mirror of
https://github.com/sockspls/badfish
synced 2025-04-29 16:23:09 +00:00
Finish material.cpp cleanup
Hopefully no regression this time! Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
73cce873de
commit
5e906ea10e
1 changed files with 125 additions and 176 deletions
301
src/material.cpp
301
src/material.cpp
|
@ -37,20 +37,28 @@ namespace {
|
|||
const Value BishopPairMidgameBonus = Value(100);
|
||||
const Value BishopPairEndgameBonus = Value(100);
|
||||
|
||||
Key KRPKRMaterialKey, KRKRPMaterialKey;
|
||||
Key KNNKMaterialKey, KKNNMaterialKey;
|
||||
Key KBPKBMaterialKey, KBKBPMaterialKey;
|
||||
Key KBPKNMaterialKey, KNKBPMaterialKey;
|
||||
Key KNPKMaterialKey, KKNPMaterialKey;
|
||||
Key KPKPMaterialKey;
|
||||
Key KRPPKRPMaterialKey, KRPKRPPMaterialKey;
|
||||
Key KNNKMaterialKey, KKNNMaterialKey;
|
||||
|
||||
struct ScalingInfo
|
||||
{
|
||||
Color col;
|
||||
ScalingFunction* fun;
|
||||
};
|
||||
|
||||
std::map<Key, EndgameEvaluationFunction*> EEFmap;
|
||||
std::map<Key, ScalingInfo> ESFmap;
|
||||
|
||||
void EEFAdd(Key k, EndgameEvaluationFunction* f) {
|
||||
void add(Key k, EndgameEvaluationFunction* f) {
|
||||
|
||||
EEFmap.insert(std::pair<Key, EndgameEvaluationFunction*>(k, f));
|
||||
}
|
||||
|
||||
void add(Key k, Color c, ScalingFunction* f) {
|
||||
|
||||
ScalingInfo s = {c, f};
|
||||
ESFmap.insert(std::pair<Key, ScalingInfo>(k, s));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -69,80 +77,42 @@ void MaterialInfo::init() {
|
|||
|
||||
static const Color W = WHITE;
|
||||
static const Color B = BLACK;
|
||||
|
||||
EEFAdd(z[W][PAWN][1], &EvaluateKPK);
|
||||
EEFAdd(z[B][PAWN][1], &EvaluateKKP);
|
||||
|
||||
EEFAdd(z[W][BISHOP][1] ^ z[W][KNIGHT][1], &EvaluateKBNK);
|
||||
EEFAdd(z[B][BISHOP][1] ^ z[B][KNIGHT][1], &EvaluateKKBN);
|
||||
EEFAdd(z[W][ROOK][1] ^ z[B][PAWN][1], &EvaluateKRKP);
|
||||
EEFAdd(z[W][PAWN][1] ^ z[B][ROOK][1], &EvaluateKPKR);
|
||||
EEFAdd(z[W][ROOK][1] ^ z[B][BISHOP][1], &EvaluateKRKB);
|
||||
EEFAdd(z[W][BISHOP][1] ^ z[B][ROOK][1], &EvaluateKBKR);
|
||||
EEFAdd(z[W][ROOK][1] ^ z[B][KNIGHT][1], &EvaluateKRKN);
|
||||
EEFAdd(z[W][KNIGHT][1] ^ z[B][ROOK][1], &EvaluateKNKR);
|
||||
EEFAdd(z[W][QUEEN][1] ^ z[B][ROOK][1], &EvaluateKQKR);
|
||||
EEFAdd(z[W][ROOK][1] ^ z[B][QUEEN][1], &EvaluateKRKQ);
|
||||
KNNKMaterialKey = z[W][KNIGHT][1] ^ z[W][KNIGHT][2];
|
||||
KKNNMaterialKey = z[B][KNIGHT][1] ^ z[B][KNIGHT][2];
|
||||
|
||||
KRPKRMaterialKey = z[W][ROOK][1]
|
||||
^ z[W][PAWN][1]
|
||||
^ z[B][ROOK][1];
|
||||
add(z[W][PAWN][1], &EvaluateKPK);
|
||||
add(z[B][PAWN][1], &EvaluateKKP);
|
||||
|
||||
KRKRPMaterialKey = z[W][ROOK][1]
