1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00

Optimize magics

Reduce the size of the Magics table by half on modern cpu's and lay it
out to match our access pattern. Namely we typically access the magics
for the same square for both bishop and rook back to back so we want
those to be in the same cache line.

https://tests.stockfishchess.org/tests/view/6701c9b386d5ee47d953bcf4
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 121664 W: 31931 L: 31497 D: 58236
Ptnml(0-2): 395, 13658, 32322, 14032, 425

A similar patch minus the size reduction finished yellow
https://tests.stockfishchess.org/tests/view/6695f03f4ff211be9d4ec16c
LLR: -2.94 (-2.94,2.94) <0.00,2.00>
Total: 310688 W: 80940 L: 80746 D: 149002
Ptnml(0-2): 1119, 35032, 82846, 35230, 1117

closes https://github.com/official-stockfish/Stockfish/pull/5623

No functional change
This commit is contained in:
mstembera 2024-10-05 16:18:21 -07:00 committed by Disservin
parent 9a21e3e996
commit 76923bb6fe
2 changed files with 35 additions and 26 deletions

View file

@ -34,15 +34,14 @@ Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
Magic RookMagics[SQUARE_NB];
Magic BishopMagics[SQUARE_NB];
alignas(64) Magic Magics[SQUARE_NB][2];
namespace {
Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // To store bishop attacks
void init_magics(PieceType pt, Bitboard table[], Magic magics[]);
void init_magics(PieceType pt, Bitboard table[], Magic magics[][2]);
// Returns the bitboard of target square for the given step
// from the given square. If the step is off the board, returns empty bitboard.
@ -82,8 +81,8 @@ void Bitboards::init() {
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
init_magics(ROOK, RookTable, RookMagics);
init_magics(BISHOP, BishopTable, BishopMagics);
init_magics(ROOK, RookTable, Magics);
init_magics(BISHOP, BishopTable, Magics);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
@ -142,39 +141,47 @@ Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
// bitboards are used to look up attacks of sliding pieces. As a reference see
// https://www.chessprogramming.org/Magic_Bitboards. In particular, here we use
// the so called "fancy" approach.
void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {
void init_magics(PieceType pt, Bitboard table[], Magic magics[][2]) {
#ifndef USE_PEXT
// Optimal PRNG seeds to pick the correct magics in the shortest time
int seeds[][RANK_NB] = {{8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020},
{728, 10316, 55013, 32803, 12281, 15100, 16645, 255}};
Bitboard occupancy[4096], reference[4096], edges, b;
int epoch[4096] = {}, cnt = 0, size = 0;
Bitboard occupancy[4096];
int epoch[4096] = {}, cnt = 0;
#endif
Bitboard reference[4096];
int size = 0;
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
// Board edges are not considered in the relevant occupancies
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
Bitboard edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
// Given a square 's', the mask is the bitboard of sliding attacks from
// 's' computed on an empty board. The index must be big enough to contain
// all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
Magic& m = magics[s];
Magic& m = magics[s][pt - BISHOP];
m.mask = sliding_attack(pt, s, 0) & ~edges;
#ifndef USE_PEXT
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
#endif
// Set the offset for the attacks table of the square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
m.attacks = s == SQ_A1 ? table : magics[s - 1][pt - BISHOP].attacks + size;
size = 0;
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
b = size = 0;
Bitboard b = 0;
do
{
#ifndef USE_PEXT
occupancy[size] = b;
#endif
reference[size] = sliding_attack(pt, s, b);
if (HasPext)
@ -184,9 +191,7 @@ void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {
b = (b - m.mask) & m.mask;
} while (b);
if (HasPext)
continue;
#ifndef USE_PEXT
PRNG rng(seeds[Is64Bit][rank_of(s)]);
// Find a magic for square 's' picking up an (almost) random number
@ -215,6 +220,7 @@ void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {
break;
}
}
#endif
}
}
}

View file

@ -67,27 +67,31 @@ extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
// Magic holds all magic bitboards relevant data for a single square
struct Magic {
Bitboard mask;
Bitboard magic;
Bitboard* attacks;
#ifndef USE_PEXT
Bitboard magic;
unsigned shift;
#endif
// Compute the attack's index using the 'magic bitboards' approach
unsigned index(Bitboard occupied) const {
if (HasPext)
#ifdef USE_PEXT
return unsigned(pext(occupied, mask));
#else
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
#endif
}
Bitboard attacks_bb(Bitboard occupied) const { return attacks[index(occupied)]; }
};
extern Magic RookMagics[SQUARE_NB];
extern Magic BishopMagics[SQUARE_NB];
extern Magic Magics[SQUARE_NB][2];
constexpr Bitboard square_bb(Square s) {
assert(is_ok(s));
@ -229,9 +233,8 @@ inline Bitboard attacks_bb(Square s, Bitboard occupied) {
switch (Pt)
{
case BISHOP :
return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
case ROOK :
return RookMagics[s].attacks[RookMagics[s].index(occupied)];
return Magics[s][Pt - BISHOP].attacks_bb(occupied);
case QUEEN :
return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default :