1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00

Dual NNUE with L1-128 smallnet

Credit goes to @mstembera for:
- writing the code enabling dual NNUE:
  https://github.com/official-stockfish/Stockfish/pull/4898
- the idea of trying L1-128 trained exclusively on high simple eval
  positions

The L1-128 smallnet is:
- epoch 399 of a single-stage training from scratch
- trained only on positions from filtered data with high material
  difference
  - defined by abs(simple_eval) > 1000

```yaml
experiment-name: 128--S1-only-hse-v2

training-dataset:
  - /data/hse/S3/dfrc99-16tb7p-eval-filt-v2.min.high-simple-eval-1k.binpack
  - /data/hse/S3/leela96-filt-v2.min.high-simple-eval-1k.binpack
  - /data/hse/S3/test80-apr2022-16tb7p.min.high-simple-eval-1k.binpack

  - /data/hse/S7/test60-2020-2tb7p.v6-3072.high-simple-eval-1k.binpack
  - /data/hse/S7/test60-novdec2021-12tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack

  - /data/hse/S7/test77-nov2021-2tb7p.v6-3072.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test77-dec2021-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test77-jan2022-2tb7p.high-simple-eval-1k.binpack

  - /data/hse/S7/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test78-juntosep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack

  - /data/hse/S7/test79-apr2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test79-may2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack

  # T80 2022
  - /data/hse/S7/test80-may2022-16tb7p.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-jul2022-16tb7p.v6-dd.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-aug2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-sep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-oct2022-16tb7p.v6-dd.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-nov2022-16tb7p-v6-dd.min.high-simple-eval-1k.binpack

  # T80 2023
  - /data/hse/S7/test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.unmin.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-mar2023-2tb7p.v6-sk16.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-apr2023-2tb7p-filter-v6-sk16.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-may2023-2tb7p.v6.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-jun2023-2tb7p.v6-3072.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-jul2023-2tb7p.v6-3072.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-aug2023-2tb7p.v6.min.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-sep2023-2tb7p.high-simple-eval-1k.binpack
  - /data/hse/S7/test80-oct2023-2tb7p.high-simple-eval-1k.binpack

start-from-engine-test-net: False

nnue-pytorch-branch: linrock/nnue-pytorch/L1-128
engine-test-branch: linrock/Stockfish/L1-128-nolazy
engine-base-branch: linrock/Stockfish/L1-128

num-epochs: 500
lambda: 1.0
```

Experiment yaml configs converted to easy_train.sh commands with:
https://github.com/linrock/nnue-tools/blob/4339954/yaml_easy_train.py

Binpacks interleaved at training time with:
https://github.com/official-stockfish/nnue-pytorch/pull/259

Data filtered for high simple eval positions with:
https://github.com/linrock/nnue-data/blob/32d6a68/filter_high_simple_eval_plain.py
https://github.com/linrock/Stockfish/blob/61dbfe/src/tools/transform.cpp#L626-L655

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move of
L1-128 smallnet (nnue-only eval) vs. L1-128 trained on standard S1 data:
nn-epoch399.nnue : -318.1 +/- 2.1

Passed STC:
https://tests.stockfishchess.org/tests/view/6574cb9d95ea6ba1fcd49e3b
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 62432 W: 15875 L: 15521 D: 31036
Ptnml(0-2): 177, 7331, 15872, 7633, 203

Passed LTC:
https://tests.stockfishchess.org/tests/view/6575da2d4d789acf40aaac6e
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 64830 W: 16118 L: 15738 D: 32974
Ptnml(0-2): 43, 7129, 17697, 7497, 49

closes https://github.com/official-stockfish/Stockfish/pulls

Bench: 1330050

Co-Authored-By: mstembera <5421953+mstembera@users.noreply.github.com>
This commit is contained in:
Linmiao Xu 2023-12-02 17:50:32 -08:00 committed by Disservin
parent a5a76a6370
commit 584d9efedc
12 changed files with 293 additions and 194 deletions