|
||||
^ z[B][ROOK][1]
|
||||
^ z[B][PAWN][1];
|
||||
add(z[W][BISHOP][1] ^ z[W][KNIGHT][1], &EvaluateKBNK);
|
||||
add(z[B][BISHOP][1] ^ z[B][KNIGHT][1], &EvaluateKKBN);
|
||||
add(z[W][ROOK][1] ^ z[B][PAWN][1], &EvaluateKRKP);
|
||||
add(z[W][PAWN][1] ^ z[B][ROOK][1], &EvaluateKPKR);
|
||||
add(z[W][ROOK][1] ^ z[B][BISHOP][1], &EvaluateKRKB);
|
||||
add(z[W][BISHOP][1] ^ z[B][ROOK][1], &EvaluateKBKR);
|
||||
add(z[W][ROOK][1] ^ z[B][KNIGHT][1], &EvaluateKRKN);
|
||||
add(z[W][KNIGHT][1] ^ z[B][ROOK][1], &EvaluateKNKR);
|
||||
add(z[W][QUEEN][1] ^ z[B][ROOK][1], &EvaluateKQKR);
|
||||
add(z[W][ROOK][1] ^ z[B][QUEEN][1], &EvaluateKRKQ);
|
||||
|
||||
KRPPKRPMaterialKey =
|
||||
z[W][ROOK][1] ^
|
||||
z[W][PAWN][1] ^
|
||||
z[W][PAWN][2] ^
|
||||
z[B][ROOK][1] ^
|
||||
z[B][PAWN][1];
|
||||
KRPKRPPMaterialKey =
|
||||
z[W][ROOK][1] ^
|
||||
z[W][PAWN][1] ^
|
||||
z[B][ROOK][1] ^
|
||||
z[B][PAWN][1] ^
|
||||
z[B][PAWN][2];
|
||||
KNNKMaterialKey =
|
||||
z[W][KNIGHT][1] ^
|
||||
z[W][KNIGHT][2];
|
||||
KKNNMaterialKey =
|
||||
z[B][KNIGHT][1] ^
|
||||
z[B][KNIGHT][2];
|
||||
KBPKBMaterialKey =
|
||||
z[W][BISHOP][1] ^
|
||||
z[W][PAWN][1] ^
|
||||
z[B][BISHOP][1];
|
||||
KBKBPMaterialKey =
|
||||
z[W][BISHOP][1] ^
|
||||
z[B][BISHOP][1] ^
|
||||
z[B][PAWN][1];
|
||||
KBPKNMaterialKey =
|
||||
z[W][BISHOP][1] ^
|
||||
z[W][PAWN][1] ^
|
||||
z[B][KNIGHT][1];
|
||||
KNKBPMaterialKey =
|
||||
z[W][KNIGHT][1] ^
|
||||
z[B][BISHOP][1] ^
|
||||
z[B][PAWN][1];
|
||||
KNPKMaterialKey =
|
||||
z[W][KNIGHT][1] ^
|
||||
z[W][PAWN][1];
|
||||
KKNPMaterialKey =
|
||||
z[B][KNIGHT][1] ^
|
||||
z[B][PAWN][1];
|
||||
KPKPMaterialKey =
|
||||
z[W][PAWN][1] ^
|
||||
z[B][PAWN][1];
|
||||
add(z[W][KNIGHT][1] ^ z[W][PAWN][1], W, &ScaleKNPK);
|
||||
add(z[B][KNIGHT][1] ^ z[B][PAWN][1], B, &ScaleKKNP);
|
||||
|
||||
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[B][ROOK][1] , W, &ScaleKRPKR);
|
||||
add(z[W][ROOK][1] ^ z[B][ROOK][1] ^ z[B][PAWN][1] , B, &ScaleKRKRP);
|
||||
add(z[W][BISHOP][1] ^ z[W][PAWN][1] ^ z[B][BISHOP][1], W, &ScaleKBPKB);
|
||||
add(z[W][BISHOP][1] ^ z[B][BISHOP][1] ^ z[B][PAWN][1] , B, &ScaleKBKBP);
|
||||
add(z[W][BISHOP][1] ^ z[W][PAWN][1] ^ z[B][KNIGHT][1], W, &ScaleKBPKN);
|
||||
add(z[W][KNIGHT][1] ^ z[B][BISHOP][1] ^ z[B][PAWN][1] , B, &ScaleKNKBP);
|
||||
|
||||
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[W][PAWN][2] ^ z[B][ROOK][1] ^ z[B][PAWN][1], W, &ScaleKRPPKRP);
|
||||
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[B][ROOK][1] ^ z[B][PAWN][1] ^ z[B][PAWN][2], B, &ScaleKRPKRPP);
|
||||
}
|
||||
|
||||
|
||||
/// Constructor for the MaterialInfoTable class.
