1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00

Revert C++11 merge

Restore the state of repo back to commit 'Simplify pawn code a bit' (1e6d21dbb6)

No functional change
This commit is contained in:
Joona Kiiski 2015-03-07 07:38:22 +00:00
parent 6fa6da3ee1
commit 856a5f3aaa
29 changed files with 987 additions and 747 deletions

View file

@ -140,7 +140,7 @@ endif
### 3.1 Selecting compiler (default = gcc)
CXXFLAGS += -Wall -Wcast-qual -fno-exceptions -fno-rtti -std=c++11 $(EXTRACXXFLAGS)
CXXFLAGS += -Wall -Wcast-qual -fno-exceptions -fno-rtti $(EXTRACXXFLAGS)
LDFLAGS += $(EXTRALDFLAGS)
ifeq ($(COMP),)
@ -150,12 +150,7 @@ endif
ifeq ($(COMP),gcc)
comp=gcc
CXX=g++
CXXFLAGS += -pedantic -Wno-long-long -Wextra -Wshadow
ifneq ($(UNAME),Darwin)
LDFLAGS += -Wl,--no-as-needed
else
LDFLAGS += -Wl
endif
CXXFLAGS += -ansi -pedantic -Wno-long-long -Wextra -Wshadow
endif
ifeq ($(COMP),mingw)
@ -175,9 +170,6 @@ ifeq ($(COMP),clang)
comp=clang
CXX=clang++
CXXFLAGS += -pedantic -Wno-long-long -Wextra -Wshadow
ifeq ($(UNAME),Darwin)
CXXFLAGS += -std=c++0x -stdlib=libc++
endif
endif
ifeq ($(comp),icc)
@ -193,8 +185,8 @@ else
endif
ifeq ($(UNAME),Darwin)
CXXFLAGS += -arch $(arch) -mmacosx-version-min=10.9
LDFLAGS += -arch $(arch) -mmacosx-version-min=10.9
CXXFLAGS += -arch $(arch) -mmacosx-version-min=10.6
LDFLAGS += -arch $(arch) -mmacosx-version-min=10.6
endif
### On mingw use Windows threads, otherwise POSIX

View file

@ -17,6 +17,7 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <fstream>
#include <iostream>
#include <istream>
@ -33,7 +34,7 @@ using namespace std;
namespace {
const vector<string> Defaults = {
const char* Defaults[] = {
"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
"r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq - 0 10",
"8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - - 0 11",
@ -107,19 +108,19 @@ void benchmark(const Position& current, istream& is) {
TT.clear();
if (limitType == "time")
limits.movetime = stoi(limit); // movetime is in ms
limits.movetime = atoi(limit.c_str()); // movetime is in ms
else if (limitType == "nodes")
limits.nodes = stoi(limit);
limits.nodes = atoi(limit.c_str());
else if (limitType == "mate")
limits.mate = stoi(limit);
limits.mate = atoi(limit.c_str());
else
limits.depth = stoi(limit);
limits.depth = atoi(limit.c_str());
if (fenFile == "default")
fens = Defaults;
fens.assign(Defaults, Defaults + 37);
else if (fenFile == "current")
fens.push_back(current.fen());
@ -127,7 +128,7 @@ void benchmark(const Position& current, istream& is) {
else
{
string fen;
ifstream file(fenFile);
ifstream file(fenFile.c_str());
if (!file.is_open())
{
@ -144,7 +145,7 @@ void benchmark(const Position& current, istream& is) {
uint64_t nodes = 0;
Search::StateStackPtr st;
TimePoint elapsed = now();
Time::point elapsed = Time::now();
for (size_t i = 0; i < fens.size(); ++i)
{
@ -163,7 +164,7 @@ void benchmark(const Position& current, istream& is) {
}
}
elapsed = now() - elapsed + 1; // Ensure positivity to avoid a 'divide by zero'
elapsed = std::max(Time::now() - elapsed, Time::point(1)); // Avoid a 'divide by zero'
dbg_print(); // Just before to exit

View file

@ -17,9 +17,7 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <numeric>
#include <vector>
#include "bitboard.h"
@ -56,17 +54,17 @@ namespace {
inline Result& operator|=(Result& r, Result v) { return r = Result(r | v); }
struct KPKPosition {
KPKPosition() = default;
explicit KPKPosition(unsigned idx);
KPKPosition(unsigned idx);
operator Result() const { return result; }
Result classify(const std::vector<KPKPosition>& db)
{ return us == WHITE ? classify<WHITE>(db) : classify<BLACK>(db); }
private:
template<Color Us> Result classify(const std::vector<KPKPosition>& db);
unsigned id;
Color us;
Square ksq[COLOR_NB], psq;
Square bksq, wksq, psq;
Result result;
};
@ -84,20 +82,24 @@ bool Bitbases::probe(Square wksq, Square wpsq, Square bksq, Color us) {
void Bitbases::init() {
std::vector<KPKPosition> db(MAX_INDEX);
unsigned idx, repeat = 1;
std::vector<KPKPosition> db;
db.reserve(MAX_INDEX);
// Initialize db with known win / draw positions
std::generate(db.begin(), db.end(), [](){ static unsigned id; return KPKPosition(id++); });
for (idx = 0; idx < MAX_INDEX; ++idx)
db.push_back(KPKPosition(idx));
// Iterate through the positions until none of the unknown positions can be
// changed to either wins or draws (15 cycles needed).
while (std::accumulate(db.begin(), db.end(), false, [&](bool repeat, KPKPosition& pos)
{ return (pos == UNKNOWN && pos.classify(db) != UNKNOWN) || repeat; })){}
while (repeat)
for (repeat = idx = 0; idx < MAX_INDEX; ++idx)
repeat |= (db[idx] == UNKNOWN && db[idx].classify(db) != UNKNOWN);
// Map 32 results into one KPKBitbase[] entry
for (auto& pos : db)
if (pos == WIN)
KPKBitbase[pos.id / 32] |= 1 << (pos.id & 0x1F);
for (idx = 0; idx < MAX_INDEX; ++idx)
if (db[idx] == WIN)
KPKBitbase[idx / 32] |= 1 << (idx & 0x1F);
}
@ -105,74 +107,69 @@ namespace {
KPKPosition::KPKPosition(unsigned idx) {
id = idx;
ksq[WHITE] = Square((idx >> 0) & 0x3F);
ksq[BLACK] = Square((idx >> 6) & 0x3F);
wksq = Square((idx >> 0) & 0x3F);
bksq = Square((idx >> 6) & 0x3F);
us = Color ((idx >> 12) & 0x01);
psq = make_square(File((idx >> 13) & 0x3), RANK_7 - Rank((idx >> 15) & 0x7));
result = UNKNOWN;
// Check if two pieces are on the same square or if a king can be captured
if ( distance(ksq[WHITE], ksq[BLACK]) <= 1
|| ksq[WHITE] == psq
|| ksq[BLACK] == psq
|| (us == WHITE && (StepAttacksBB[PAWN][psq] & ksq[BLACK])))
if ( distance(wksq, bksq) <= 1
|| wksq == psq
|| bksq == psq
|| (us == WHITE && (StepAttacksBB[PAWN][psq] & bksq)))
result = INVALID;
else if (us == WHITE)
{
// Immediate win if a pawn can be promoted without getting captured
else if ( us == WHITE
&& rank_of(psq) == RANK_7
&& ksq[us] != psq + DELTA_N
&& ( distance(ksq[~us], psq + DELTA_N) > 1
|| (StepAttacksBB[KING][ksq[us]] & (psq + DELTA_N))))
if ( rank_of(psq) == RANK_7
&& wksq != psq + DELTA_N
&& ( distance(bksq, psq + DELTA_N) > 1
||(StepAttacksBB[KING][wksq] & (psq + DELTA_N))))
result = WIN;
}
// Immediate draw if it is a stalemate or a king captures undefended pawn
else if ( us == BLACK
&& ( !(StepAttacksBB[KING][ksq[us]] & ~(StepAttacksBB[KING][ksq[~us]] | StepAttacksBB[PAWN][psq]))
|| (StepAttacksBB[KING][ksq[us]] & psq & ~StepAttacksBB[KING][ksq[~us]])))
else if ( !(StepAttacksBB[KING][bksq] & ~(StepAttacksBB[KING][wksq] | StepAttacksBB[PAWN][psq]))
|| (StepAttacksBB[KING][bksq] & psq & ~StepAttacksBB[KING][wksq]))
result = DRAW;
// Position will be classified later
else
result = UNKNOWN;
}
template<Color Us>
Result KPKPosition::classify(const std::vector<KPKPosition>& db) {
// White to move: If one move leads to a position classified as WIN, the result
// White to Move: If one move leads to a position classified as WIN, the result
// of the current position is WIN. If all moves lead to positions classified
// as DRAW, the current position is classified as DRAW, otherwise the current
// position is classified as UNKNOWN.
//
// Black to move: If one move leads to a position classified as DRAW, the result
// Black to Move: If one move leads to a position classified as DRAW, the result
// of the current position is DRAW. If all moves lead to positions classified
// as WIN, the position is classified as WIN, otherwise the current position is
// classified as UNKNOWN.
const Color Them = (Us == WHITE ? BLACK : WHITE);
const Result Good = (Us == WHITE ? WIN : DRAW);
const Result Bad = (Us == WHITE ? DRAW : WIN);
Result r = INVALID;
Bitboard b = StepAttacksBB[KING][ksq[Us]];
Bitboard b = StepAttacksBB[KING][Us == WHITE ? wksq : bksq];
while (b)
r |= Us == WHITE ? db[index(Them, ksq[Them] , pop_lsb(&b), psq)]
: db[index(Them, pop_lsb(&b), ksq[Them] , psq)];
r |= Us == WHITE ? db[index(Them, bksq, pop_lsb(&b), psq)]
: db[index(Them, pop_lsb(&b), wksq, psq)];
if (Us == WHITE)
if (Us == WHITE && rank_of(psq) < RANK_7)
{
if (rank_of(psq) < RANK_7) // Single push
r |= db[index(Them, ksq[Them], ksq[Us], psq + DELTA_N)];
Square s = psq + DELTA_N;
r |= db[index(BLACK, bksq, wksq, s)]; // Single push
if ( rank_of(psq) == RANK_2 // Double push
&& psq + DELTA_N != ksq[Us]
&& psq + DELTA_N != ksq[Them])
r |= db[index(Them, ksq[Them], ksq[Us], psq + DELTA_N + DELTA_N)];
if (rank_of(psq) == RANK_2 && s != wksq && s != bksq)
r |= db[index(BLACK, bksq, wksq, s + DELTA_N)]; // Double push
}
return result = r & Good ? Good : r & UNKNOWN ? UNKNOWN : Bad;
if (Us == WHITE)
return result = r & WIN ? WIN : r & UNKNOWN ? UNKNOWN : DRAW;
else
return result = r & DRAW ? DRAW : r & UNKNOWN ? UNKNOWN : WIN;
}
} // namespace

