1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00

Retire RootMoveList

Diretcly use the underlying std::vector<Move> and the
STL algorithms. Also a bit of cleanup while there.

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba 2011-12-12 17:55:20 +01:00
parent 7d97ebfe7f
commit 4e59c5c274
5 changed files with 104 additions and 139 deletions

View file

@ -59,7 +59,6 @@ static const char* Defaults[] = {
void benchmark(int argc, char* argv[]) {
vector<Move> searchMoves(1, MOVE_NONE);
vector<string> fenList;
Search::LimitsType limits;
int64_t totalNodes;
@ -127,7 +126,7 @@ void benchmark(int argc, char* argv[]) {
}
else
{
Threads.start_thinking(pos, limits, searchMoves, false);
Threads.start_thinking(pos, limits, vector<Move>(), false);
totalNodes += Search::RootPosition.nodes_searched();
}
}

View file

@ -17,6 +17,7 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
@ -24,7 +25,6 @@
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "book.h"
#include "evaluate.h"
@ -42,7 +42,7 @@ namespace Search {
volatile SignalsType Signals;
LimitsType Limits;
std::vector<Move> RootMoves;
std::vector<Move> SearchMoves;
Position RootPosition;
}
@ -60,15 +60,21 @@ namespace {
enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
// RootMove struct is used for moves at the root of the tree. For each root
// move, we store a score, a node count, and a PV (really a refutation
// in the case of moves which fail low). Score is normally set at
// -VALUE_INFINITE for all non-pv moves.
// move we store a score, a node count, and a PV (really a refutation in the
// case of moves which fail low). Score is normally set at -VALUE_INFINITE for
// all non-pv moves.
struct RootMove {
// RootMove::operator<() is the comparison function used when
// sorting the moves. A move m1 is considered to be better
// than a move m2 if it has an higher score
RootMove(){}
RootMove(Move m) {
nodes = 0;
score = prevScore = -VALUE_INFINITE;
pv.push_back(m);
pv.push_back(MOVE_NONE);
}
bool operator<(const RootMove& m) const { return score < m.score; }
bool operator==(const Move& m) const { return pv[0] == m; }
void extract_pv_from_tt(Position& pos);
void insert_pv_in_tt(Position& pos);
@ -79,15 +85,6 @@ namespace {
std::vector<Move> pv;
};
// RootMoveList struct is mainly a std::vector of RootMove objects
struct RootMoveList : public std::vector<RootMove> {
void init(Position& pos, Move rootMoves[]);
RootMove* find(const Move& m, int startIndex = 0);
int bestMoveChanges;
};
/// Constants
@ -147,9 +144,10 @@ namespace {
/// Namespace variables
RootMoveList Rml;
std::vector<RootMove> RootMoves;
size_t MultiPV, UCIMultiPV, MultiPVIdx;
TimeManager TimeMgr;
int BestMoveChanges;
int SkillLevel;
bool SkillLevelEnabled;
History H;
@ -157,7 +155,7 @@ namespace {
/// Local functions
Move id_loop(Position& pos, Move rootMoves[], Move* ponderMove);
Move id_loop(Position& pos, Move* ponderMove);
template <NodeType NT>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
@ -174,7 +172,6 @@ namespace {
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
void do_skill_level(Move* best, Move* ponder);
int elapsed_time(bool reset = false);
string score_to_uci(Value v, Value alpha = -VALUE_INFINITE, Value beta = VALUE_INFINITE);
string speed_to_uci(int64_t nodes);
@ -182,9 +179,9 @@ namespace {
string pretty_pv(Position& pos, int depth, Value score, int time, Move pv[]);
string depth_to_uci(Depth depth);
// MovePickerExt template class extends MovePicker and allows to choose at compile
// time the proper moves source according to the type of node. In the default case
// we simply create and use a standard MovePicker object.
// MovePickerExt class template extends MovePicker and allows to choose at
// compile time the proper moves source according to the type of node. In the
// default case we simply create and use a standard MovePicker object.
template<bool SpNode> struct MovePickerExt : public MovePicker {
MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, Stack* ss, Value b)
@ -209,17 +206,17 @@ namespace {
return os << move_to_uci(m, chess960);
}
// When formatting a move for std::cout we must know if we are in Chess960
// or not. To keep using the handy operator<<() on the move the trick is to
// embed this flag in the stream itself. Function-like named enum set960 is
// used as a custom manipulator and the stream internal general-purpose array,
// accessed through ios_base::iword(), is used to pass the flag to the move's
// operator<<() that will read it to properly format castling moves.
// When formatting a move for std::cout we must know if we are in Chess960 or
// not. To keep using the handy operator<<() on the move the trick is to embed
// this flag in the stream itself. Function-like named enum set960 is used as
// a custom manipulator and the stream internal general-purpose array, accessed
// through ios_base::iword(), is used to pass the flag to the move's operator<<
// that will read it to properly format castling moves.
enum set960 {};
std::ostream& operator<< (std::ostream& os, const set960& f) {
std::ostream& operator<<(std::ostream& os, const set960& f) {
os.iword(0) = int(f);
os.iword(0) = f;
return os;
}
@ -345,7 +342,7 @@ void Search::think() {
}
UCIMultiPV = Options["MultiPV"].value<size_t>();
SkillLevel = Options["Skill Level"].value<size_t>();
SkillLevel = Options["Skill Level"].value<int>();
// Do we have to play with skill handicap? In this case enable MultiPV that
// we will use behind the scenes to retrieve a set of possible moves.
@ -380,7 +377,7 @@ void Search::think() {
// We're ready to start thinking. Call the iterative deepening loop function
Move ponderMove = MOVE_NONE;
Move bestMove = id_loop(pos, &RootMoves[0], &ponderMove);
Move bestMove = id_loop(pos, &ponderMove);
// Stop timer and send all the slaves to sleep, if not already sleeping
Threads.set_timer(0);
@ -425,7 +422,7 @@ namespace {
// with increasing depth until the allocated thinking time has been consumed,
// user stops the search, or the maximum search depth is reached.
Move id_loop(Position& pos, Move rootMoves[], Move* ponderMove) {
Move id_loop(Position& pos, Move* ponderMove) {
Stack ss[PLY_MAX_PLUS_2];
Value bestValues[PLY_MAX_PLUS_2];
@ -438,14 +435,19 @@ namespace {
memset(ss, 0, 4 * sizeof(Stack));
TT.new_search();
H.clear();
RootMoves.clear();
*ponderMove = bestMove = skillBest = skillPonder = MOVE_NONE;
depth = aspirationDelta = 0;
bestValue = alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
ss->currentMove = MOVE_NULL; // Hack to skip update gains
Rml.init(pos, rootMoves);
for (MoveList<MV_LEGAL> ml(pos); !ml.end(); ++ml)
if ( SearchMoves.empty()
|| std::count(SearchMoves.begin(), SearchMoves.end(), ml.move()))
RootMoves.push_back(RootMove(ml.move()));
// Handle special case of searching on a mate/stalemate position
if (Rml.empty())
if (RootMoves.empty())
{
cout << "info" << depth_to_uci(DEPTH_ZERO)
<< score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW, alpha, beta) << endl;
@ -457,16 +459,16 @@ namespace {
while (!Signals.stop && ++depth <= PLY_MAX && (!Limits.maxDepth || depth <= Limits.maxDepth))
{
// Save now last iteration's scores, before Rml moves are reordered
for (size_t i = 0; i < Rml.size(); i++)
Rml[i].prevScore = Rml[i].score;
for (size_t i = 0; i < RootMoves.size(); i++)
RootMoves[i].prevScore = RootMoves[i].score;
Rml.bestMoveChanges = 0;
BestMoveChanges = 0;
// MultiPV loop. We perform a full root search for each PV line
for (MultiPVIdx = 0; MultiPVIdx < std::min(MultiPV, Rml.size()); MultiPVIdx++)
for (MultiPVIdx = 0; MultiPVIdx < std::min(MultiPV, RootMoves.size()); MultiPVIdx++)
{
// Calculate dynamic aspiration window based on previous iterations
if (depth >= 5 && abs(Rml[MultiPVIdx].prevScore) < VALUE_KNOWN_WIN)
if (depth >= 5 && abs(RootMoves[MultiPVIdx].prevScore) < VALUE_KNOWN_WIN)
{
int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2];
int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3];