|
||||
/// Constructor for the MaterialInfoTable class
|
||||
|
||||
MaterialInfoTable::MaterialInfoTable(unsigned numOfEntries) {
|
||||
MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) {
|
||||
|
||||
size = numOfEntries;
|
||||
entries = new MaterialInfo[size];
|
||||
|
@ -156,7 +126,7 @@ MaterialInfoTable::MaterialInfoTable(unsigned numOfEntries) {
|
|||
}
|
||||
|
||||
|
||||
/// Destructor for the MaterialInfoTable class.
|
||||
/// Destructor for the MaterialInfoTable class
|
||||
|
||||
MaterialInfoTable::~MaterialInfoTable() {
|
||||
|
||||
|
@ -179,11 +149,11 @@ void MaterialInfoTable::clear() {
|
|||
/// is stored there, so we don't have to recompute everything when the
|
||||
/// same material configuration occurs again.
|
||||
|
||||
MaterialInfo *MaterialInfoTable::get_material_info(const Position &pos) {
|
||||
MaterialInfo *MaterialInfoTable::get_material_info(const Position& pos) {
|
||||
|
||||
Key key = pos.get_material_key();
|
||||
int index = key & (size - 1);
|
||||
MaterialInfo *mi = entries + index;
|
||||
MaterialInfo* mi = entries + index;
|
||||
|
||||
// If mi->key matches the position's material hash key, it means that we
|
||||
// have analysed this material configuration before, and we can simply
|
||||
|
@ -195,8 +165,8 @@ MaterialInfo *MaterialInfoTable::get_material_info(const Position &pos) {
|
|||
mi->clear();
|
||||
mi->key = key;
|
||||
|
||||
// A special case before looking for a specialized evaluation function:
|
||||
// KNN vs K is a draw:
|
||||
// A special case before looking for a specialized evaluation function
|
||||
// KNN vs K is a draw
|
||||
if (key == KNNKMaterialKey || key == KKNNMaterialKey)
|
||||
{
|
||||
mi->factor[WHITE] = mi->factor[BLACK] = 0;
|
||||
|
@ -233,112 +203,92 @@ MaterialInfo *MaterialInfoTable::get_material_info(const Position &pos) {
|
|||
// are several conflicting applicable scaling functions and we need to
|
||||
// decide which one to use.
|
||||
|
||||
if(key == KRPKRMaterialKey) {
|
||||
mi->scalingFunction[WHITE] = &ScaleKRPKR;
|
||||
return mi;
|
||||
}
|
||||
if(key == KRKRPMaterialKey) {
|
||||
mi->scalingFunction[BLACK] = &ScaleKRKRP;
|
||||
return mi;
|
||||
}
|
||||
if(key == KRPPKRPMaterialKey) {
|
||||
mi->scalingFunction[WHITE] = &ScaleKRPPKRP;
|
||||
return mi;
|
||||
}
|
||||
else if(key == KRPKRPPMaterialKey) {
|
||||
mi->scalingFunction[BLACK] = &ScaleKRPKRPP;
|
||||
return mi;
|
||||
}
|
||||
if(key == KBPKBMaterialKey) {
|
||||
mi->scalingFunction[WHITE] = &ScaleKBPKB;
|
||||
return mi;
|
||||
}
|
||||
if(key == KBKBPMaterialKey) {
|
||||
mi->scalingFunction[BLACK] = &ScaleKBKBP;
|
||||
return mi;
|
||||
}
|
||||
if(key == KBPKNMaterialKey) {
|
||||
mi->scalingFunction[WHITE] = &ScaleKBPKN;
|
||||
return mi;
|
||||
}
|
||||
if(key == KNKBPMaterialKey) {
|
||||
mi->scalingFunction[BLACK] = &ScaleKNKBP;
|
||||
return mi;
|
||||
}
|
||||
if(key == KNPKMaterialKey) {
|
||||
mi->scalingFunction[WHITE] = &ScaleKNPK;
|
||||
return mi;
|
||||
}
|
||||
if(key == KKNPMaterialKey) {
|
||||
mi->scalingFunction[BLACK] = &ScaleKKNP;
|
||||
return mi;
|
||||
if (ESFmap.find(key) != ESFmap.end())
|
||||
{
|
||||
mi->scalingFunction[ESFmap[key].col] = ESFmap[key].fun;
