position& pos, Square ksq) {
Bitboard pawns = pos.pieces(Us, PAWN); Bitboard pawns = pos.pieces(Us, PAWN);
if (pawns) if (pawns)
while (!(DistanceRingsBB[ksq][minKingPawnDistance[Us]++] & pawns)) {} while (!(DistanceRingBB[ksq][minKingPawnDistance[Us]++] & pawns)) {}
if (relative_rank(Us, ksq) > RANK_4) if (relative_rank(Us, ksq) > RANK_4)
return make_score(0, -16 * minKingPawnDistance[Us]); return make_score(0, -16 * minKingPawnDistance[Us]);