@ -474,8 +476,8 @@ namespace {
aspirationDelta = std::min(std::max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24);
aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize
alpha = std::max(Rml[MultiPVIdx].prevScore - aspirationDelta, -VALUE_INFINITE);
beta = std::min(Rml[MultiPVIdx].prevScore + aspirationDelta, VALUE_INFINITE);
alpha = std::max(RootMoves[MultiPVIdx].prevScore - aspirationDelta, -VALUE_INFINITE);
beta = std::min(RootMoves[MultiPVIdx].prevScore + aspirationDelta, VALUE_INFINITE);
}
else
{
@ -496,19 +498,19 @@ namespace {
// we want to keep the same order for all the moves but the new
// PV that goes to the front. Note that in case of MultiPV search
// the already searched PV lines are preserved.
sort<RootMove>(Rml.begin() + MultiPVIdx, Rml.end());
sort<RootMove>(RootMoves.begin() + MultiPVIdx, RootMoves.end());
// In case we have found an exact score and we are going to leave
// the fail high/low loop then reorder the PV moves, otherwise
// leave the last PV move in its position so to be searched again.
// Of course this is needed only in MultiPV search.
if (MultiPVIdx && bestValue > alpha && bestValue < beta)
sort<RootMove>(Rml.begin(), Rml.begin() + MultiPVIdx);
sort<RootMove>(RootMoves.begin(), RootMoves.begin() + MultiPVIdx);
// Write PV back to transposition table in case the relevant entries
// have been overwritten during the search.
for (size_t i = 0; i <= MultiPVIdx; i++)
Rml[i].insert_pv_in_tt(pos);
RootMoves[i].insert_pv_in_tt(pos);
// If search has been stopped exit the aspiration window loop,
// note that sorting and writing PV back to TT is safe becuase
@ -521,7 +523,7 @@ namespace {
// protocol requires to send all the PV lines also if are still
// to be searched and so refer to the previous search's score.
if ((bestValue > alpha && bestValue < beta) || elapsed_time() > 2000)
for (size_t i = 0; i < std::min(UCIMultiPV, Rml.size()); i++)
for (size_t i = 0; i < std::min(UCIMultiPV, RootMoves.size()); i++)
{
bool updated = (i <= MultiPVIdx);
@ -529,13 +531,13 @@ namespace {
continue;
Depth d = (updated ? depth : depth - 1) * ONE_PLY;
Value s = (updated ? Rml[i].score : Rml[i].prevScore);
Value s = (updated ? RootMoves[i].score : RootMoves[i].prevScore);
cout << "info"
<< depth_to_uci(d)
<< (i == MultiPVIdx ? score_to_uci(s, alpha, beta) : score_to_uci(s))
<< speed_to_uci(pos.nodes_searched())
<< pv_to_uci(&Rml[i].pv[0], i + 1, pos.is_chess960())
<< pv_to_uci(&RootMoves[i].pv[0], i + 1, pos.is_chess960())
<< endl;
}
@ -560,10 +562,10 @@ namespace {
} while (abs(bestValue) < VALUE_KNOWN_WIN);
}
bestMove = Rml[0].pv[0];
*ponderMove = Rml[0].pv[1];
bestMove = RootMoves[0].pv[0];
*ponderMove = RootMoves[0].pv[1];
bestValues[depth] = bestValue;
bestMoveChanges[depth] = Rml.bestMoveChanges;
bestMoveChanges[depth] = BestMoveChanges;
// Skills: Do we need to pick now the best and the ponder moves ?
if (SkillLevelEnabled && depth == 1 + SkillLevel)
@ -572,7 +574,7 @@ namespace {
if (Options["Use Search Log"].value<bool>())
{
Log log(Options["Search Log Filename"].value<string>());
log << pretty_pv(pos, depth, bestValue, elapsed_time(), &Rml[0].pv[0]) << endl;
log << pretty_pv(pos, depth, bestValue, elapsed_time(), &RootMoves[0].pv[0]) << endl;
}
// Filter out startup noise when monitoring best move stability
@ -717,7 +719,7 @@ namespace {
excludedMove = ss->excludedMove;
posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
tte = TT.probe(posKey);
ttMove = RootNode ? Rml[MultiPVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
ttMove = RootNode ? RootMoves[MultiPVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
// At PV nodes we check for exact scores, while at non-PV nodes we check for
// a fail high/low. Biggest advantage at probing at PV nodes is to have a
@ -940,7 +942,7 @@ split_point_start: // At split points actual search starts from here
// At root obey the "searchmoves" option and skip moves not listed in Root
// Move List, as a consequence any illegal move is also skipped. In MultiPV
// mode we also skip PV moves which have been already searched.
if (RootNode && !Rml.find(move, MultiPVIdx))
if (RootNode && !std::count(RootMoves.begin() + MultiPVIdx, RootMoves.end(), move))
continue;
// At PV and SpNode nodes we want all moves to be legal since the beginning
@ -1126,26 +1128,26 @@ split_point_start: // At split points actual search starts from here
// be trusted, and we don't update the best move and/or PV.
if (RootNode && !Signals.stop)
{
RootMove* rm = Rml.find(move);
rm->nodes += pos.nodes_searched() - nodes;
RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
rm.nodes += pos.nodes_searched() - nodes;
// PV move or new best move ?
if (isPvMove || value > alpha)
{
rm->score = value;
rm->extract_pv_from_tt(pos);
rm.score = value;
rm.extract_pv_from_tt(pos);
// We record how often the best move has been changed in each
// iteration. This information is used for time management: When
// the best move changes frequently, we allocate some more time.
if (!isPvMove && MultiPV == 1)
Rml.bestMoveChanges++;
BestMoveChanges++;
}
else
// All other moves but the PV are set to the lowest value, this
// is not a problem when sorting becuase sort is stable and move
// position in the list is preserved, just the PV is pushed up.
rm->score = -VALUE_INFINITE;
rm.score = -VALUE_INFINITE;
}
@ -1742,9 +1744,9 @@ split_point_start: // At split points actual search starts from here
string depth_to_uci(Depth depth) {
std::stringstream s;
int selDepth = 0;
// Retrieve max searched depth among threads
int selDepth = 0;
for (int i = 0; i < Threads.size(); i++)
if (Threads[i].maxPly > selDepth)
selDepth = Threads[i].maxPly;
@ -1755,10 +1757,10 @@ split_point_start: // At split points actual search starts from here
}
// pretty_pv() creates a human-readable string from a position and a PV.
// It is used to write search information to the log file (which is created
// when the UCI parameter "Use Search Log" is "true"). It uses the two helpers
// time_to_string() and score_to_string() to format time and score respectively.
// pretty_pv() creates a human-readable string from a position and a PV. It is
// used to write search information to the log file (which is created when the
// UCI parameter "Use Search Log" is "true"). It uses the two below helper to
// pretty format time and score respectively.
string time_to_string(int millisecs) {
@ -1774,7 +1776,8 @@ split_point_start: // At split points actual search starts from here
if (hours)
s << hours << ':';
s << std::setfill('0') << std::setw(2) << minutes << ':' << std::setw(2) << seconds;
s << std::setfill('0') << std::setw(2) << minutes << ':'
<< std::setw(2) << seconds;
return s.str();
}
@ -1787,7 +1790,8 @@ split_point_start: // At split points actual search starts from here
else if (v <= VALUE_MATED_IN_PLY_MAX)
s << "-#" << (VALUE_MATE + v) / 2;
else
s << std::setprecision(2) << std::fixed << std::showpos << float(v) / PawnValueMidgame;
s << std::setprecision(2) << std::fixed << std::showpos
<< float(v) / PawnValueMidgame;
return s.str();
}
@ -1796,16 +1800,13 @@ split_point_start: // At split points actual search starts from here
const int64_t K = 1000;
const int64_t M = 1000000;
const int startColumn = 28;
const size_t maxLength = 80 - startColumn;
StateInfo state[PLY_MAX_PLUS_2], *st = state;
Move* m = pv;
string san;
string san, padding;
size_t length;
std::stringstream s;
size_t length = 0;
// First print depth, score, time and searched nodes...
s << set960(pos.is_chess960())
<< std::setw(2) << depth
<< std::setw(8) << score_to_string(value)
@ -1818,24 +1819,28 @@ split_point_start: // At split points actual search starts from here
else
s << std::setw(7) << pos.nodes_searched() / M << "M ";
// ...then print the full PV line in short algebraic notation
padding = string(s.str().length(), ' ');
length = padding.length();
while (*m != MOVE_NONE)
{
san = move_to_san(pos, *m);