|
||||
return mi;
|
||||
}
|
||||
|
||||
if(pos.non_pawn_material(WHITE) == BishopValueMidgame &&
|
||||
pos.piece_count(WHITE, BISHOP) == 1 && pos.piece_count(WHITE, PAWN) >= 1)
|
||||
mi->scalingFunction[WHITE] = &ScaleKBPK;
|
||||
if(pos.non_pawn_material(BLACK) == BishopValueMidgame &&
|
||||
pos.piece_count(BLACK, BISHOP) == 1 && pos.piece_count(BLACK, PAWN) >= 1)
|
||||
mi->scalingFunction[BLACK] = &ScaleKKBP;
|
||||
if ( pos.non_pawn_material(WHITE) == BishopValueMidgame
|
||||
&& pos.piece_count(WHITE, BISHOP) == 1
|
||||
&& pos.piece_count(WHITE, PAWN) >= 1)
|
||||
mi->scalingFunction[WHITE] = &ScaleKBPK;
|
||||
|
||||
if(pos.piece_count(WHITE, PAWN) == 0 &&
|
||||
pos.non_pawn_material(WHITE) == QueenValueMidgame &&
|
||||
pos.piece_count(WHITE, QUEEN) == 1 &&
|
||||
pos.piece_count(BLACK, ROOK) == 1 && pos.piece_count(BLACK, PAWN) >= 1)
|
||||
mi->scalingFunction[WHITE] = &ScaleKQKRP;
|
||||
else if(pos.piece_count(BLACK, PAWN) == 0 &&
|
||||
pos.non_pawn_material(BLACK) == QueenValueMidgame &&
|
||||
pos.piece_count(BLACK, QUEEN) == 1 &&
|
||||
pos.piece_count(WHITE, ROOK) == 1 && pos.piece_count(WHITE, PAWN) >= 1)
|
||||
mi->scalingFunction[BLACK] = &ScaleKRPKQ;
|
||||
if ( pos.non_pawn_material(BLACK) == BishopValueMidgame
|
||||
&& pos.piece_count(BLACK, BISHOP) == 1
|
||||
&& pos.piece_count(BLACK, PAWN) >= 1)
|
||||
mi->scalingFunction[BLACK] = &ScaleKKBP;
|
||||
|
||||
if(pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0)) {
|
||||
if(pos.piece_count(BLACK, PAWN) == 0) {
|
||||
assert(pos.piece_count(WHITE, PAWN) >= 2);
|
||||
mi->scalingFunction[WHITE] = &ScaleKPsK;
|
||||
}
|
||||
else if(pos.piece_count(WHITE, PAWN) == 0) {
|
||||
assert(pos.piece_count(BLACK, PAWN) >= 2);
|
||||
mi->scalingFunction[BLACK] = &ScaleKKPs;
|
||||
}
|
||||
else if(pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1) {
|
||||
mi->scalingFunction[WHITE] = &ScaleKPKPw;
|
||||
mi->scalingFunction[BLACK] = &ScaleKPKPb;
|
||||
}
|
||||
if ( pos.piece_count(WHITE, PAWN) == 0
|
||||
&& pos.non_pawn_material(WHITE) == QueenValueMidgame
|
||||
&& pos.piece_count(WHITE, QUEEN) == 1
|
||||
&& pos.piece_count(BLACK, ROOK) == 1
|
||||
&& pos.piece_count(BLACK, PAWN) >= 1)
|
||||
mi->scalingFunction[WHITE] = &ScaleKQKRP;
|
||||
|
||||
else if ( pos.piece_count(BLACK, PAWN) == 0
|
||||
&& pos.non_pawn_material(BLACK) == QueenValueMidgame
|
||||
&& pos.piece_count(BLACK, QUEEN) == 1
|
||||
&& pos.piece_count(WHITE, ROOK) == 1
|
||||
&& pos.piece_count(WHITE, PAWN) >= 1)
|
||||
mi->scalingFunction[BLACK] = &ScaleKRPKQ;
|
||||
|
||||
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0))
|
||||
{
|
||||
if (pos.piece_count(BLACK, PAWN) == 0)
|
||||
{
|
||||
assert(pos.piece_count(WHITE, PAWN) >= 2);
|
||||
mi->scalingFunction[WHITE] = &ScaleKPsK;
|
||||
}
|
||||
else if (pos.piece_count(WHITE, PAWN) == 0)
|
||||
{
|
||||
assert(pos.piece_count(BLACK, PAWN) >= 2);
|
||||
mi->scalingFunction[BLACK] = &ScaleKKPs;
|
||||
}
|
||||
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
|
||||
{
|
||||
mi->scalingFunction[WHITE] = &ScaleKPKPw;
|
||||
mi->scalingFunction[BLACK] = &ScaleKPKPb;
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate the material balance.