View file

@ -806,7 +806,7 @@ help:
@echo "help > Display architecture details"
@echo "profile-build > standard build with profile-guided optimization"
@echo "build > skip profile-guided optimization"
@echo "net > Download the default nnue net"
@echo "net > Download the default nnue nets"
@echo "strip > Strip executable"
@echo "install > Install executable"
@echo "clean > Clean up"
@ -922,16 +922,7 @@ profileclean:
@rm -f stockfish.res
@rm -f ./-lstdc++.res
# set up shell variables for the net stuff
netvariables:
$(eval nnuenet := $(shell grep EvalFileDefaultName evaluate.h | grep define | sed 's/.*\(nn-[a-z0-9]\{12\}.nnue\).*/\1/'))
$(eval nnuedownloadurl1 := https://tests.stockfishchess.org/api/nn/$(nnuenet))
$(eval nnuedownloadurl2 := https://github.com/official-stockfish/networks/raw/master/$(nnuenet))
$(eval curl_or_wget := $(shell if hash curl 2>/dev/null; then echo "curl -skL"; elif hash wget 2>/dev/null; then echo "wget -qO-"; fi))
$(eval shasum_command := $(shell if hash shasum 2>/dev/null; then echo "shasum -a 256 "; elif hash sha256sum 2>/dev/null; then echo "sha256sum "; fi))
# evaluation network (nnue)
net: netvariables
define fetch_network
@echo "Default net: $(nnuenet)"
@if [ "x$(curl_or_wget)" = "x" ]; then \
echo "Neither curl nor wget is installed. Install one of these tools unless the net has been downloaded manually"; \
@ -966,7 +957,24 @@ net: netvariables
if [ "$(nnuenet)" = "nn-"`$(shasum_command) $(nnuenet) | cut -c1-12`".nnue" ]; then \
echo "Network validated"; break; \
fi; \
fi; \
fi;
endef
# set up shell variables for the net stuff
define netvariables
$(eval nnuenet := $(shell grep $(1) evaluate.h | grep define | sed 's/.*\(nn-[a-z0-9]\{12\}.nnue\).*/\1/'))
$(eval nnuedownloadurl1 := https://tests.stockfishchess.org/api/nn/$(nnuenet))
$(eval nnuedownloadurl2 := https://github.com/official-stockfish/networks/raw/master/$(nnuenet))
$(eval curl_or_wget := $(shell if hash curl 2>/dev/null; then echo "curl -skL"; elif hash wget 2>/dev/null; then echo "wget -qO-"; fi))
$(eval shasum_command := $(shell if hash shasum 2>/dev/null; then echo "shasum -a 256 "; elif hash sha256sum 2>/dev/null; then echo "sha256sum "; fi))
endef
# evaluation network (nnue)
net:
$(call netvariables, EvalFileDefaultNameBig)
$(call fetch_network)
$(call netvariables, EvalFileDefaultNameSmall)
$(call fetch_network)
format:
$(CLANG-FORMAT) -i $(SRCS) $(HEADERS) -style=file

