mirror of
https://github.com/sockspls/badfish
synced 2025-07-11 19:49:14 +00:00
Fix subtle race with slave allocation
When allocating a slave we set both is_searching and splitPoint under lock protection. Unfortunatly the order in which the variables are set is not defined. This article was very clarifying: http://software.intel.com/en-us/blogs/2007/11/30/volatile-almost-useless-for-multi-threaded-programming/ So when in idle loop we test for is_searching and then access splitPoint, it could happen that splitPoint is still not updated leading to a possible crash. Fix the race lock protecting splitPoint access. No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
df31398bb9
commit
51e8efdab5
3 changed files with 38 additions and 47 deletions
|
@ -1864,9 +1864,14 @@ void Thread::idle_loop(SplitPoint* sp_master) {
|
||||||
{
|
{
|
||||||
assert(!do_sleep && !do_exit);
|
assert(!do_sleep && !do_exit);
|
||||||
|
|
||||||
// Copy split point position and search stack and call search()
|
lock_grab(Threads.splitLock);
|
||||||
Stack ss[MAX_PLY_PLUS_2];
|
|
||||||
|
assert(is_searching);
|
||||||
SplitPoint* sp = splitPoint;
|
SplitPoint* sp = splitPoint;
|
||||||
|
|
||||||
|
lock_release(Threads.splitLock);
|
||||||
|
|
||||||
|
Stack ss[MAX_PLY_PLUS_2];
|
||||||
Position pos(*sp->pos, threadID);
|
Position pos(*sp->pos, threadID);
|
||||||
|
|
||||||
memcpy(ss, sp->ss - 1, 4 * sizeof(Stack));
|
memcpy(ss, sp->ss - 1, 4 * sizeof(Stack));
|
||||||
|
@ -1885,12 +1890,9 @@ void Thread::idle_loop(SplitPoint* sp_master) {
|
||||||
|
|
||||||
assert(is_searching);
|
assert(is_searching);
|
||||||
|
|
||||||
// We return from search with lock held
|
is_searching = false;
|
||||||
sp->slavesMask &= ~(1ULL << threadID);
|
sp->slavesMask &= ~(1ULL << threadID);
|
||||||
sp->nodes += pos.nodes_searched();
|
sp->nodes += pos.nodes_searched();
|
||||||
lock_release(sp->lock);
|
|
||||||
|
|
||||||
is_searching = false;
|
|
||||||
|
|
||||||
// Wake up master thread so to allow it to return from the idle loop in
|
// Wake up master thread so to allow it to return from the idle loop in
|
||||||
// case we are the last slave of the split point.
|
// case we are the last slave of the split point.
|
||||||
|
@ -1898,8 +1900,16 @@ void Thread::idle_loop(SplitPoint* sp_master) {
|
||||||
&& threadID != sp->master
|
&& threadID != sp->master
|
||||||
&& !Threads[sp->master].is_searching)
|
&& !Threads[sp->master].is_searching)
|
||||||
Threads[sp->master].wake_up();
|
Threads[sp->master].wake_up();
|
||||||
|
|
||||||
|
// After releasing the lock we cannot access anymore any SplitPoint
|
||||||
|
// related data in a reliably way becuase it could have been released
|
||||||
|
// under our feet by the sp master.
|
||||||
|
lock_release(sp->lock);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
// In helpful master concept a master can help only a sub-tree of its split
|
||||||
|
// point, and because here is all finished is not possible master is booked.
|
||||||
|
assert(!is_searching);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -101,10 +101,7 @@ bool Thread::is_available_to(int master) const {
|
||||||
|
|
||||||
// No active split points means that the thread is available as a slave for any
|
// No active split points means that the thread is available as a slave for any
|
||||||
// other thread otherwise apply the "helpful master" concept if possible.
|
// other thread otherwise apply the "helpful master" concept if possible.