View file

@ -96,9 +96,12 @@ namespace {
string fen = sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/8/8/"
+ sides[1] + char(8 - sides[1].length() + '0') + " w - - 0 10";
return Position(fen, false, nullptr).material_key();
return Position(fen, false, NULL).material_key();
}
template<typename M>
void delete_endgame(const typename M::value_type& p) { delete p.second; }
} // namespace
@ -125,11 +128,17 @@ Endgames::Endgames() {
add<KRPPKRP>("KRPPKRP");
}
Endgames::~Endgames() {
template<EndgameType E, typename T>
for_each(m1.begin(), m1.end(), delete_endgame<M1>);
for_each(m2.begin(), m2.end(), delete_endgame<M2>);
}
template<EndgameType E>
void Endgames::add(const string& code) {
map<T>()[key(code, WHITE)] = std::unique_ptr<EndgameBase<T>>(new Endgame<E>(WHITE));
map<T>()[key(code, BLACK)] = std::unique_ptr<EndgameBase<T>>(new Endgame<E>(BLACK));
map((Endgame<E>*)0)[key(code, WHITE)] = new Endgame<E>(WHITE);
map((Endgame<E>*)0)[key(code, BLACK)] = new Endgame<E>(BLACK);
}

View file

@ -21,10 +21,7 @@
#define ENDGAME_H_INCLUDED
#include <map>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include "position.h"
#include "types.h"
@ -66,9 +63,11 @@ enum EndgameType {
/// Endgame functions can be of two types depending on whether they return a
/// Value or a ScaleFactor.
template<EndgameType E> using
eg_type = typename std::conditional<(E < SCALING_FUNCTIONS), Value, ScaleFactor>::type;
/// Value or a ScaleFactor. Type eg_fun<int>::type returns either ScaleFactor
/// or Value depending on whether the template parameter is 0 or 1.
template<int> struct eg_fun { typedef Value type; };
template<> struct eg_fun<1> { typedef ScaleFactor type; };
/// Base and derived templates for endgame evaluation and scaling functions
@ -82,7 +81,7 @@ struct EndgameBase {
};
template<EndgameType E, typename T = eg_type<E>>
template<EndgameType E, typename T = typename eg_fun<(E > SCALING_FUNCTIONS)>::type>
struct Endgame : public EndgameBase<T> {
explicit Endgame(Color c) : strongSide(c), weakSide(~c) {}
@ -100,24 +99,23 @@ private:
class Endgames {
template<typename T> using Map = std::map<Key, std::unique_ptr<EndgameBase<T>>>;
typedef std::map<Key, EndgameBase<eg_fun<0>::type>*> M1;
typedef std::map<Key, EndgameBase<eg_fun<1>::type>*> M2;
template<EndgameType E, typename T = eg_type<E>>
void add(const std::string& code);
M1 m1;
M2 m2;
template<typename T>
Map<T>& map() {
return std::get<std::is_same<T, ScaleFactor>::value>(maps);
}
M1& map(M1::mapped_type) { return m1; }
M2& map(M2::mapped_type) { return m2; }
std::pair<Map<Value>, Map<ScaleFactor>> maps;
template<EndgameType E> void add(const std::string& code);
public:
Endgames();
~Endgames();
template<typename T>
EndgameBase<T>* probe(Key key) {
return map<T>().count(key) ? map<T>()[key].get() : nullptr;
template<typename T> T probe(Key key, T& eg) {
return eg = map(eg).count(key) ? map(eg)[key] : NULL;
}
};