View file

@ -23,6 +23,7 @@
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <initializer_list>
#include <iomanip>
#include <iostream>
#include <sstream>
@ -31,6 +32,7 @@
#include "incbin/incbin.h"
#include "misc.h"
#include "nnue/evaluate_nnue.h"
#include "nnue/nnue_architecture.h"
#include "position.h"
#include "thread.h"
#include "types.h"
@ -44,11 +46,15 @@
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
// Note that this does not work in Microsoft Visual Studio.
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
INCBIN(EmbeddedNNUE, EvalFileDefaultName);
INCBIN(EmbeddedNNUEBig, EvalFileDefaultNameBig);
INCBIN(EmbeddedNNUESmall, EvalFileDefaultNameSmall);
#else
const unsigned char gEmbeddedNNUEData[1] = {0x0};
const unsigned char* const gEmbeddedNNUEEnd = &gEmbeddedNNUEData[1];
const unsigned int gEmbeddedNNUESize = 1;
const unsigned char gEmbeddedNNUEBigData[1] = {0x0};
const unsigned char* const gEmbeddedNNUEBigEnd = &gEmbeddedNNUEBigData[1];
const unsigned int gEmbeddedNNUEBigSize = 1;
const unsigned char gEmbeddedNNUESmallData[1] = {0x0};
const unsigned char* const gEmbeddedNNUESmallEnd = &gEmbeddedNNUESmallData[1];
const unsigned int gEmbeddedNNUESmallSize = 1;
#endif
@ -56,7 +62,9 @@ namespace Stockfish {
namespace Eval {
std::string currentEvalFileName = "None";
std::string currentEvalFileName[2] = {"None", "None"};
const std::string EvFiles[2] = {"EvalFile", "EvalFileSmall"};
const std::string EvFileNames[2] = {EvalFileDefaultNameBig, EvalFileDefaultNameSmall};
// Tries to load a NNUE network at startup time, or when the engine
// receives a UCI command "setoption name EvalFile value nn-[a-z0-9]{12}.nnue"
@ -67,84 +75,96 @@ std::string currentEvalFileName = "None";
// variable to have the engine search in a special directory in their distro.
void NNUE::init() {
std::string eval_file = std::string(Options["EvalFile"]);
if (eval_file.empty())
eval_file = EvalFileDefaultName;
for (NetSize netSize : {Big, Small})
{
// change after fishtest supports EvalFileSmall
std::string eval_file =
std::string(netSize == Small ? EvalFileDefaultNameSmall : Options[EvFiles[netSize]]);
if (eval_file.empty())
eval_file = EvFileNames[netSize];
#if defined(DEFAULT_NNUE_DIRECTORY)
std::vector<std::string> dirs = {"<internal>", "", CommandLine::binaryDirectory,
stringify(DEFAULT_NNUE_DIRECTORY)};
std::vector<std::string> dirs = {"<internal>", "", CommandLine::binaryDirectory,
stringify(DEFAULT_NNUE_DIRECTORY)};
#else
std::vector<std::string> dirs = {"<internal>", "", CommandLine::binaryDirectory};
std::vector<std::string> dirs = {"<internal>", "", CommandLine::binaryDirectory};
#endif
for (const std::string& directory : dirs)
if (currentEvalFileName != eval_file)
for (const std::string& directory : dirs)
{
if (directory != "<internal>")
if (currentEvalFileName[netSize] != eval_file)
{
std::ifstream stream(directory + eval_file, std::ios::binary);
if (NNUE::load_eval(eval_file, stream))
currentEvalFileName = eval_file;
}
if (directory != "<internal>")
{
std::ifstream stream(directory + eval_file, std::ios::binary);
if (NNUE::load_eval(eval_file, stream, netSize))
currentEvalFileName[netSize] = eval_file;
}
if (directory == "<internal>" && eval_file == EvalFileDefaultName)
{
// C++ way to prepare a buffer for a memory stream
class MemoryBuffer: public std::basic_streambuf<char> {
public:
MemoryBuffer(char* p, size_t n) {
setg(p, p, p + n);
setp(p, p + n);
}
};
if (directory == "<internal>" && eval_file == EvFileNames[netSize])
{
// C++ way to prepare a buffer for a memory stream
class MemoryBuffer: public std::basic_streambuf<char> {
public:
MemoryBuffer(char* p, size_t n) {
setg(p, p, p + n);
setp(p, p + n);
}
};
MemoryBuffer buffer(
const_cast<char*>(reinterpret_cast<const char*>(gEmbeddedNNUEData)),
size_t(gEmbeddedNNUESize));
(void) gEmbeddedNNUEEnd; // Silence warning on unused variable
MemoryBuffer buffer(
const_cast<char*>(reinterpret_cast<const char*>(
netSize == Small ? gEmbeddedNNUESmallData : gEmbeddedNNUEBigData)),
size_t(netSize == Small ? gEmbeddedNNUESmallSize : gEmbeddedNNUEBigSize));
(void) gEmbeddedNNUEBigEnd; // Silence warning on unused variable
(void) gEmbeddedNNUESmallEnd;
std::istream stream(&buffer);
if (NNUE::load_eval(eval_file, stream))
currentEvalFileName = eval_file;
std::istream stream(&buffer);
if (NNUE::load_eval(eval_file, stream, netSize))
currentEvalFileName[netSize] = eval_file;
}
}
}
}
}
// Verifies that the last net used was loaded successfully
void NNUE::verify() {
std::string eval_file = std::string(Options["EvalFile"]);
if (eval_file.empty())
eval_file = EvalFileDefaultName;
if (currentEvalFileName != eval_file)
for (NetSize netSize : {Big, Small})
{
// change after fishtest supports EvalFileSmall
std::string eval_file =
std::string(netSize == Small ? EvalFileDefaultNameSmall : Options[EvFiles[netSize]]);
if (eval_file.empty())
eval_file = EvFileNames[netSize];
std::string msg1 =
"Network evaluation parameters compatible with the engine must be available.";
std::string msg2 = "The network file " + eval_file + " was not loaded successfully.";
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
"including the directory name, to the network file.";
std::string msg4 = "The default net can be downloaded from: "
"https://tests.stockfishchess.org/api/nn/"
+ std::string(EvalFileDefaultName);
std::string msg5 = "The engine will be terminated now.";
if (currentEvalFileName[netSize] != eval_file)
{
std::string msg1 =
"Network evaluation parameters compatible with the engine must be available.";
std::string msg2 = "The network file " + eval_file + " was not loaded successfully.";
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
"including the directory name, to the network file.";
std::string msg4 = "The default net can be downloaded from: "
"https://tests.stockfishchess.org/api/nn/"
+ std::string(EvFileNames[netSize]);
std::string msg5 = "The engine will be terminated now.";
sync_cout << "info string ERROR: " << msg1 << sync_endl;
sync_cout << "info string ERROR: " << msg2 << sync_endl;
sync_cout << "info string ERROR: " << msg3 << sync_endl;
sync_cout << "info string ERROR: " << msg4 << sync_endl;
sync_cout << "info string ERROR: " << msg5 << sync_endl;
sync_cout << "info string ERROR: " << msg1 << sync_endl;
sync_cout << "info string ERROR: " << msg2 << sync_endl;
sync_cout << "info string ERROR: " << msg3 << sync_endl;
sync_cout << "info string ERROR: " << msg4 << sync_endl;
sync_cout << "info string ERROR: " << msg5 << sync_endl;
exit(EXIT_FAILURE);
exit(EXIT_FAILURE);
}
sync_cout << "info string NNUE evaluation using " << eval_file << sync_endl;
}
sync_cout << "info string NNUE evaluation using " << eval_file << sync_endl;
}
}
// Returns a static, purely materialistic evaluation of the position from
// the point of view of the given color. It can be divided by PawnValue to get
// an approximation of the material advantage on the board in terms of pawns.
@ -163,18 +183,19 @@ Value Eval::evaluate(const Position& pos) {
int v;
Color stm = pos.side_to_move();
int shuffling = pos.rule50_count();
int simpleEval = simple_eval(pos, stm) + (int(pos.key() & 7) - 3);
bool lazy = std::abs(simpleEval) >= RookValue + KnightValue + 16 * shuffling * shuffling
+ std::abs(pos.this_thread()->bestValue)
+ std::abs(pos.this_thread()->rootSimpleEval);
int simpleEval = simple_eval(pos, stm);
bool lazy = std::abs(simpleEval) > 2300;
if (lazy)
v = simpleEval;
else
{
int nnueComplexity;
Value nnue = NNUE::evaluate(pos, true, &nnueComplexity);
bool smallNet = std::abs(simpleEval) > 1100;
int nnueComplexity;
Value nnue = smallNet ? NNUE::evaluate<NNUE::Small>(pos, true, &nnueComplexity)
: NNUE::evaluate<NNUE::Big>(pos, true, &nnueComplexity);
int optimism = pos.this_thread()->optimism[stm];
@ -217,7 +238,7 @@ std::string Eval::trace(Position& pos) {
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
Value v;
v = NNUE::evaluate(pos, false);
v = NNUE::evaluate<NNUE::Big>(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "NNUE evaluation " << 0.01 * UCI::to_cp(v) << " (white side)\n";

View file

@ -34,12 +34,13 @@ std::string trace(Position& pos);
int simple_eval(const Position& pos, Color c);
Value evaluate(const Position& pos);
extern std::string currentEvalFileName;
extern std::string currentEvalFileName[2];
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-b1e55edbea57.nnue"
#define EvalFileDefaultNameBig "nn-b1e55edbea57.nnue"
#define EvalFileDefaultNameSmall "nn-c01dc0ffeede.nnue"
namespace NNUE {

View file

@ -40,14 +40,18 @@
namespace Stockfish::Eval::NNUE {
// Input feature converter
LargePagePtr<FeatureTransformer> featureTransformer;
LargePagePtr<FeatureTransformer<TransformedFeatureDimensionsBig, &StateInfo::accumulatorBig>>
featureTransformerBig;
LargePagePtr<FeatureTransformer<TransformedFeatureDimensionsSmall, &StateInfo::accumulatorSmall>>
featureTransformerSmall;
// Evaluation function
AlignedPtr<Network> network[LayerStacks];
AlignedPtr<Network<TransformedFeatureDimensionsBig, L2Big, L3Big>> networkBig[LayerStacks];
AlignedPtr<Network<TransformedFeatureDimensionsSmall, L2Small, L3Small>> networkSmall[LayerStacks];
// Evaluation function file name
std::string fileName;
std::string netDescription;
// Evaluation function file names
std::string fileName[2];
std::string netDescription[2];
namespace Detail {
@ -91,11 +95,20 @@ bool write_parameters(std::ostream& stream, const T& reference) {
// Initialize the evaluation function parameters
static void initialize() {
static void initialize(NetSize netSize) {
Detail::initialize(featureTransformer);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(network[i]);
if (netSize == Small)
{
Detail::initialize(featureTransformerSmall);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(networkSmall[i]);
}
else
{
Detail::initialize(featureTransformerBig);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(networkBig[i]);
}
}
// Read network header
@ -122,39 +135,57 @@ static bool write_header(std::ostream& stream, std::uint32_t hashValue, const st
}
// Read network parameters
static bool read_parameters(std::istream& stream) {
static bool read_parameters(std::istream& stream, NetSize netSize) {
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription))
if (!read_header(stream, &hashValue, &netDescription[netSize]))
return false;
if (hashValue != HashValue)
if (hashValue != HashValue[netSize])
return false;
if (!Detail::read_parameters(stream, *featureTransformer))
if (netSize == Big && !Detail::read_parameters(stream, *featureTransformerBig))
return false;
if (netSize == Small && !Detail::read_parameters(stream, *featureTransformerSmall))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::read_parameters(stream, *(network[i])))
{
if (netSize == Big && !Detail::read_parameters(stream, *(networkBig[i])))
return false;
if (netSize == Small && !Detail::read_parameters(stream, *(networkSmall[i])))
return false;
}
return stream && stream.peek() == std::ios::traits_type::eof();
}
// Write network parameters
static bool write_parameters(std::ostream& stream) {
static bool write_parameters(std::ostream& stream, NetSize netSize) {
if (!write_header(stream, HashValue, netDescription))
if (!write_header(stream, HashValue[netSize], netDescription[netSize]))
return false;
if (!Detail::write_parameters(stream, *featureTransformer))
if (netSize == Big && !Detail::write_parameters(stream, *featureTransformerBig))
return false;
if (netSize == Small && !Detail::write_parameters(stream, *featureTransformerSmall))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::write_parameters(stream, *(network[i])))
{
if (netSize == Big && !Detail::write_parameters(stream, *(networkBig[i])))
return false;
if (netSize == Small && !Detail::write_parameters(stream, *(networkSmall[i])))
return false;
}
return bool(stream);
}
void hint_common_parent_position(const Position& pos) {
featureTransformer->hint_common_access(pos);
int simpleEval = simple_eval(pos, pos.side_to_move());
if (abs(simpleEval) > 1100)
featureTransformerSmall->hint_common_access(pos);
else
featureTransformerBig->hint_common_access(pos);
}
// Evaluation function. Perform differential calculation.
template<NetSize Net_Size>
Value evaluate(const Position& pos, bool adjusted, int* complexity) {
// We manually align the arrays on the stack because with gcc < 9.3
@ -165,19 +196,28 @@ Value evaluate(const Position& pos, bool adjusted, int* complexity) {
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
transformedFeaturesUnaligned[FeatureTransformer < Small ? TransformedFeatureDimensionsSmall
: TransformedFeatureDimensionsBig,
nullptr
> ::BufferSize + alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
alignas(alignment) TransformedFeatureType
transformedFeatures[FeatureTransformer < Net_Size == Small ? TransformedFeatureDimensionsSmall
: TransformedFeatureDimensionsBig,
nullptr > ::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
const auto psqt = Net_Size == Small
? featureTransformerSmall->transform(pos, transformedFeatures, bucket)
: featureTransformerBig->transform(pos, transformedFeatures, bucket);
const auto positional = Net_Size == Small ? networkSmall[bucket]->propagate(transformedFeatures)
: networkBig[bucket]->propagate(transformedFeatures);
if (complexity)
*complexity = std::abs(psqt - positional) / OutputScale;
@ -190,6 +230,9 @@ Value evaluate(const Position& pos, bool adjusted, int* complexity) {
return static_cast<Value>((psqt + positional) / OutputScale);
}
template Value evaluate<Big>(const Position& pos, bool adjusted, int* complexity);
template Value evaluate<Small>(const Position& pos, bool adjusted, int* complexity);
struct NnueEvalTrace {
static_assert(LayerStacks == PSQTBuckets);
@ -205,13 +248,14 @@ static NnueEvalTrace trace_evaluate(const Position& pos) {
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer<TransformedFeatureDimensionsBig, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
alignas(alignment) TransformedFeatureType
transformedFeatures[FeatureTransformer<TransformedFeatureDimensionsBig, nullptr>::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
@ -220,8 +264,8 @@ static NnueEvalTrace trace_evaluate(const Position& pos) {
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
{
const auto materialist = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);
const auto materialist = featureTransformerBig->transform(pos, transformedFeatures, bucket);
const auto positional = networkBig[bucket]->propagate(transformedFeatures);
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
@ -310,7 +354,7 @@ std::string trace(Position& pos) {
// We estimate the value of each piece by doing a differential evaluation from
// the current base eval, simulating the removal of the piece from its square.
Value base = evaluate(pos);
Value base = evaluate<NNUE::Big>(pos);
base = pos.side_to_move() == WHITE ? base : -base;
for (File f = FILE_A; f <= FILE_H; ++f)
@ -325,16 +369,16 @@ std::string trace(Position& pos) {
auto st = pos.state();
pos.remove_piece(sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
st->accumulatorBig.computed[WHITE] = false;
st->accumulatorBig.computed[BLACK] = false;
Value eval = evaluate(pos);
Value eval = evaluate<NNUE::Big>(pos);
eval = pos.side_to_move() == WHITE ? eval : -eval;
v = base - eval;
pos.put_piece(pc, sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
st->accumulatorBig.computed[WHITE] = false;
st->accumulatorBig.computed[BLACK] = false;
}
writeSquare(f, r, pc, v);
@ -379,24 +423,24 @@ std::string trace(Position& pos) {
// Load eval, from a file stream or a memory stream
bool load_eval(std::string name, std::istream& stream) {
bool load_eval(const std::string name, std::istream& stream, NetSize netSize) {
initialize();
fileName = name;
return read_parameters(stream);
initialize(netSize);
fileName[netSize] = name;
return read_parameters(stream, netSize);
}
// Save eval, to a file stream or a memory stream
bool save_eval(std::ostream& stream) {
bool save_eval(std::ostream& stream, NetSize netSize) {
if (fileName.empty())
if (fileName[netSize].empty())
return false;
return write_parameters(stream);
return write_parameters(stream, netSize);
}
// Save eval, to a file given by its name
bool save_eval(const std::optional<std::string>& filename) {
bool save_eval(const std::optional<std::string>& filename, NetSize netSize) {
std::string actualFilename;
std::string msg;
@ -405,7 +449,8 @@ bool save_eval(const std::optional<std::string>& filename) {
actualFilename = filename.value();
else
{
if (currentEvalFileName != EvalFileDefaultName)
if (currentEvalFileName[netSize]
!= (netSize == Small ? EvalFileDefaultNameSmall : EvalFileDefaultNameBig))
{
msg = "Failed to export a net. "
"A non-embedded net can only be saved if the filename is specified";
@ -413,11 +458,11 @@ bool save_eval(const std::optional<std::string>& filename) {
sync_cout << msg << sync_endl;
return false;
}
actualFilename = EvalFileDefaultName;
actualFilename = (netSize == Small ? EvalFileDefaultNameSmall : EvalFileDefaultNameBig);
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save_eval(stream);
bool saved = save_eval(stream, netSize);
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";