|
||||
// Evaluate the material balance
|
||||
|
||||
Color c;
|
||||
int sign;
|
||||
Value egValue = Value(0), mgValue = Value(0);
|
||||
Value egValue = Value(0);
|
||||
Value mgValue = Value(0);
|
||||
|
||||
for(c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign) {
|
||||
|
||||
// No pawns makes it difficult to win, even with a material advantage:
|
||||
if(pos.piece_count(c, PAWN) == 0 &&
|
||||
pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c))
|
||||
<= BishopValueMidgame) {
|
||||
if(pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c)))
|
||||
mi->factor[c] = 0;
|
||||
else if(pos.non_pawn_material(c) < RookValueMidgame)
|
||||
mi->factor[c] = 0;
|
||||
else {
|
||||
switch(pos.piece_count(c, BISHOP)) {
|
||||
case 2:
|
||||
mi->factor[c] = 32; break;
|
||||
case 1:
|
||||
mi->factor[c] = 12; break;
|
||||
case 0:
|
||||
mi->factor[c] = 6; break;
|
||||
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
|
||||
{
|
||||
// No pawns makes it difficult to win, even with a material advantage
|
||||
if ( pos.piece_count(c, PAWN) == 0
|
||||
&& pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame)
|
||||
{
|
||||
if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c))
|
||||
|| pos.non_pawn_material(c) < RookValueMidgame)
|
||||
mi->factor[c] = 0;
|
||||
else
|
||||
{
|
||||
switch (pos.piece_count(c, BISHOP)) {
|
||||
case 2:
|
||||
mi->factor[c] = 32;
|
||||
break;
|
||||
case 1:
|
||||
mi->factor[c] = 12;
|
||||
break;
|
||||
case 0:
|
||||
mi->factor[c] = 6;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Bishop pair:
|
||||
if(pos.piece_count(c, BISHOP) >= 2) {
|
||||
mgValue += sign * BishopPairMidgameBonus;
|
||||
egValue += sign * BishopPairEndgameBonus;
|
||||
// Bishop pair
|
||||
if (pos.piece_count(c, BISHOP) >= 2)
|
||||
{
|
||||
mgValue += sign * BishopPairMidgameBonus;
|
||||
egValue += sign * BishopPairEndgameBonus;
|
||||
}
|
||||
|
||||
// Knights are stronger when there are many pawns on the board. The
|
||||
|
@ -349,16 +299,15 @@ MaterialInfo *MaterialInfoTable::get_material_info(const Position &pos) {
|
|||
egValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
|
||||
|
||||
// Redundancy of major pieces, again based on Kaufman's paper:
|
||||
if(pos.piece_count(c, ROOK) >= 1) {
|
||||
Value v = Value((pos.piece_count(c, ROOK) - 1) * 32 + pos.piece_count(c, QUEEN) * 16);
|
||||
mgValue -= sign * v;
|
||||
egValue -= sign * v;
|
||||
if (pos.piece_count(c, ROOK) >= 1)
|
||||
{
|
||||
Value v = Value((pos.piece_count(c, ROOK) - 1) * 32 + pos.piece_count(c, QUEEN) * 16);
|
||||
mgValue -= sign * v;
|
||||
egValue -= sign * v;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
mi->mgValue = int16_t(mgValue);
|
||||
mi->egValue = int16_t(egValue);
|
||||
|
||||
return mi;
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue