1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00

Assorted tweaks from DON

Mainly renames and some little code style improvment,
inspired by looking at DON sources:

https://github.com/erashid/DON

No functional change.
This commit is contained in:
Marco Costalba 2014-02-09 17:31:45 +01:00
parent 2f5aaf7de6
commit 41641e3b1e
16 changed files with 87 additions and 88 deletions

View file

@ -126,7 +126,7 @@ void benchmark(const Position& current, istream& is) {
file.close();
}
int64_t nodes = 0;
uint64_t nodes = 0;
Search::StateStackPtr st;
Time::point elapsed = Time::now();
@ -138,13 +138,13 @@ void benchmark(const Position& current, istream& is) {
if (limitType == "perft")
{
size_t cnt = Search::perft(pos, limits.depth * ONE_PLY);
uint64_t cnt = Search::perft(pos, limits.depth * ONE_PLY);
cerr << "\nPerft " << limits.depth << " leaf nodes: " << cnt << endl;
nodes += cnt;
}
else
{
Threads.start_thinking(pos, limits, vector<Move>(), st);
Threads.start_thinking(pos, limits, st);
Threads.wait_for_think_finished();
nodes += Search::RootPos.nodes_searched();
}

View file

@ -325,11 +325,11 @@ namespace {
if (attack && attack != reference[i])
break;
assert(reference[i] != 0);
assert(reference[i]);
attack = reference[i];
}
} while (i != size);
} while (i < size);
}
}
}

View file

@ -40,7 +40,7 @@ int main(int argc, char* argv[]) {
Pawns::init();
Eval::init();
Threads.init();
TT.set_size(Options["Hash"]);
TT.resize(Options["Hash"]);
std::string args;

View file

@ -144,10 +144,10 @@ std::ostream& operator<<(std::ostream& os, SyncCout sc) {
static Mutex m;
if (sc == io_lock)
if (sc == IO_LOCK)
m.lock();
if (sc == io_unlock)
if (sc == IO_UNLOCK)
m.unlock();
return os;

View file

@ -59,10 +59,10 @@ private:
};
enum SyncCout { io_lock, io_unlock };
enum SyncCout { IO_LOCK, IO_UNLOCK };
std::ostream& operator<<(std::ostream&, SyncCout);
#define sync_cout std::cout << io_lock
#define sync_endl std::endl << io_unlock
#define sync_cout std::cout << IO_LOCK
#define sync_endl std::endl << IO_UNLOCK
#endif // #ifndef MISC_H_INCLUDED

View file

@ -159,8 +159,8 @@ public:
int game_ply() const;
bool is_chess960() const;
Thread* this_thread() const;
int64_t nodes_searched() const;
void set_nodes_searched(int64_t n);
uint64_t nodes_searched() const;
void set_nodes_searched(uint64_t n);
bool is_draw() const;
// Position consistency check, for debugging
@ -201,7 +201,7 @@ private:
Square castlingRookSquare[COLOR_NB][CASTLING_SIDE_NB];
Bitboard castlingPath[COLOR_NB][CASTLING_SIDE_NB];
StateInfo startState;
int64_t nodes;
uint64_t nodes;
int gamePly;
Color sideToMove;
Thread* thisThread;
@ -209,11 +209,11 @@ private:
int chess960;
};
inline int64_t Position::nodes_searched() const {
inline uint64_t Position::nodes_searched() const {
return nodes;
}
inline void Position::set_nodes_searched(int64_t n) {
inline void Position::set_nodes_searched(uint64_t n) {
nodes = n;
}

View file

@ -45,15 +45,15 @@ class RKISS {
uint64_t a, b, c, d;
uint64_t rotate(uint64_t x, uint64_t k) const {
uint64_t rotate_L(uint64_t x, unsigned k) const {
return (x << k) | (x >> (64 - k));
}
uint64_t rand64() {
const uint64_t e = a - rotate(b, 7);
a = b ^ rotate(c, 13);
b = c + rotate(d, 37);
const uint64_t e = a - rotate_L(b, 7);
a = b ^ rotate_L(c, 13);
b = c + rotate_L(d, 37);
c = d + e;
return d = e + a;
}

View file

@ -154,10 +154,10 @@ void Search::init() {
/// Search::perft() is our utility to verify move generation. All the leaf nodes
/// up to the given depth are generated and counted and the sum returned.
static size_t perft(Position& pos, Depth depth) {
static uint64_t perft(Position& pos, Depth depth) {
StateInfo st;
size_t cnt = 0;
uint64_t cnt = 0;
CheckInfo ci(pos);
const bool leaf = depth == 2 * ONE_PLY;
@ -170,7 +170,7 @@ static size_t perft(Position& pos, Depth depth) {
return cnt;
}
size_t Search::perft(Position& pos, Depth depth) {
uint64_t Search::perft(Position& pos, Depth depth) {
return depth > ONE_PLY ? ::perft(pos, depth) : MoveList<LEGAL>(pos).size();
}

View file

@ -81,6 +81,7 @@ struct LimitsType {
LimitsType() { std::memset(this, 0, sizeof(LimitsType)); }
bool use_time_management() const { return !(mate | movetime | depth | nodes | infinite); }
std::vector<Move> searchmoves;
int time[COLOR_NB], inc[COLOR_NB], movestogo, depth, nodes, movetime, mate, infinite, ponder;
};
@ -89,7 +90,7 @@ struct LimitsType {
/// typically in an async fashion e.g. to stop the search by the GUI.
struct SignalsType {
bool stopOnPonderhit, firstRootMove, stop, failedLowAtRoot;
bool stop, stopOnPonderhit, firstRootMove, failedLowAtRoot;
};
typedef std::auto_ptr<std::stack<StateInfo> > StateStackPtr;
@ -103,7 +104,7 @@ extern Time::point SearchTime, IterationTime;
extern StateStackPtr SetupStates;
extern void init();
extern size_t perft(Position& pos, Depth depth);
extern uint64_t perft(Position& pos, Depth depth);
extern void think();
} // namespace Search

View file

@ -29,6 +29,8 @@ using namespace Search;
ThreadPool Threads; // Global object
extern void check_time();
namespace {
// start_routine() is the C function which is called when a new thread
@ -90,9 +92,43 @@ Thread::Thread() /* : splitPoints() */ { // Value-initialization bug in MSVC
}
// Thread::cutoff_occurred() checks whether a beta cutoff has occurred in the
// current active split point, or in some ancestor of the split point.
bool Thread::cutoff_occurred() const {
for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parentSplitPoint)
if (sp->cutoff)
return true;
return false;
}
// Thread::available_to() checks whether the thread is available to help the
// thread 'master' at a split point. An obvious requirement is that thread must
// be idle. With more than two threads, this is not sufficient: If the thread is
// the master of some split point, it is only available as a slave to the slaves
// which are busy searching the split point at the top of slave's split point
// stack (the "helpful master concept" in YBWC terminology).
bool Thread::available_to(const Thread* master) const {
if (searching)
return false;
// Make a local copy to be sure it doesn't become zero under our feet while
// testing next condition and so leading to an out of bounds access.
int size = splitPointsSize;
// No split points means that the thread is available as a slave for any
// other thread otherwise apply the "helpful master" concept if possible.
return !size || (splitPoints[size - 1].slavesMask & (1ULL << master->idx));
}
// TimerThread::idle_loop() is where the timer thread waits msec milliseconds
// and then calls check_time(). If msec is 0 thread sleeps until it's woken up.
extern void check_time();
void TimerThread::idle_loop() {
@ -144,41 +180,6 @@ void MainThread::idle_loop() {
}
// Thread::cutoff_occurred() checks whether a beta cutoff has occurred in the
// current active split point, or in some ancestor of the split point.
bool Thread::cutoff_occurred() const {
for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parentSplitPoint)
if (sp->cutoff)
return true;
return false;
}
// Thread::available_to() checks whether the thread is available to help the
// thread 'master' at a split point. An obvious requirement is that thread must
// be idle. With more than two threads, this is not sufficient: If the thread is
// the master of some split point, it is only available as a slave to the slaves
// which are busy searching the split point at the top of slave's split point
// stack (the "helpful master concept" in YBWC terminology).
bool Thread::available_to(const Thread* master) const {
if (searching)
return false;
// Make a local copy to be sure it doesn't become zero under our feet while
// testing next condition and so leading to an out of bounds access.
int size = splitPointsSize;
// No split points means that the thread is available as a slave for any
// other thread otherwise apply the "helpful master" concept if possible.
return !size || (splitPoints[size - 1].slavesMask & (1ULL << master->idx));
}
// init() is called at startup to create and launch requested threads, that will
// go immediately to sleep due to 'sleepWhileIdle' set to true. We cannot use
// a c'tor because Threads is a static object and we need a fully initialized
@ -264,8 +265,7 @@ void Thread::split(Position& pos, const Stack* ss, Value alpha, Value beta, Valu
MovePicker* movePicker, int nodeType, bool cutNode) {
assert(pos.pos_is_ok());
assert(*bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(*bestValue > -VALUE_INFINITE);
assert(-VALUE_INFINITE < *bestValue && *bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(depth >= Threads.minimumSplitDepth);
assert(searching);
assert(splitPointsSize < MAX_SPLITPOINTS_PER_THREAD);
@ -367,8 +367,8 @@ void ThreadPool::wait_for_think_finished() {
// start_thinking() wakes up the main thread sleeping in MainThread::idle_loop()
// so to start a new search, then returns immediately.
void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
const std::vector<Move>& searchMoves, StateStackPtr& states) {
void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits, StateStackPtr& states) {
wait_for_think_finished();
SearchTime = Time::now(); // As early as possible
@ -386,8 +386,8 @@ void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
}
for (MoveList<LEGAL> it(pos); *it; ++it)
if ( searchMoves.empty()
|| std::count(searchMoves.begin(), searchMoves.end(), *it))
if ( limits.searchmoves.empty()
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), *it))
RootMoves.push_back(RootMove(*it));
main()->thinking = true;