View file

@ -39,9 +39,11 @@ class Position;
namespace Stockfish::Eval::NNUE {
// Hash value of evaluation function structure
constexpr std::uint32_t HashValue =
FeatureTransformer::get_hash_value() ^ Network::get_hash_value();
constexpr std::uint32_t HashValue[2] = {
FeatureTransformer<TransformedFeatureDimensionsBig, nullptr>::get_hash_value()
^ Network<TransformedFeatureDimensionsBig, L2Big, L3Big>::get_hash_value(),
FeatureTransformer<TransformedFeatureDimensionsSmall, nullptr>::get_hash_value()
^ Network<TransformedFeatureDimensionsSmall, L2Small, L3Small>::get_hash_value()};
// Deleter for automating release of memory area
template<typename T>
@ -67,12 +69,13 @@ template<typename T>
using LargePagePtr = std::unique_ptr<T, LargePageDeleter<T>>;
std::string trace(Position& pos);
Value evaluate(const Position& pos, bool adjusted = false, int* complexity = nullptr);
void hint_common_parent_position(const Position& pos);
template<NetSize Net_Size>
Value evaluate(const Position& pos, bool adjusted = false, int* complexity = nullptr);
void hint_common_parent_position(const Position& pos);
bool load_eval(std::string name, std::istream& stream);
bool save_eval(std::ostream& stream);
bool save_eval(const std::optional<std::string>& filename);
bool load_eval(const std::string name, std::istream& stream, NetSize netSize);
bool save_eval(std::ostream& stream, NetSize netSize);
bool save_eval(const std::optional<std::string>& filename, NetSize netSize);
} // namespace Stockfish::Eval::NNUE

View file

@ -29,8 +29,9 @@
namespace Stockfish::Eval::NNUE {
// Class that holds the result of affine transformation of input features
template<IndexType Size>
struct alignas(CacheLineSize) Accumulator {
std::int16_t accumulation[2][TransformedFeatureDimensions];
std::int16_t accumulation[2][Size];
std::int32_t psqtAccumulation[2][PSQTBuckets];
bool computed[2];
};

View file

@ -37,14 +37,28 @@ namespace Stockfish::Eval::NNUE {
// Input features used in evaluation function
using FeatureSet = Features::HalfKAv2_hm;
// Number of input feature dimensions after conversion
constexpr IndexType TransformedFeatureDimensions = 2560;
constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;
enum NetSize {
Big,
Small
};
// Number of input feature dimensions after conversion
constexpr IndexType TransformedFeatureDimensionsBig = 2560;
constexpr int L2Big = 15;
constexpr int L3Big = 32;
constexpr IndexType TransformedFeatureDimensionsSmall = 128;
constexpr int L2Small = 15;
constexpr int L3Small = 32;
constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;
template<IndexType L1, int L2, int L3>
struct Network {
static constexpr int FC_0_OUTPUTS = 15;
static constexpr int FC_1_OUTPUTS = 32;
static constexpr IndexType TransformedFeatureDimensions = L1;
static constexpr int FC_0_OUTPUTS = L2;
static constexpr int FC_1_OUTPUTS = L3;
Layers::AffineTransformSparseInput<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
Layers::SqrClippedReLU<FC_0_OUTPUTS + 1> ac_sqr_0;
@ -84,13 +98,13 @@ struct Network {
std::int32_t propagate(const TransformedFeatureType* transformedFeatures) {
struct alignas(CacheLineSize) Buffer {
alignas(CacheLineSize) decltype(fc_0)::OutputBuffer fc_0_out;
alignas(CacheLineSize) decltype(ac_sqr_0)::OutputType
alignas(CacheLineSize) typename decltype(fc_0)::OutputBuffer fc_0_out;
alignas(CacheLineSize) typename decltype(ac_sqr_0)::OutputType
ac_sqr_0_out[ceil_to_multiple<IndexType>(FC_0_OUTPUTS * 2, 32)];
alignas(CacheLineSize) decltype(ac_0)::OutputBuffer ac_0_out;
alignas(CacheLineSize) decltype(fc_1)::OutputBuffer fc_1_out;
alignas(CacheLineSize) decltype(ac_1)::OutputBuffer ac_1_out;
alignas(CacheLineSize) decltype(fc_2)::OutputBuffer fc_2_out;
alignas(CacheLineSize) typename decltype(ac_0)::OutputBuffer ac_0_out;
alignas(CacheLineSize) typename decltype(fc_1)::OutputBuffer fc_1_out;
alignas(CacheLineSize) typename decltype(ac_1)::OutputBuffer ac_1_out;
alignas(CacheLineSize) typename decltype(fc_2)::OutputBuffer fc_2_out;
Buffer() { std::memset(this, 0, sizeof(*this)); }
};
@ -108,7 +122,7 @@ struct Network {
ac_sqr_0.propagate(buffer.fc_0_out, buffer.ac_sqr_0_out);
ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out);
std::memcpy(buffer.ac_sqr_0_out + FC_0_OUTPUTS, buffer.ac_0_out,
FC_0_OUTPUTS * sizeof(decltype(ac_0)::OutputType));
FC_0_OUTPUTS * sizeof(typename decltype(ac_0)::OutputType));
fc_1.propagate(buffer.ac_sqr_0_out, buffer.fc_1_out);
ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out);
fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);