View file

@ -30,23 +30,6 @@
namespace {
namespace Tracing {
enum Term { // First 8 entries are for PieceType
MATERIAL = 8, IMBALANCE, MOBILITY, THREAT, PASSED, SPACE, TOTAL, TERM_NB
};
Score scores[COLOR_NB][TERM_NB];
std::ostream& operator<<(std::ostream& os, Term idx);
double to_cp(Value v);
void write(int idx, Color c, Score s);
void write(int idx, Score w, Score b = SCORE_ZERO);
std::string do_trace(const Position& pos);
}
// Struct EvalInfo contains various information computed and collected
// by the evaluation functions.
struct EvalInfo {
@ -88,19 +71,29 @@ namespace {
Bitboard pinnedPieces[COLOR_NB];
};
namespace Tracing {
// Evaluation weights, indexed by the corresponding evaluation term
enum Terms { // First 8 entries are for PieceType
MATERIAL = 8, IMBALANCE, MOBILITY, THREAT, PASSED, SPACE, TOTAL, TERMS_NB
};
Score scores[COLOR_NB][TERMS_NB];
EvalInfo ei;
ScaleFactor sf;
double to_cp(Value v);
void write(int idx, Color c, Score s);
void write(int idx, Score w, Score b = SCORE_ZERO);
void print(std::stringstream& ss, const char* name, int idx);
std::string do_trace(const Position& pos);
}
// Evaluation weights, indexed by evaluation term
enum { Mobility, PawnStructure, PassedPawns, Space, KingSafety };
const struct Weight { int mg, eg; } Weights[] = {
{289, 344}, {233, 201}, {221, 273}, {46, 0}, {322, 0}
};
Score operator*(Score s, const Weight& w) {
return make_score(mg_value(s) * w.mg / 256, eg_value(s) * w.eg / 256);
}
#define V(v) Value(v)
#define S(mg, eg) make_score(mg, eg)
@ -124,8 +117,8 @@ namespace {
S( 25, 41), S( 25, 41), S(25, 41), S(25, 41) }
};
// Outpost[Bishop/Knight][Square] contains bonuses for knights and bishops
// outposts, indexed by piece type and square (from white's point of view).
// Outpost[PieceType][Square] contains bonuses for knights and bishops outposts,
// indexed by piece type and square (from white's point of view).
const Value Outpost[][SQUARE_NB] = {
{// A B C D E F G H
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Knights
@ -154,7 +147,7 @@ namespace {
// ThreatenedByPawn[PieceType] contains a penalty according to which piece
// type is attacked by an enemy pawn.
const Score ThreatenedByPawn[PIECE_TYPE_NB] = {
const Score ThreatenedByPawn[] = {
S(0, 0), S(0, 0), S(107, 138), S(84, 122), S(114, 203), S(121, 217)
};
@ -184,7 +177,7 @@ namespace {
// by the space evaluation. In the middlegame, each side is given a bonus
// based on how many squares inside this area are safe and available for
// friendly minor pieces.
const Bitboard SpaceMask[COLOR_NB] = {
const Bitboard SpaceMask[] = {
(FileCBB | FileDBB | FileEBB | FileFBB) & (Rank2BB | Rank3BB | Rank4BB),
(FileCBB | FileDBB | FileEBB | FileFBB) & (Rank7BB | Rank6BB | Rank5BB)
};
@ -193,12 +186,11 @@ namespace {
// in KingDanger[]. Various little "meta-bonuses" measuring the strength
// of the enemy attack are added up into an integer, which is used as an
// index to KingDanger[].
Score KingDanger[512];
//
// KingAttackWeights[PieceType] contains king attack weights by piece type
const int KingAttackWeights[PIECE_TYPE_NB] = { 0, 0, 7, 5, 4, 1 };
const int KingAttackWeights[] = { 0, 0, 7, 5, 4, 1 };
// Penalties for enemy's safe checks
// Bonuses for enemy's safe checks
const int QueenContactCheck = 89;
const int RookContactCheck = 71;
const int QueenCheck = 50;
@ -206,6 +198,15 @@ namespace {
const int BishopCheck = 6;
const int KnightCheck = 14;
// KingDanger[attackUnits] contains the actual king danger weighted
// scores, indexed by a calculated integer number.
Score KingDanger[512];
// apply_weight() weighs score 's' by weight 'w' trying to prevent overflow
Score apply_weight(Score s, const Weight& w) {
return make_score(mg_value(s) * w.mg / 256, eg_value(s) * w.eg / 256);
}
// init_eval_info() initializes king bitboards for given color adding
// pawn attacks. To be done at the beginning of the evaluation.
@ -217,8 +218,9 @@ namespace {
const Square Down = (Us == WHITE ? DELTA_S : DELTA_N);
ei.pinnedPieces[Us] = pos.pinned_pieces(Us);
ei.attackedBy[Us][ALL_PIECES] = ei.attackedBy[Us][PAWN] = ei.pi->pawn_attacks(Us);
Bitboard b = ei.attackedBy[Them][KING] = pos.attacks_from<KING>(pos.king_square(Them));
ei.attackedBy[Us][ALL_PIECES] = ei.attackedBy[Us][PAWN] = ei.pi->pawn_attacks(Us);
// Init king safety tables only if we are going to use them
if (pos.non_pawn_material(Us) >= QueenValueMg)
@ -301,7 +303,8 @@ namespace {
| ei.attackedBy[Them][BISHOP]
| ei.attackedBy[Them][ROOK]);
int mob = popcount<Pt == QUEEN ? Full : Max15>(b & mobilityArea[Us]);
int mob = Pt != QUEEN ? popcount<Max15>(b & mobilityArea[Us])
: popcount<Full >(b & mobilityArea[Us]);
mobility[Us] += MobilityBonus[Pt][mob];
@ -505,7 +508,8 @@ namespace {
Score score = SCORE_ZERO;
// Non-pawn enemies defended by a pawn
defended = (pos.pieces(Them) ^ pos.pieces(Them, PAWN)) & ei.attackedBy[Them][PAWN];
defended = (pos.pieces(Them) ^ pos.pieces(Them, PAWN))
& ei.attackedBy[Them][PAWN];
// Add a bonus according to the kind of attacking pieces
if (defended)
@ -647,10 +651,10 @@ namespace {
}
if (Trace)
Tracing::write(Tracing::PASSED, Us, score * Weights[PassedPawns]);
Tracing::write(Tracing::PASSED, Us, apply_weight(score, Weights[PassedPawns]));
// Add the scores to the middlegame and endgame eval
return score * Weights[PassedPawns];
return apply_weight(score, Weights[PassedPawns]);
}
@ -716,7 +720,7 @@ namespace {
// Probe the pawn hash table
ei.pi = Pawns::probe(pos);
score += ei.pi->pawns_score() * Weights[PawnStructure];
score += apply_weight(ei.pi->pawns_score(), Weights[PawnStructure]);
// Initialize attack and king safety bitboards
init_eval_info<WHITE>(pos, ei);
@ -731,7 +735,7 @@ namespace {
// Evaluate pieces and mobility
score += evaluate_pieces<KNIGHT, WHITE, Trace>(pos, ei, mobility, mobilityArea);
score += (mobility[WHITE] - mobility[BLACK]) * Weights[Mobility];
score += apply_weight(mobility[WHITE] - mobility[BLACK], Weights[Mobility]);
// Evaluate kings after all other pieces because we need complete attack
// information when computing the king safety evaluation.
@ -758,8 +762,11 @@ namespace {
}
// Evaluate space for both sides, only during opening
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >= 11756)
score += (evaluate_space<WHITE>(pos, ei) - evaluate_space<BLACK>(pos, ei)) * Weights[Space];
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg)
{
Score s = evaluate_space<WHITE>(pos, ei) - evaluate_space<BLACK>(pos, ei);
score += apply_weight(s, Weights[Space]);
}
// Scale winning side if position is more drawish than it appears
Color strongSide = eg_value(score) > VALUE_DRAW ? WHITE : BLACK;
@ -797,48 +804,57 @@ namespace {
v /= int(PHASE_MIDGAME);
// In case of tracing add all single evaluation terms for both white and black
// In case of tracing add all single evaluation contributions for both white and black
if (Trace)
{
Tracing::write(Tracing::MATERIAL, pos.psq_score());
Tracing::write(Tracing::IMBALANCE, ei.mi->imbalance());
Tracing::write(PAWN, ei.pi->pawns_score());
Tracing::write(Tracing::MOBILITY, mobility[WHITE] * Weights[Mobility]
, mobility[BLACK] * Weights[Mobility]);
Tracing::write(Tracing::SPACE, evaluate_space<WHITE>(pos, ei) * Weights[Space]
, evaluate_space<BLACK>(pos, ei) * Weights[Space]);
Tracing::write(Tracing::MOBILITY, apply_weight(mobility[WHITE], Weights[Mobility])
, apply_weight(mobility[BLACK], Weights[Mobility]));
Tracing::write(Tracing::SPACE, apply_weight(evaluate_space<WHITE>(pos, ei), Weights[Space])
, apply_weight(evaluate_space<BLACK>(pos, ei), Weights[Space]));
Tracing::write(Tracing::TOTAL, score);
Tracing::ei = ei;
Tracing::sf = sf;
}
return (pos.side_to_move() == WHITE ? v : -v) + Eval::Tempo; // Side to move point of view
return (pos.side_to_move() == WHITE ? v : -v) + Eval::Tempo;
}
// Tracing functions
// Tracing function definitions
double Tracing::to_cp(Value v) { return double(v) / PawnValueEg; }
void Tracing::write(int idx, Color c, Score s) { scores[c][idx] = s; }
void Tracing::write(int idx, Score w, Score b) {
scores[WHITE][idx] = w, scores[BLACK][idx] = b;
write(idx, WHITE, w);
write(idx, BLACK, b);
}
std::ostream& Tracing::operator<<(std::ostream& os, Term t) {
void Tracing::print(std::stringstream& ss, const char* name, int idx) {
double wScore[] = { to_cp(mg_value(scores[WHITE][t])), to_cp(eg_value(scores[WHITE][t])) };
double bScore[] = { to_cp(mg_value(scores[BLACK][t])), to_cp(eg_value(scores[BLACK][t])) };
Score wScore = scores[WHITE][idx];
Score bScore = scores[BLACK][idx];
if (t == MATERIAL || t == IMBALANCE || t == Term(PAWN) || t == TOTAL)
os << " --- --- | --- --- | ";
else
os << std::setw(5) << wScore[MG] << " " << std::setw(5) << wScore[EG] << " | "
<< std::setw(5) << bScore[MG] << " " << std::setw(5) << bScore[EG] << " | ";
os << std::setw(5) << wScore[MG] - bScore[MG] << " "
<< std::setw(5) << wScore[EG] - bScore[EG] << " \n";
return os;
switch (idx) {
case MATERIAL: case IMBALANCE: case PAWN: case TOTAL:
ss << std::setw(15) << name << " | --- --- | --- --- | "
<< std::setw(5) << to_cp(mg_value(wScore - bScore)) << " "
<< std::setw(5) << to_cp(eg_value(wScore - bScore)) << " \n";
break;
default:
ss << std::setw(15) << name << " | " << std::noshowpos
<< std::setw(5) << to_cp(mg_value(wScore)) << " "
<< std::setw(5) << to_cp(eg_value(wScore)) << " | "
<< std::setw(5) << to_cp(mg_value(bScore)) << " "
<< std::setw(5) << to_cp(eg_value(bScore)) << " | "
<< std::setw(5) << to_cp(mg_value(wScore - bScore)) << " "
<< std::setw(5) << to_cp(eg_value(wScore - bScore)) << " \n";
}
}
std::string Tracing::do_trace(const Position& pos) {
@ -852,21 +868,23 @@ namespace {
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2)
<< " Eval term | White | Black | Total \n"
<< " | MG EG | MG EG | MG EG \n"
<< "----------------+-------------+-------------+-------------\n"
<< " Material | " << Term(MATERIAL)
<< " Imbalance | " << Term(IMBALANCE)
<< " Pawns | " << Term(PAWN)
<< " Knights | " << Term(KNIGHT)
<< " Bishop | " << Term(BISHOP)
<< " Rooks | " << Term(ROOK)
<< " Queens | " << Term(QUEEN)
<< " Mobility | " << Term(MOBILITY)
<< " King safety | " << Term(KING)
<< " Threats | " << Term(THREAT)
<< " Passed pawns | " << Term(PASSED)
<< " Space | " << Term(SPACE)
<< "----------------+-------------+-------------+-------------\n"
<< " Total | " << Term(TOTAL);
<< "----------------+-------------+-------------+-------------\n";
print(ss, "Material", MATERIAL);
print(ss, "Imbalance", IMBALANCE);
print(ss, "Pawns", PAWN);
print(ss, "Knights", KNIGHT);
print(ss, "Bishops", BISHOP);
print(ss, "Rooks", ROOK);
print(ss, "Queens", QUEEN);
print(ss, "Mobility", MOBILITY);
print(ss, "King safety", KING);
print(ss, "Threats", THREAT);
print(ss, "Passed pawns", PASSED);
print(ss, "Space", SPACE);
ss << "----------------+-------------+-------------+-------------\n";
print(ss, "Total", TOTAL);
ss << "\nTotal Evaluation: " << to_cp(v) << " (white side)\n";
@ -906,7 +924,7 @@ namespace Eval {
for (int i = 0; i < 400; ++i)
{
t = std::min(Peak, std::min(i * i * 27, t + MaxSlope));
KingDanger[i] = make_score(t / 1000, 0) * Weights[KingSafety];
KingDanger[i] = apply_weight(make_score(t / 1000, 0), Weights[KingSafety]);
}
}

View file

@ -136,7 +136,7 @@ Entry* probe(const Position& pos) {
// Let's look if we have a specialized evaluation function for this particular
// material configuration. Firstly we look for a fixed configuration one, then
// for a generic one if the previous search failed.
if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
if (pos.this_thread()->endgames.probe(key, e->evaluationFunction))
return e;
for (Color c = WHITE; c <= BLACK; ++c)
@ -150,7 +150,7 @@ Entry* probe(const Position& pos) {
// configuration. Is there a suitable specialized scaling function?
EndgameBase<ScaleFactor>* sf;
if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
if (pos.this_thread()->endgames.probe(key, sf))
{
e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned
return e;

View file

@ -40,7 +40,7 @@ struct Entry {
Score imbalance() const { return make_score(value, value); }
Phase game_phase() const { return gamePhase; }
bool specialized_eval_exists() const { return evaluationFunction != nullptr; }
bool specialized_eval_exists() const { return evaluationFunction != NULL; }
Value evaluate(const Position& pos) const { return (*evaluationFunction)(pos); }
// scale_factor takes a position and a color as input and returns a scale factor

View file

@ -146,7 +146,7 @@ void dbg_print() {
std::ostream& operator<<(std::ostream& os, SyncCout sc) {
static std::mutex m;
static Mutex m;
if (sc == IO_LOCK)
m.lock();
@ -162,16 +162,35 @@ std::ostream& operator<<(std::ostream& os, SyncCout sc) {
void start_logger(bool b) { Logger::start(b); }
/// timed_wait() waits for msec milliseconds. It is mainly a helper to wrap
/// the conversion from milliseconds to struct timespec, as used by pthreads.
void timed_wait(WaitCondition& sleepCond, Lock& sleepLock, int msec) {
#ifdef _WIN32
int tm = msec;
#else
timespec ts, *tm = &ts;
uint64_t ms = Time::now() + msec;
ts.tv_sec = ms / 1000;
ts.tv_nsec = (ms % 1000) * 1000000LL;
#endif
cond_timedwait(sleepCond, sleepLock, tm);
}
/// prefetch() preloads the given address in L1/L2 cache. This is a non-blocking
/// function that doesn't stall the CPU waiting for data to be loaded from memory,
/// which can be quite slow.
#ifdef NO_PREFETCH
void prefetch(void*) {}
void prefetch(char*) {}
#else
void prefetch(void* addr) {
void prefetch(char* addr) {
# if defined(__INTEL_COMPILER)
// This hack prevents prefetches from being optimized away by
@ -180,7 +199,7 @@ void prefetch(void* addr) {
# endif
# if defined(__INTEL_COMPILER) || defined(_MSC_VER)
_mm_prefetch((char*)addr, _MM_HINT_T0);
_mm_prefetch(addr, _MM_HINT_T0);
# else
__builtin_prefetch(addr);
# endif

View file

@ -21,7 +21,6 @@
#define MISC_H_INCLUDED
#include <cassert>
#include <chrono>
#include <ostream>
#include <string>
#include <vector>
@ -29,7 +28,8 @@
#include "types.h"
const std::string engine_info(bool to_uci = false);
void prefetch(void* addr);
void timed_wait(WaitCondition&, Lock&, int);
void prefetch(char* addr);
void start_logger(bool b);
void dbg_hit_on(bool b);
@ -37,19 +37,20 @@ void dbg_hit_on(bool c, bool b);
void dbg_mean_of(int v);
void dbg_print();
typedef std::chrono::milliseconds::rep TimePoint; // A value in milliseconds
inline TimePoint now() {
return std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::steady_clock::now().time_since_epoch()).count();
namespace Time {
typedef int64_t point;
inline point now() { return system_time_to_msec(); }
}
template<class Entry, int Size>
struct HashTable {
HashTable() : table(Size, Entry()) {}
Entry* operator[](Key key) { return &table[(uint32_t)key & (Size - 1)]; }
private:
std::vector<Entry> table = std::vector<Entry>(Size);
std::vector<Entry> table;
};

View file

@ -59,9 +59,9 @@ namespace {
if (Checks && !pos.gives_check(m, *ci))
return moveList;
*moveList++ = m;
(moveList++)->move = m;
return (void)ci, moveList; // Silence a warning under MSVC
return moveList;
}
@ -69,21 +69,23 @@ namespace {
inline ExtMove* make_promotions(ExtMove* moveList, Square to, const CheckInfo* ci) {
if (Type == CAPTURES || Type == EVASIONS || Type == NON_EVASIONS)
*moveList++ = make<PROMOTION>(to - Delta, to, QUEEN);
(moveList++)->move = make<PROMOTION>(to - Delta, to, QUEEN);
if (Type == QUIETS || Type == EVASIONS || Type == NON_EVASIONS)
{
*moveList++ = make<PROMOTION>(to - Delta, to, ROOK);
*moveList++ = make<PROMOTION>(to - Delta, to, BISHOP);
*moveList++ = make<PROMOTION>(to - Delta, to, KNIGHT);
(moveList++)->move = make<PROMOTION>(to - Delta, to, ROOK);
(moveList++)->move = make<PROMOTION>(to - Delta, to, BISHOP);
(moveList++)->move = make<PROMOTION>(to - Delta, to, KNIGHT);
}
// Knight promotion is the only promotion that can give a direct check
// that's not already included in the queen promotion.
if (Type == QUIET_CHECKS && (StepAttacksBB[W_KNIGHT][to] & ci->ksq))
*moveList++ = make<PROMOTION>(to - Delta, to, KNIGHT);
(moveList++)->move = make<PROMOTION>(to - Delta, to, KNIGHT);
else
(void)ci; // Silence a warning under MSVC
return (void)ci, moveList; // Silence a warning under MSVC
return moveList;
}
@ -145,13 +147,13 @@ namespace {
while (b1)
{
Square to = pop_lsb(&b1);
*moveList++ = make_move(to - Up, to);
(moveList++)->move = make_move(to - Up, to);
}
while (b2)
{
Square to = pop_lsb(&b2);
*moveList++ = make_move(to - Up - Up, to);
(moveList++)->move = make_move(to - Up - Up, to);
}
}
@ -187,13 +189,13 @@ namespace {
while (b1)
{
Square to = pop_lsb(&b1);
*moveList++ = make_move(to - Right, to);
(moveList++)->move = make_move(to - Right, to);
}
while (b2)
{
Square to = pop_lsb(&b2);
*moveList++ = make_move(to - Left, to);
(moveList++)->move = make_move(to - Left, to);
}
if (pos.ep_square() != SQ_NONE)
@ -211,7 +213,7 @@ namespace {
assert(b1);
while (b1)
*moveList++ = make<ENPASSANT>(pop_lsb(&b1), pos.ep_square());
(moveList++)->move = make<ENPASSANT>(pop_lsb(&b1), pos.ep_square());
}
}
@ -245,7 +247,7 @@ namespace {
b &= ci->checkSq[Pt];
while (b)
*moveList++ = make_move(from, pop_lsb(&b));
(moveList++)->move = make_move(from, pop_lsb(&b));
}
return moveList;
@ -254,7 +256,7 @@ namespace {
template<Color Us, GenType Type> FORCE_INLINE
ExtMove* generate_all(const Position& pos, ExtMove* moveList, Bitboard target,
const CheckInfo* ci = nullptr) {
const CheckInfo* ci = NULL) {
const bool Checks = Type == QUIET_CHECKS;
@ -269,7 +271,7 @@ namespace {
Square ksq = pos.king_square(Us);
Bitboard b = pos.attacks_from<KING>(ksq) & target;
while (b)
*moveList++ = make_move(ksq, pop_lsb(&b));
(moveList++)->move = make_move(ksq, pop_lsb(&b));
}
if (Type != CAPTURES && Type != EVASIONS && pos.can_castle(Us))
@ -348,7 +350,7 @@ ExtMove* generate<QUIET_CHECKS>(const Position& pos, ExtMove* moveList) {
b &= ~PseudoAttacks[QUEEN][ci.ksq];
while (b)
*moveList++ = make_move(from, pop_lsb(&b));
(moveList++)->move = make_move(from, pop_lsb(&b));
}
return us == WHITE ? generate_all<WHITE, QUIET_CHECKS>(pos, moveList, ~pos.pieces(), &ci)
@ -380,7 +382,7 @@ ExtMove* generate<EVASIONS>(const Position& pos, ExtMove* moveList) {
// Generate evasions for king, capture and non capture moves
Bitboard b = pos.attacks_from<KING>(ksq) & ~pos.pieces(us) & ~sliderAttacks;
while (b)
*moveList++ = make_move(ksq, pop_lsb(&b));
(moveList++)->move = make_move(ksq, pop_lsb(&b));
if (more_than_one(pos.checkers()))
return moveList; // Double check, only a king move can save the day
@ -406,9 +408,9 @@ ExtMove* generate<LEGAL>(const Position& pos, ExtMove* moveList) {
moveList = pos.checkers() ? generate<EVASIONS >(pos, moveList)
: generate<NON_EVASIONS>(pos, moveList);
while (cur != moveList)
if ( (pinned || from_sq(*cur) == ksq || type_of(*cur) == ENPASSANT)
&& !pos.legal(*cur, pinned))
*cur = (--moveList)->move;
if ( (pinned || from_sq(cur->move) == ksq || type_of(cur->move) == ENPASSANT)
&& !pos.legal(cur->move, pinned))
cur->move = (--moveList)->move;
else
++cur;

View file

@ -36,9 +36,6 @@ enum GenType {
struct ExtMove {
Move move;
Value value;
operator Move() const { return move; }
void operator=(Move m) { move = m; }
};
inline bool operator<(const ExtMove& f, const ExtMove& s) {
@ -53,17 +50,18 @@ ExtMove* generate(const Position& pos, ExtMove* moveList);
template<GenType T>
struct MoveList {
explicit MoveList(const Position& pos) : last(generate<T>(pos, moveList)) {}
const ExtMove* begin() const { return moveList; }
const ExtMove* end() const { return last; }
explicit MoveList(const Position& pos) : cur(moveList), last(generate<T>(pos, moveList)) { last->move = MOVE_NONE; }
void operator++() { ++cur; }
Move operator*() const { return cur->move; }
size_t size() const { return last - moveList; }
bool contains(Move move) const {
for (const auto& m : *this) if (m == move) return true;
bool contains(Move m) const {
for (const ExtMove* it(moveList); it != last; ++it) if (it->move == m) return true;
return false;
}
private:
ExtMove moveList[MAX_MOVES], *last;
ExtMove moveList[MAX_MOVES];
ExtMove *cur, *last;
};
#endif // #ifndef MOVEGEN_H_INCLUDED

View file

@ -35,7 +35,7 @@ namespace {
STOP
};
// Our insertion sort, which is guaranteed to be stable, as it should be
// Our insertion sort, which is guaranteed (and also needed) to be stable
void insertion_sort(ExtMove* begin, ExtMove* end)
{
ExtMove tmp, *p, *q;
@ -49,15 +49,18 @@ namespace {
}
}
// pick_best() finds the best move in the range (begin, end) and moves it to
// the front. It's faster than sorting all the moves in advance when there
// are few moves e.g. the possible captures.
inline Move pick_best(ExtMove* begin, ExtMove* end)
// Unary predicate used by std::partition to split positive values from remaining
// ones so as to sort the two sets separately, with the second sort delayed.
inline bool has_positive_value(const ExtMove& move) { return move.value > VALUE_ZERO; }
// Picks the best move in the range (begin, end) and moves it to the front.
// It's faster than sorting all the moves in advance when there are few
// moves e.g. possible captures.
inline ExtMove* pick_best(ExtMove* begin, ExtMove* end)
{
std::swap(*begin, *std::max_element(begin, end));
return *begin;
return begin;
}
} // namespace
@ -72,6 +75,7 @@ MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const HistoryStats&
assert(d > DEPTH_ZERO);
cur = end = moves;
endBadCaptures = moves + MAX_MOVES - 1;
countermoves = cm;
followupmoves = fm;
@ -84,11 +88,11 @@ MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const HistoryStats&
stage = MAIN_SEARCH;
ttMove = (ttm && pos.pseudo_legal(ttm) ? ttm : MOVE_NONE);
endMoves += (ttMove != MOVE_NONE);
end += (ttMove != MOVE_NONE);
}
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const HistoryStats& h,
Square s) : pos(p), history(h) {
Square s) : pos(p), history(h), cur(moves), end(moves) {
assert(d <= DEPTH_ZERO);
@ -109,11 +113,11 @@ MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const HistoryStats&
}
ttMove = (ttm && pos.pseudo_legal(ttm) ? ttm : MOVE_NONE);
endMoves += (ttMove != MOVE_NONE);
end += (ttMove != MOVE_NONE);
}
MovePicker::MovePicker(const Position& p, Move ttm, const HistoryStats& h, PieceType pt)
: pos(p), history(h) {
: pos(p), history(h), cur(moves), end(moves) {
assert(!pos.checkers());
@ -127,7 +131,7 @@ MovePicker::MovePicker(const Position& p, Move ttm, const HistoryStats& h, Piece
if (ttMove && (!pos.capture(ttMove) || pos.see(ttMove) <= captureThreshold))
ttMove = MOVE_NONE;
endMoves += (ttMove != MOVE_NONE);
end += (ttMove != MOVE_NONE);
}
@ -148,22 +152,32 @@ void MovePicker::score<CAPTURES>() {
// badCaptures[] array, but instead of doing it now we delay until the move
// has been picked up in pick_move_from_list(). This way we save some SEE
// calls in case we get a cutoff.
for (auto& m : *this)
Move m;
for (ExtMove* it = moves; it != end; ++it)
{
m = it->move;
it->value = PieceValue[MG][pos.piece_on(to_sq(m))]
- Value(type_of(pos.moved_piece(m)));
if (type_of(m) == ENPASSANT)
m.value = PieceValue[MG][PAWN] - Value(PAWN);
it->value += PieceValue[MG][PAWN];
else if (type_of(m) == PROMOTION)
m.value = PieceValue[MG][pos.piece_on(to_sq(m))] - Value(PAWN)
+ PieceValue[MG][promotion_type(m)] - PieceValue[MG][PAWN];
else
m.value = PieceValue[MG][pos.piece_on(to_sq(m))]
- Value(type_of(pos.moved_piece(m)));
it->value += PieceValue[MG][promotion_type(m)] - PieceValue[MG][PAWN];
}
}
template<>
void MovePicker::score<QUIETS>() {
for (auto& m : *this)
m.value = history[pos.moved_piece(m)][to_sq(m)];
Move m;
for (ExtMove* it = moves; it != end; ++it)
{
m = it->move;
it->value = history[pos.moved_piece(m)][to_sq(m)];
}
}
template<>
@ -171,17 +185,21 @@ void MovePicker::score<EVASIONS>() {
// Try good captures ordered by MVV/LVA, then non-captures if destination square
// is not under attack, ordered by history value, then bad-captures and quiet
// moves with a negative SEE. This last group is ordered by the SEE value.
Move m;
Value see;
for (auto& m : *this)
for (ExtMove* it = moves; it != end; ++it)
{
m = it->move;
if ((see = pos.see_sign(m)) < VALUE_ZERO)
m.value = see - HistoryStats::Max; // At the bottom
it->value = see - HistoryStats::Max; // At the bottom
else if (pos.capture(m))
m.value = PieceValue[MG][pos.piece_on(to_sq(m))]
it->value = PieceValue[MG][pos.piece_on(to_sq(m))]
- Value(type_of(pos.moved_piece(m))) + HistoryStats::Max;
else
m.value = history[pos.moved_piece(m)][to_sq(m)];
it->value = history[pos.moved_piece(m)][to_sq(m)];
}
}
@ -195,73 +213,74 @@ void MovePicker::generate_next_stage() {
switch (++stage) {
case CAPTURES_S1: case CAPTURES_S3: case CAPTURES_S4: case CAPTURES_S5: case CAPTURES_S6:
endMoves = generate<CAPTURES>(pos, moves);
end = generate<CAPTURES>(pos, moves);
score<CAPTURES>();
break;
return;
case KILLERS_S1:
cur = killers;
endMoves = cur + 2;
end = cur + 2;
killers[0] = ss->killers[0];
killers[1] = ss->killers[1];
killers[0].move = ss->killers[0];
killers[1].move = ss->killers[1];
killers[2].move = killers[3].move = MOVE_NONE;
killers[4].move = killers[5].move = MOVE_NONE;
// In SMP case countermoves[] and followupmoves[] could have duplicated entries
// in rare cases (less than 1 out of a million). This is harmless.
// Please note that following code is racy and could yield to rare (less
// than 1 out of a million) duplicated entries in SMP case. This is harmless.
// Be sure countermoves and followupmoves are different from killers
// Be sure countermoves are different from killers
for (int i = 0; i < 2; ++i)
if ( countermoves[i] != killers[0]
&& countermoves[i] != killers[1])
*endMoves++ = countermoves[i];
if ( countermoves[i] != (cur+0)->move
&& countermoves[i] != (cur+1)->move)
(end++)->move = countermoves[i];
// Be sure followupmoves are different from killers and countermoves
for (int i = 0; i < 2; ++i)
if ( followupmoves[i] != killers[0]
&& followupmoves[i] != killers[1]
&& followupmoves[i] != killers[2]
&& followupmoves[i] != killers[3])
*endMoves++ = followupmoves[i];
break;
if ( followupmoves[i] != (cur+0)->move
&& followupmoves[i] != (cur+1)->move
&& followupmoves[i] != (cur+2)->move
&& followupmoves[i] != (cur+3)->move)
(end++)->move = followupmoves[i];
return;
case QUIETS_1_S1:
endQuiets = endMoves = generate<QUIETS>(pos, moves);
endQuiets = end = generate<QUIETS>(pos, moves);
score<QUIETS>();
endMoves = std::partition(cur, endMoves, [](const ExtMove& m) { return m.value > VALUE_ZERO; });
insertion_sort(cur, endMoves);
break;
end = std::partition(cur, end, has_positive_value);
insertion_sort(cur, end);
return;
case QUIETS_2_S1:
cur = endMoves;
endMoves = endQuiets;
cur = end;
end = endQuiets;
if (depth >= 3 * ONE_PLY)
insertion_sort(cur, endMoves);
break;
insertion_sort(cur, end);
return;
case BAD_CAPTURES_S1:
// Just pick them in reverse order to get MVV/LVA ordering
cur = moves + MAX_MOVES - 1;
endMoves = endBadCaptures;
break;
end = endBadCaptures;
return;
case EVASIONS_S2:
endMoves = generate<EVASIONS>(pos, moves);
if (endMoves - moves > 1)
end = generate<EVASIONS>(pos, moves);
if (end > moves + 1)
score<EVASIONS>();
break;
return;
case QUIET_CHECKS_S3:
endMoves = generate<QUIET_CHECKS>(pos, moves);
break;
end = generate<QUIET_CHECKS>(pos, moves);
return;
case EVASION: case QSEARCH_0: case QSEARCH_1: case PROBCUT: case RECAPTURE:
stage = STOP;
/* Fall through */
case STOP:
endMoves = cur + 1; // Avoid another generate_next_stage() call
break;
end = cur + 1; // Avoid another next_phase() call
return;
default:
assert(false);
@ -280,7 +299,7 @@ Move MovePicker::next_move<false>() {
while (true)
{
while (cur == endMoves)
while (cur == end)
generate_next_stage();
switch (stage) {
@ -290,19 +309,19 @@ Move MovePicker::next_move<false>() {
return ttMove;
case CAPTURES_S1:
move = pick_best(cur++, endMoves);
move = pick_best(cur++, end)->move;
if (move != ttMove)
{
if (pos.see_sign(move) >= VALUE_ZERO)
return move;
// Losing capture, move it to the tail of the array
*endBadCaptures-- = move;
(endBadCaptures--)->move = move;
}
break;
case KILLERS_S1:
move = *cur++;
move = (cur++)->move;
if ( move != MOVE_NONE
&& move != ttMove
&& pos.pseudo_legal(move)
@ -311,40 +330,40 @@ Move MovePicker::next_move<false>() {
break;
case QUIETS_1_S1: case QUIETS_2_S1:
move = *cur++;
move = (cur++)->move;
if ( move != ttMove
&& move != killers[0]
&& move != killers[1]
&& move != killers[2]
&& move != killers[3]
&& move != killers[4]
&& move != killers[5])
&& move != killers[0].move
&& move != killers[1].move
&& move != killers[2].move
&& move != killers[3].move
&& move != killers[4].move
&& move != killers[5].move)
return move;
break;
case BAD_CAPTURES_S1:
return *cur--;
return (cur--)->move;
case EVASIONS_S2: case CAPTURES_S3: case CAPTURES_S4:
move = pick_best(cur++, endMoves);
move = pick_best(cur++, end)->move;
if (move != ttMove)
return move;
break;
case CAPTURES_S5:
move = pick_best(cur++, endMoves);
move = pick_best(cur++, end)->move;
if (move != ttMove && pos.see(move) > captureThreshold)
return move;
break;
case CAPTURES_S6:
move = pick_best(cur++, endMoves);
move = pick_best(cur++, end)->move;
if (to_sq(move) == recaptureSquare)
return move;
break;
case QUIET_CHECKS_S3:
move = *cur++;
move = (cur++)->move;
if (move != ttMove)
return move;
break;

View file

@ -80,10 +80,10 @@ typedef Stats<false, std::pair<Move, Move> > MovesStats;
/// to get a cut-off first.
class MovePicker {
public:
MovePicker(const MovePicker&) = delete;
MovePicker& operator=(const MovePicker&) = delete;
MovePicker& operator=(const MovePicker&); // Silence a warning under MSVC
public:
MovePicker(const Position&, Move, Depth, const HistoryStats&, Square);
MovePicker(const Position&, Move, const HistoryStats&, PieceType);
MovePicker(const Position&, Move, Depth, const HistoryStats&, Move*, Move*, Search::Stack*);
@ -93,8 +93,6 @@ public:
private:
template<GenType> void score();
void generate_next_stage();
ExtMove* begin() { return moves; }
ExtMove* end() { return endMoves; }
const Position& pos;
const HistoryStats& history;
@ -107,8 +105,8 @@ private:
Square recaptureSquare;
Value captureThreshold;
int stage;
ExtMove *endQuiets, *endBadCaptures;
ExtMove moves[MAX_MOVES], *cur = moves, *endMoves = moves;
ExtMove *cur, *end, *endQuiets, *endBadCaptures;
ExtMove moves[MAX_MOVES];
};
#endif // #ifndef MOVEPICK_H_INCLUDED

View file

@ -149,7 +149,7 @@ namespace {
isolated = !neighbours;
// Test for backward pawn.
// If the pawn is passed, isolated, lever or connected it cannot be
// If the pawn is passed, isolated, connected or a lever it cannot be
// backward. If there are friendly pawns behind on adjacent files
// it cannot be backward either.
if ( (passed | isolated | lever | connected)

116
src/platform.h Normal file
View file

@ -0,0 +1,116 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PLATFORM_H_INCLUDED
#define PLATFORM_H_INCLUDED
#ifdef _MSC_VER
// Disable some silly and noisy warnings from MSVC compiler
#pragma warning(disable: 4127) // Conditional expression is constant
#pragma warning(disable: 4146) // Unary minus operator applied to unsigned type
#pragma warning(disable: 4800) // Forcing value to bool 'true' or 'false'
#pragma warning(disable: 4996) // Function _ftime() may be unsafe
// MSVC does not support <inttypes.h>
typedef signed __int8 int8_t;
typedef unsigned __int8 uint8_t;
typedef signed __int16 int16_t;
typedef unsigned __int16 uint16_t;
typedef signed __int32 int32_t;
typedef unsigned __int32 uint32_t;
typedef signed __int64 int64_t;
typedef unsigned __int64 uint64_t;
#else
# include <inttypes.h>
#endif
#ifndef _WIN32 // Linux - Unix
# include <sys/time.h>
inline int64_t system_time_to_msec() {
timeval t;
gettimeofday(&t, NULL);
return t.tv_sec * 1000LL + t.tv_usec / 1000;
}
# include <pthread.h>
typedef pthread_mutex_t Lock;
typedef pthread_cond_t WaitCondition;
typedef pthread_t NativeHandle;
typedef void*(*pt_start_fn)(void*);
# define lock_init(x) pthread_mutex_init(&(x), NULL)
# define lock_grab(x) pthread_mutex_lock(&(x))
# define lock_release(x) pthread_mutex_unlock(&(x))
# define lock_destroy(x) pthread_mutex_destroy(&(x))
# define cond_destroy(x) pthread_cond_destroy(&(x))
# define cond_init(x) pthread_cond_init(&(x), NULL)
# define cond_signal(x) pthread_cond_signal(&(x))
# define cond_wait(x,y) pthread_cond_wait(&(x),&(y))
# define cond_timedwait(x,y,z) pthread_cond_timedwait(&(x),&(y),z)
# define thread_create(x,f,t) pthread_create(&(x),NULL,(pt_start_fn)f,t)
# define thread_join(x) pthread_join(x, NULL)
#else // Windows and MinGW
# include <sys/timeb.h>
inline int64_t system_time_to_msec() {
_timeb t;
_ftime(&t);
return t.time * 1000LL + t.millitm;
}
#ifndef NOMINMAX
# define NOMINMAX // disable macros min() and max()
#endif
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#undef WIN32_LEAN_AND_MEAN
#undef NOMINMAX
// We use critical sections on Windows to support Windows XP and older versions.
// Unfortunately, cond_wait() is racy between lock_release() and WaitForSingleObject()
// but apart from this they have the same speed performance of SRW locks.
typedef CRITICAL_SECTION Lock;
typedef HANDLE WaitCondition;
typedef HANDLE NativeHandle;
// On Windows 95 and 98 parameter lpThreadId may not be null
inline DWORD* dwWin9xKludge() { static DWORD dw; return &dw; }
# define lock_init(x) InitializeCriticalSection(&(x))
# define lock_grab(x) EnterCriticalSection(&(x))
# define lock_release(x) LeaveCriticalSection(&(x))
# define lock_destroy(x) DeleteCriticalSection(&(x))
# define cond_init(x) { x = CreateEvent(0, FALSE, FALSE, 0); }
# define cond_destroy(x) CloseHandle(x)
# define cond_signal(x) SetEvent(x)
# define cond_wait(x,y) { lock_release(y); WaitForSingleObject(x, INFINITE); lock_grab(y); }
# define cond_timedwait(x,y,z) { lock_release(y); WaitForSingleObject(x,z); lock_grab(y); }
# define thread_create(x,f,t) (x = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)f,t,0,dwWin9xKludge()))
# define thread_join(x) { WaitForSingleObject(x, INFINITE); CloseHandle(x); }
#endif
#endif // #ifndef PLATFORM_H_INCLUDED