View file

@ -76,7 +76,7 @@ struct SplitPoint {
// Shared data
Mutex mutex;
volatile uint64_t slavesMask;
volatile int64_t nodes;
volatile uint64_t nodes;
volatile Value alpha;
volatile Value bestValue;
volatile Move bestMove;
@ -162,8 +162,7 @@ struct ThreadPool : public std::vector<Thread*> {
void read_uci_options();
Thread* available_slave(const Thread* master) const;
void wait_for_think_finished();
void start_thinking(const Position&, const Search::LimitsType&,
const std::vector<Move>&, Search::StateStackPtr&);
void start_thinking(const Position&, const Search::LimitsType&, Search::StateStackPtr&);
bool sleepWhileIdle;
Depth minimumSplitDepth;

View file

@ -26,11 +26,11 @@
TranspositionTable TT; // Our global transposition table
/// TranspositionTable::set_size() sets the size of the transposition table,
/// TranspositionTable::resize() sets the size of the transposition table,
/// measured in megabytes. Transposition table consists of a power of 2 number
/// of clusters and each cluster consists of ClusterSize number of TTEntry.
void TranspositionTable::set_size(uint64_t mbSize) {
void TranspositionTable::resize(uint64_t mbSize) {
assert(msb((mbSize << 20) / sizeof(TTEntry)) < 32);

View file

@ -81,7 +81,7 @@ public:
const TTEntry* probe(const Key key) const;
TTEntry* first_entry(const Key key) const;
void refresh(const TTEntry* tte) const;
void set_size(uint64_t mbSize);
void resize(uint64_t mbSize);
void clear();
void store(const Key key, Value v, Bound type, Depth d, Move m, Value statV);

View file

@ -194,14 +194,13 @@ namespace {
void go(const Position& pos, istringstream& is) {
Search::LimitsType limits;
vector<Move> searchMoves;
string token;
while (is >> token)
{
if (token == "searchmoves")
while (is >> token)
searchMoves.push_back(move_from_uci(pos, token));
limits.searchmoves.push_back(move_from_uci(pos, token));
else if (token == "wtime") is >> limits.time[WHITE];
else if (token == "btime") is >> limits.time[BLACK];
@ -216,6 +215,6 @@ namespace {
else if (token == "ponder") limits.ponder = true;
}
Threads.start_thinking(pos, limits, searchMoves, SetupStates);
Threads.start_thinking(pos, limits, SetupStates);
}
}

View file

@ -38,7 +38,7 @@ namespace UCI {
void on_logger(const Option& o) { start_logger(o); }
void on_eval(const Option&) { Eval::init(); }
void on_threads(const Option&) { Threads.read_uci_options(); }
void on_hash_size(const Option& o) { TT.set_size(o); }
void on_hash_size(const Option& o) { TT.resize(o); }
void on_clear_hash(const Option&) { TT.clear(); }
@ -115,16 +115,16 @@ std::ostream& operator<<(std::ostream& os, const OptionsMap& om) {
/// Option class constructors and conversion operators
Option::Option(const char* v, Fn* f) : type("string"), min(0), max(0), idx(Options.size()), on_change(f)
Option::Option(const char* v, OnChange f) : type("string"), min(0), max(0), idx(Options.size()), on_change(f)
{ defaultValue = currentValue = v; }
Option::Option(bool v, Fn* f) : type("check"), min(0), max(0), idx(Options.size()), on_change(f)
Option::Option(bool v, OnChange f) : type("check"), min(0), max(0), idx(Options.size()), on_change(f)
{ defaultValue = currentValue = (v ? "true" : "false"); }
Option::Option(Fn* f) : type("button"), min(0), max(0), idx(Options.size()), on_change(f)
Option::Option(OnChange f) : type("button"), min(0), max(0), idx(Options.size()), on_change(f)
{}
Option::Option(int v, int minv, int maxv, Fn* f) : type("spin"), min(minv), max(maxv), idx(Options.size()), on_change(f)
Option::Option(int v, int minv, int maxv, OnChange f) : type("spin"), min(minv), max(maxv), idx(Options.size()), on_change(f)
{ std::ostringstream ss; ss << v; defaultValue = currentValue = ss.str(); }
@ -156,7 +156,7 @@ Option& Option::operator=(const string& v) {
currentValue = v;
if (on_change)
(*on_change)(*this);
on_change(*this);
return *this;
}

View file

@ -38,13 +38,13 @@ typedef std::map<std::string, Option, CaseInsensitiveLess> OptionsMap;
/// Option class implements an option as defined by UCI protocol
class Option {
typedef void (Fn)(const Option&);
typedef void (*OnChange)(const Option&);
public:
Option(Fn* = NULL);
Option(bool v, Fn* = NULL);
Option(const char* v, Fn* = NULL);
Option(int v, int min, int max, Fn* = NULL);
Option(OnChange = NULL);
Option(bool v, OnChange = NULL);
Option(const char* v, OnChange = NULL);
Option(int v, int min, int max, OnChange = NULL);
Option& operator=(const std::string& v);
operator int() const;
@ -56,7 +56,7 @@ private:
std::string defaultValue, currentValue, type;
int min, max;
size_t idx;
Fn* on_change;
OnChange on_change;
};
void init(OptionsMap&);