View file

@ -186,11 +186,6 @@ static constexpr int BestRegisterCount() {
return 1;
}
static constexpr int NumRegs =
BestRegisterCount<vec_t, WeightType, TransformedFeatureDimensions, NumRegistersSIMD>();
static constexpr int NumPsqtRegs =
BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
@ -198,6 +193,8 @@ static constexpr int NumPsqtRegs =
// Input feature converter
template<IndexType TransformedFeatureDimensions,
Accumulator<TransformedFeatureDimensions> StateInfo::*accPtr>
class FeatureTransformer {
private:
@ -205,6 +202,11 @@ class FeatureTransformer {
static constexpr IndexType HalfDimensions = TransformedFeatureDimensions;
#ifdef VECTOR
static constexpr int NumRegs =
BestRegisterCount<vec_t, WeightType, TransformedFeatureDimensions, NumRegistersSIMD>();
static constexpr int NumPsqtRegs =
BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
static constexpr IndexType TileHeight = NumRegs * sizeof(vec_t) / 2;
static constexpr IndexType PsqtTileHeight = NumPsqtRegs * sizeof(psqt_vec_t) / 4;
static_assert(HalfDimensions % TileHeight == 0, "TileHeight must divide HalfDimensions");
@ -253,8 +255,8 @@ class FeatureTransformer {
update_accumulator<BLACK>(pos);
const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()};
const auto& accumulation = pos.state()->accumulator.accumulation;
const auto& psqtAccumulation = pos.state()->accumulator.psqtAccumulation;
const auto& accumulation = (pos.state()->*accPtr).accumulation;
const auto& psqtAccumulation = (pos.state()->*accPtr).psqtAccumulation;
const auto psqt =
(psqtAccumulation[perspectives[0]][bucket] - psqtAccumulation[perspectives[1]][bucket])
@ -323,7 +325,7 @@ class FeatureTransformer {
// of the estimated gain in terms of features to be added/subtracted.
StateInfo *st = pos.state(), *next = nullptr;
int gain = FeatureSet::refresh_cost(pos);
while (st->previous && !st->accumulator.computed[Perspective])
while (st->previous && !(st->*accPtr).computed[Perspective])
{
// This governs when a full feature refresh is needed and how many
// updates are better than just one full refresh.
@ -381,7 +383,7 @@ class FeatureTransformer {
for (; i >= 0; --i)
{
states_to_update[i]->accumulator.computed[Perspective] = true;
(states_to_update[i]->*accPtr).computed[Perspective] = true;
const StateInfo* end_state = i == 0 ? computed_st : states_to_update[i - 1];
@ -402,9 +404,9 @@ class FeatureTransformer {
assert(states_to_update[0]);
auto accIn =
reinterpret_cast<const vec_t*>(&st->accumulator.accumulation[Perspective][0]);
reinterpret_cast<const vec_t*>(&(st->*accPtr).accumulation[Perspective][0]);
auto accOut = reinterpret_cast<vec_t*>(
&states_to_update[0]->accumulator.accumulation[Perspective][0]);
&(states_to_update[0]->*accPtr).accumulation[Perspective][0]);
const IndexType offsetR0 = HalfDimensions * removed[0][0];
auto columnR0 = reinterpret_cast<const vec_t*>(&weights[offsetR0]);
@ -428,10 +430,10 @@ class FeatureTransformer {
vec_add_16(columnR0[k], columnR1[k]));
}
auto accPsqtIn = reinterpret_cast<const psqt_vec_t*>(
&st->accumulator.psqtAccumulation[Perspective][0]);
auto accPsqtIn =
reinterpret_cast<const psqt_vec_t*>(&(st->*accPtr).psqtAccumulation[Perspective][0]);
auto accPsqtOut = reinterpret_cast<psqt_vec_t*>(
&states_to_update[0]->accumulator.psqtAccumulation[Perspective][0]);
&(states_to_update[0]->*accPtr).psqtAccumulation[Perspective][0]);
const IndexType offsetPsqtR0 = PSQTBuckets * removed[0][0];
auto columnPsqtR0 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR0]);
@ -463,7 +465,7 @@ class FeatureTransformer {
{
// Load accumulator
auto accTileIn = reinterpret_cast<const vec_t*>(
&st->accumulator.accumulation[Perspective][j * TileHeight]);
&(st->*accPtr).accumulation[Perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_load(&accTileIn[k]);
@ -489,7 +491,7 @@ class FeatureTransformer {
// Store accumulator
auto accTileOut = reinterpret_cast<vec_t*>(
&states_to_update[i]->accumulator.accumulation[Perspective][j * TileHeight]);
&(states_to_update[i]->*accPtr).accumulation[Perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_store(&accTileOut[k], acc[k]);
}
@ -499,7 +501,7 @@ class FeatureTransformer {
{
// Load accumulator
auto accTilePsqtIn = reinterpret_cast<const psqt_vec_t*>(
&st->accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]);
&(st->*accPtr).psqtAccumulation[Perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_load_psqt(&accTilePsqtIn[k]);
@ -525,8 +527,8 @@ class FeatureTransformer {
// Store accumulator
auto accTilePsqtOut = reinterpret_cast<psqt_vec_t*>(
&states_to_update[i]
->accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]);
&(states_to_update[i]->*accPtr)
.psqtAccumulation[Perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&accTilePsqtOut[k], psqt[k]);
}
@ -535,13 +537,12 @@ class FeatureTransformer {
#else
for (IndexType i = 0; states_to_update[i]; ++i)
{
std::memcpy(states_to_update[i]->accumulator.accumulation[Perspective],
st->accumulator.accumulation[Perspective],
HalfDimensions * sizeof(BiasType));
std::memcpy((states_to_update[i]->*accPtr).accumulation[Perspective],
(st->*accPtr).accumulation[Perspective], HalfDimensions * sizeof(BiasType));
for (std::size_t k = 0; k < PSQTBuckets; ++k)
states_to_update[i]->accumulator.psqtAccumulation[Perspective][k] =
st->accumulator.psqtAccumulation[Perspective][k];
(states_to_update[i]->*accPtr).psqtAccumulation[Perspective][k] =
(st->*accPtr).psqtAccumulation[Perspective][k];
st = states_to_update[i];
@ -551,10 +552,10 @@ class FeatureTransformer {
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
st->accumulator.accumulation[Perspective][j] -= weights[offset + j];
(st->*accPtr).accumulation[Perspective][j] -= weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
st->accumulator.psqtAccumulation[Perspective][k] -=
(st->*accPtr).psqtAccumulation[Perspective][k] -=
psqtWeights[index * PSQTBuckets + k];
}
@ -564,10 +565,10 @@ class FeatureTransformer {
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
st->accumulator.accumulation[Perspective][j] += weights[offset + j];
(st->*accPtr).accumulation[Perspective][j] += weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
st->accumulator.psqtAccumulation[Perspective][k] +=
(st->*accPtr).psqtAccumulation[Perspective][k] +=
psqtWeights[index * PSQTBuckets + k];
}
}
@ -586,7 +587,7 @@ class FeatureTransformer {
// Refresh the accumulator
// Could be extracted to a separate function because it's done in 2 places,
// but it's unclear if compilers would correctly handle register allocation.
auto& accumulator = pos.state()->accumulator;
auto& accumulator = pos.state()->*accPtr;
accumulator.computed[Perspective] = true;
FeatureSet::IndexList active;
FeatureSet::append_active_indices<Perspective>(pos, active);
@ -663,12 +664,12 @@ class FeatureTransformer {
// Look for a usable accumulator of an earlier position. We keep track
// of the estimated gain in terms of features to be added/subtracted.
// Fast early exit.
if (pos.state()->accumulator.computed[Perspective])
if ((pos.state()->*accPtr).computed[Perspective])
return;
auto [oldest_st, _] = try_find_computed_accumulator<Perspective>(pos);
if (oldest_st->accumulator.computed[Perspective])
if ((oldest_st->*accPtr).computed[Perspective])
{
// Only update current position accumulator to minimize work.
StateInfo* states_to_update[2] = {pos.state(), nullptr};
@ -685,7 +686,7 @@ class FeatureTransformer {
auto [oldest_st, next] = try_find_computed_accumulator<Perspective>(pos);
if (oldest_st->accumulator.computed[Perspective])
if ((oldest_st->*accPtr).computed[Perspective])
{
if (next == nullptr)
return;