|
||||||
if (!sp_count || (splitPoints[sp_count - 1].slavesMask & (1ULL << master)))
|
return !sp_count || (splitPoints[sp_count - 1].slavesMask & (1ULL << master));
|
||||||
return true;
|
|
||||||
|
|
||||||
return false;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -151,11 +148,9 @@ void ThreadsManager::set_size(int cnt) {
|
||||||
|
|
||||||
void ThreadsManager::init() {
|
void ThreadsManager::init() {
|
||||||
|
|
||||||
// Initialize sleep condition and lock used by thread manager
|
|
||||||
cond_init(sleepCond);
|
cond_init(sleepCond);
|
||||||
lock_init(threadsLock);
|
lock_init(splitLock);
|
||||||
|
|
||||||
// Initialize thread's sleep conditions and split point locks
|
|
||||||
for (int i = 0; i <= MAX_THREADS; i++)
|
for (int i = 0; i <= MAX_THREADS; i++)
|
||||||
{
|
{
|
||||||
lock_init(threads[i].sleepLock);
|
lock_init(threads[i].sleepLock);
|
||||||
|
@ -198,7 +193,6 @@ void ThreadsManager::exit() {
|
||||||
|
|
||||||
thread_join(threads[i].handle); // Wait for thread termination
|
thread_join(threads[i].handle); // Wait for thread termination
|
||||||
|
|
||||||
// Now we can safely destroy associated locks and wait conditions
|
|
||||||
lock_destroy(threads[i].sleepLock);
|
lock_destroy(threads[i].sleepLock);
|
||||||
cond_destroy(threads[i].sleepCond);
|
cond_destroy(threads[i].sleepCond);
|
||||||
|
|
||||||
|
@ -206,7 +200,7 @@ void ThreadsManager::exit() {
|
||||||
lock_destroy(threads[i].splitPoints[j].lock);
|
lock_destroy(threads[i].splitPoints[j].lock);
|
||||||
}
|
}
|
||||||
|
|
||||||
lock_destroy(threadsLock);
|
lock_destroy(splitLock);
|
||||||
cond_destroy(sleepCond);
|
cond_destroy(sleepCond);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -248,21 +242,19 @@ Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
|
||||||
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
|
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
|
||||||
assert(activeThreads > 1);
|
assert(activeThreads > 1);
|
||||||
|
|
||||||
int i, master = pos.thread();
|
int master = pos.thread();
|
||||||
Thread& masterThread = threads[master];
|
Thread& masterThread = threads[master];
|
||||||
|
|
||||||
// If we already have too many active split points, don't split
|
|
||||||
if (masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
if (masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||||
return bestValue;
|
return bestValue;
|
||||||
|
|
||||||
// Pick the next available split point from the split point stack
|
// Pick the next available split point from the split point stack
|
||||||
SplitPoint* sp = &masterThread.splitPoints[masterThread.activeSplitPoints];
|
SplitPoint* sp = &masterThread.splitPoints[masterThread.activeSplitPoints];
|
||||||
|
|
||||||
// Initialize the split point
|
|
||||||
sp->parent = masterThread.splitPoint;
|
sp->parent = masterThread.splitPoint;
|
||||||
sp->master = master;
|
sp->master = master;
|
||||||
sp->is_betaCutoff = false;
|
sp->is_betaCutoff = false;
|
||||||
sp->slavesMask = (1ULL << master);
|
sp->slavesMask = 1ULL << master;
|
||||||
sp->depth = depth;
|
sp->depth = depth;
|
||||||
sp->threatMove = threatMove;
|
sp->threatMove = threatMove;
|
||||||
sp->alpha = alpha;
|
sp->alpha = alpha;
|
||||||
|
@ -275,68 +267,57 @@ Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
|
||||||
sp->nodes = 0;
|
sp->nodes = 0;
|
||||||
sp->ss = ss;
|
sp->ss = ss;
|
||||||
|
|
||||||
// If we are here it means we are not available
|
|
||||||
assert(masterThread.is_searching);
|
assert(masterThread.is_searching);
|
||||||
|
|
||||||
int workersCnt = 1; // At least the master is included
|
int slavesCnt = 0;
|
||||||
|
|
||||||
// Try to allocate available threads and ask them to start searching setting
|
// Try to allocate available threads and ask them to start searching setting
|
||||||
// is_searching flag. This must be done under lock protection to avoid concurrent
|
// is_searching flag. This must be done under lock protection to avoid concurrent
|
||||||
// allocation of the same slave by another master.
|
// allocation of the same slave by another master.
|
||||||
lock_grab(threadsLock);
|
lock_grab(splitLock);
|
||||||
lock_grab(sp->lock); // To protect sp->slaves_mask
|
lock_grab(sp->lock); // To protect sp->slaves_mask
|
||||||
|
|
||||||
for (i = 0; !Fake && i < activeThreads; i++)
|
for (int i = 0; i < activeThreads && !Fake; i++)
|
||||||
if (threads[i].is_available_to(master))
|
if (threads[i].is_available_to(master))
|
||||||
{
|
{
|
||||||
sp->slavesMask |= (1ULL << i);
|
sp->slavesMask |= 1ULL << i;
|
||||||
threads[i].splitPoint = sp;
|
threads[i].splitPoint = sp;
|
||||||
|
threads[i].is_searching = true; // Slave leaves idle_loop()
|
||||||
// Allocate the slave and make it exit from idle_loop()
|
|
||||||
threads[i].is_searching = true;
|
|
||||||
|
|
||||||
if (useSleepingThreads)
|
if (useSleepingThreads)
|
||||||
threads[i].wake_up();
|
threads[i].wake_up();
|
||||||
|
|
||||||
if (++workersCnt >= maxThreadsPerSplitPoint)
|
if (++slavesCnt + 1 >= maxThreadsPerSplitPoint) // Master is always included
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
lock_release(sp->lock);
|
|
||||||
lock_release(threadsLock);
|
|
||||||
|
|
||||||
// We failed to allocate even one slave, return
|
|
||||||
if (!Fake && workersCnt == 1)
|
|
||||||
return bestValue;
|
|
||||||
|
|
||||||
masterThread.splitPoint = sp;
|
masterThread.splitPoint = sp;
|
||||||
masterThread.activeSplitPoints++;
|
masterThread.activeSplitPoints++;
|
||||||
|
|
||||||
|
lock_release(sp->lock);
|
||||||
|
lock_release(splitLock);
|
||||||
|
|
||||||
// Everything is set up. The master thread enters the idle loop, from which
|
// Everything is set up. The master thread enters the idle loop, from which
|
||||||
// it will instantly launch a search, because its is_searching flag is set.
|
// it will instantly launch a search, because its is_searching flag is set.
|
||||||
// We pass the split point as a parameter to the idle loop, which means that
|
// We pass the split point as a parameter to the idle loop, which means that
|
||||||
// the thread will return from the idle loop when all slaves have finished
|
// the thread will return from the idle loop when all slaves have finished
|
||||||
// their work at this split point.
|
// their work at this split point.
|
||||||
masterThread.idle_loop(sp);
|
if (slavesCnt || Fake)
|
||||||
|
masterThread.idle_loop(sp);
|
||||||
// In helpful master concept a master can help only a sub-tree of its split
|
|
||||||
// point, and because here is all finished is not possible master is booked.
|
|
||||||
assert(!masterThread.is_searching);
|
|
||||||
|
|
||||||
// We have returned from the idle loop, which means that all threads are
|
// We have returned from the idle loop, which means that all threads are
|
||||||
// finished. Note that changing state and decreasing activeSplitPoints is done
|
// finished. Note that setting is_searching and decreasing activeSplitPoints is
|
||||||
// under lock protection to avoid a race with Thread::is_available_to().
|
// done under lock protection to avoid a race with Thread::is_available_to().
|
||||||
lock_grab(threadsLock);
|
lock_grab(splitLock);
|
||||||
lock_grab(sp->lock); // To protect sp->nodes
|
lock_grab(sp->lock); // To protect sp->nodes
|
||||||
|
|
||||||
|
|
||||||
masterThread.is_searching = true;
|
masterThread.is_searching = true;
|
||||||
masterThread.activeSplitPoints--;
|
masterThread.activeSplitPoints--;
|
||||||
masterThread.splitPoint = sp->parent;
|
masterThread.splitPoint = sp->parent;
|
||||||
pos.set_nodes_searched(pos.nodes_searched() + sp->nodes);
|
pos.set_nodes_searched(pos.nodes_searched() + sp->nodes);
|
||||||
|
|
||||||
lock_release(sp->lock);
|
lock_release(sp->lock);
|
||||||
lock_release(threadsLock);
|
lock_release(splitLock);
|
||||||
|
|
||||||
return sp->bestValue;
|
return sp->bestValue;
|
||||||
}
|
}
|
||||||
|
|
|
@ -123,12 +123,12 @@ private:
|
||||||
friend struct Thread;
|
friend struct Thread;
|
||||||
|
|
||||||
Thread threads[MAX_THREADS + 1]; // Last one is used as a timer
|
Thread threads[MAX_THREADS + 1]; // Last one is used as a timer
|
||||||
Lock threadsLock;
|
Lock splitLock;
|
||||||
|
WaitCondition sleepCond;
|
||||||
Depth minimumSplitDepth;
|
Depth minimumSplitDepth;
|
||||||
int maxThreadsPerSplitPoint;
|
int maxThreadsPerSplitPoint;
|
||||||
int activeThreads;
|
int activeThreads;
|
||||||
bool useSleepingThreads;
|
bool useSleepingThreads;
|
||||||
WaitCondition sleepCond;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
extern ThreadsManager Threads;
|
extern ThreadsManager Threads;
|
||||||
|
|
Loading…
Add table
Reference in a new issue