length += san.length() + 1;
if (length > maxLength)
if (length + san.length() > 80)
{
length = san.length() + 1;
s << "\n" + string(startColumn, ' ');
s << "\n" + padding;
length = padding.length();
}
s << san << ' ';
length += san.length() + 1;
pos.do_move(*m++, *st++);
}
// Restore original position before to leave
while (m != pv) pos.undo_move(*--m);
while (m != pv)
pos.undo_move(*--m);
return s.str();
}
@ -1850,79 +1855,41 @@ split_point_start: // At split points actual search starts from here
static RKISS rk;
// Rml list is already sorted by score in descending order
int s;
size_t size = std::min(MultiPV, Rml.size());
int max_s = -VALUE_INFINITE;
int max = Rml[0].score;
int var = std::min(max - Rml[size - 1].score, int(PawnValueMidgame));
int wk = 120 - 2 * SkillLevel;
// PRNG sequence should be non deterministic
// PRNG sequence should be not deterministic
for (int i = abs(get_system_time() % 50); i > 0; i--)
rk.rand<unsigned>();
// Choose best move. For each move's score we add two terms both dependent
// on wk, one deterministic and bigger for weaker moves, and one random,
// Rml list is already sorted by score in descending order
size_t size = std::min(MultiPV, RootMoves.size());
int variance = std::min(RootMoves[0].score - RootMoves[size - 1].score, PawnValueMidgame);
int weakness = 120 - 2 * SkillLevel;
int max_s = -VALUE_INFINITE;
// Choose best move. For each move score we add two terms both dependent on
// weakness, one deterministic and bigger for weaker moves, and one random,
// then we choose the move with the resulting highest score.
for (size_t i = 0; i < size; i++)
{
s = Rml[i].score;
int s = RootMoves[i].score;
// Don't allow crazy blunders even at very low skills
if (i > 0 && Rml[i-1].score > s + EasyMoveMargin)
if (i > 0 && RootMoves[i-1].score > s + EasyMoveMargin)
break;
// This is our magical formula
s += ((max - s) * wk + var * (rk.rand<unsigned>() % wk)) / 128;
// This is our magic formula
s += ( weakness * int(RootMoves[0].score - s)
+ variance * (rk.rand<unsigned>() % weakness)) / 128;
if (s > max_s)
{
max_s = s;
*best = Rml[i].pv[0];
*ponder = Rml[i].pv[1];
*best = RootMoves[i].pv[0];
*ponder = RootMoves[i].pv[1];
}
}
}
// RootMove and RootMoveList method's definitions
void RootMoveList::init(Position& pos, Move rootMoves[]) {
Move* sm;
bestMoveChanges = 0;
clear();
// Generate all legal moves and add them to RootMoveList
for (MoveList<MV_LEGAL> ml(pos); !ml.end(); ++ml)
{
// If we have a rootMoves[] list then verify the move
// is in the list before to add it.
for (sm = rootMoves; *sm && *sm != ml.move(); sm++) {}
if (sm != rootMoves && *sm != ml.move())
continue;
RootMove rm;
rm.pv.push_back(ml.move());
rm.pv.push_back(MOVE_NONE);
rm.score = rm.prevScore = -VALUE_INFINITE;
rm.nodes = 0;
push_back(rm);
}
}
RootMove* RootMoveList::find(const Move& m, int startIndex) {
for (size_t i = startIndex; i < size(); i++)
if ((*this)[i].pv[0] == m)
return &(*this)[i];
return NULL;
}
// extract_pv_from_tt() builds a PV by adding moves from the transposition table.
// We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This
// allow to always have a ponder move even when we fail high at root and also a

View file

@ -70,7 +70,7 @@ struct SignalsType {
extern volatile SignalsType Signals;
extern LimitsType Limits;
extern std::vector<Move> RootMoves;
extern std::vector<Move> SearchMoves;
extern Position RootPosition;
extern void init();

View file

@ -443,7 +443,7 @@ void ThreadsManager::start_thinking(const Position& pos, const LimitsType& limit
// Copy input arguments to initialize the search
RootPosition.copy(pos, 0);
Limits = limits;
RootMoves = searchMoves;
SearchMoves = searchMoves;
// Reset signals before to start the new search
memset((void*)&Signals, 0, sizeof(Signals));

View file

@ -233,7 +233,6 @@ namespace {
searchMoves.push_back(move_from_uci(pos, token));
}
searchMoves.push_back(MOVE_NONE);
limits.time = time[pos.side_to_move()];
limits.increment = inc[pos.side_to_move()];