View file

@ -684,10 +684,10 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
++st->pliesFromNull;
// Used by NNUE
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
auto& dp = st->dirtyPiece;
dp.dirty_num = 1;
st->accumulatorBig.computed[WHITE] = st->accumulatorBig.computed[BLACK] =
st->accumulatorSmall.computed[WHITE] = st->accumulatorSmall.computed[BLACK] = false;
auto& dp = st->dirtyPiece;
dp.dirty_num = 1;
Color us = sideToMove;
Color them = ~us;
@ -964,15 +964,15 @@ void Position::do_null_move(StateInfo& newSt) {
assert(!checkers());
assert(&newSt != st);
std::memcpy(&newSt, st, offsetof(StateInfo, accumulator));
std::memcpy(&newSt, st, offsetof(StateInfo, accumulatorBig));
newSt.previous = st;
st = &newSt;
st->dirtyPiece.dirty_num = 0;
st->dirtyPiece.piece[0] = NO_PIECE; // Avoid checks in UpdateAccumulator()
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
st->dirtyPiece.dirty_num = 0;
st->dirtyPiece.piece[0] = NO_PIECE; // Avoid checks in UpdateAccumulator()
st->accumulatorBig.computed[WHITE] = st->accumulatorBig.computed[BLACK] =
st->accumulatorSmall.computed[WHITE] = st->accumulatorSmall.computed[BLACK] = false;
if (st->epSquare != SQ_NONE)
{

View file

@ -27,6 +27,7 @@
#include "bitboard.h"
#include "nnue/nnue_accumulator.h"
#include "nnue/nnue_architecture.h"
#include "types.h"
namespace Stockfish {
@ -57,8 +58,9 @@ struct StateInfo {
int repetition;
// Used by NNUE
Eval::NNUE::Accumulator accumulator;
DirtyPiece dirtyPiece;
Eval::NNUE::Accumulator<Eval::NNUE::TransformedFeatureDimensionsBig> accumulatorBig;
Eval::NNUE::Accumulator<Eval::NNUE::TransformedFeatureDimensionsSmall> accumulatorSmall;
DirtyPiece dirtyPiece;
};

View file

@ -37,6 +37,7 @@
#include "misc.h"
#include "movegen.h"
#include "nnue/evaluate_nnue.h"
#include "nnue/nnue_architecture.h"
#include "position.h"
#include "search.h"
#include "thread.h"
@ -320,7 +321,7 @@ void UCI::loop(int argc, char* argv[]) {
std::string f;
if (is >> std::skipws >> f)
filename = f;
Eval::NNUE::save_eval(filename);
Eval::NNUE::save_eval(filename, Eval::NNUE::Big);
}
else if (token == "--help" || token == "help" || token == "--license" || token == "license")
sync_cout

View file

@ -82,7 +82,9 @@ void init(OptionsMap& o) {
o["SyzygyProbeDepth"] << Option(1, 1, 100);
o["Syzygy50MoveRule"] << Option(true);
o["SyzygyProbeLimit"] << Option(7, 0, 7);
o["EvalFile"] << Option(EvalFileDefaultName, on_eval_file);
o["EvalFile"] << Option(EvalFileDefaultNameBig, on_eval_file);
// Enable this after fishtest workers support EvalFileSmall
// o["EvalFileSmall"] << Option(EvalFileDefaultNameSmall, on_eval_file);
}