View file

@ -19,7 +19,7 @@
#include <algorithm>
#include <cassert>
#include <cstring> // For std::memset, std::memcmp
#include <cstring> // For std::memset
#include <iomanip>
#include <sstream>
@ -182,7 +182,7 @@ void Position::init() {
Position& Position::operator=(const Position& pos) {
std::memcpy(this, &pos, sizeof(Position));
std::memcpy(&startState, st, sizeof(StateInfo));
startState = *st;
st = &startState;
nodes = 0;
@ -265,7 +265,7 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) {
else if ((idx = PieceToChar.find(token)) != string::npos)
{
put_piece(color_of(Piece(idx)), type_of(Piece(idx)), sq);
put_piece(sq, color_of(Piece(idx)), type_of(Piece(idx)));
++sq;
}
}
@ -375,13 +375,13 @@ void Position::set_state(StateInfo* si) const {
si->psq += psq[color_of(pc)][type_of(pc)][s];
}
if (si->epSquare != SQ_NONE)
si->key ^= Zobrist::enpassant[file_of(si->epSquare)];
if (ep_square() != SQ_NONE)
si->key ^= Zobrist::enpassant[file_of(ep_square())];
if (sideToMove == BLACK)
si->key ^= Zobrist::side;
si->key ^= Zobrist::castling[si->castlingRights];
si->key ^= Zobrist::castling[st->castlingRights];
for (Bitboard b = pieces(PAWN); b; )
{
@ -498,7 +498,7 @@ Bitboard Position::attackers_to(Square s, Bitboard occupied) const {
return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))
| (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))
| (attacks_from<KNIGHT>(s) & pieces(KNIGHT))
| (attacks_bb<ROOK >(s, occupied) & pieces(ROOK, QUEEN))
| (attacks_bb<ROOK>(s, occupied) & pieces(ROOK, QUEEN))
| (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN))
| (attacks_from<KING>(s) & pieces(KING));
}
@ -566,7 +566,7 @@ bool Position::pseudo_legal(const Move m) const {
return MoveList<LEGAL>(*this).contains(m);
// Is not a promotion, so promotion piece must be empty
if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE)
if (promotion_type(m) - 2 != NO_PIECE_TYPE)
return false;
// If the 'from' square is not occupied by a piece belonging to the side to
@ -587,7 +587,9 @@ bool Position::pseudo_legal(const Move m) const {
return false;
if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture
&& !((from + pawn_push(us) == to) && empty(to)) // Not a single push
&& !( (from + 2 * pawn_push(us) == to) // Not a double push
&& (rank_of(from) == relative_rank(us, RANK_2))
&& empty(to)
@ -632,9 +634,10 @@ bool Position::gives_check(Move m, const CheckInfo& ci) const {
Square from = from_sq(m);
Square to = to_sq(m);
PieceType pt = type_of(piece_on(from));
// Is there a direct check?
if (ci.checkSq[type_of(piece_on(from))] & to)
if (ci.checkSq[pt] & to)
return true;
// Is there a discovered check?
@ -684,21 +687,31 @@ bool Position::gives_check(Move m, const CheckInfo& ci) const {
/// to a StateInfo object. The move is assumed to be legal. Pseudo-legal
/// moves should be filtered out before this function is called.
void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
void Position::do_move(Move m, StateInfo& newSt) {
CheckInfo ci(*this);
do_move(m, newSt, gives_check(m, ci));
}
void Position::do_move(Move m, StateInfo& newSt, bool moveIsCheck) {
assert(is_ok(m));
assert(&newSt != st);
++nodes;
Key k = st->key ^ Zobrist::side;
Key k = st->key;
// Copy some fields of the old state to our new StateInfo object except the
// ones which are going to be recalculated from scratch anyway and then switch
// our state pointer to point to the new (ready to be updated) state.
std::memcpy(&newSt, st, offsetof(StateInfo, key));
std::memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t));
newSt.previous = st;
st = &newSt;
// Update side to move
k ^= Zobrist::side;
// Increment ply counters. In particular, rule50 will be reset to zero later on
// in case of a capture or a pawn move.
++gamePly;
@ -709,19 +722,20 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
Color them = ~us;
Square from = from_sq(m);
Square to = to_sq(m);
PieceType pt = type_of(piece_on(from));
Piece pc = piece_on(from);
PieceType pt = type_of(pc);
PieceType captured = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
assert(color_of(piece_on(from)) == us);
assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == (type_of(m) != CASTLING ? them : us));
assert(color_of(pc) == us);
assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == them || type_of(m) == CASTLING);
assert(captured != KING);
if (type_of(m) == CASTLING)
{
assert(pt == KING);
assert(pc == make_piece(us, KING));
Square rfrom, rto;
do_castling<true>(us, from, to, rfrom, rto);
do_castling<true>(from, to, rfrom, rto);
captured = NO_PIECE_TYPE;
st->psq += psq[us][ROOK][rto] - psq[us][ROOK][rfrom];
@ -738,7 +752,7 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
{
if (type_of(m) == ENPASSANT)
{
capsq -= pawn_push(us);
capsq += pawn_push(them);
assert(pt == PAWN);
assert(to == st->epSquare);
@ -746,7 +760,7 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
assert(piece_on(to) == NO_PIECE);
assert(piece_on(capsq) == make_piece(them, PAWN));
board[capsq] = NO_PIECE; // Not done by remove_piece()
board[capsq] = NO_PIECE;
}
st->pawnKey ^= Zobrist::psq[them][PAWN][capsq];
@ -755,12 +769,12 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
st->nonPawnMaterial[them] -= PieceValue[MG][captured];
// Update board and piece lists
remove_piece(them, captured, capsq);
remove_piece(capsq, them, captured);
// Update material hash key and prefetch access to materialTable
k ^= Zobrist::psq[them][captured][capsq];
st->materialKey ^= Zobrist::psq[them][captured][pieceCount[them][captured]];
prefetch(thisThread->materialTable[st->materialKey]);
prefetch((char*)thisThread->materialTable[st->materialKey]);
// Update incremental scores
st->psq -= psq[them][captured][capsq];
@ -789,16 +803,16 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
// Move the piece. The tricky Chess960 castling is handled earlier
if (type_of(m) != CASTLING)
move_piece(us, pt, from, to);
move_piece(from, to, us, pt);
// If the moving piece is a pawn do some special extra work
if (pt == PAWN)
{
// Set en-passant square if the moved pawn can be captured
if ( (int(to) ^ int(from)) == 16
&& (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN)))
&& (attacks_from<PAWN>(from + pawn_push(us), us) & pieces(them, PAWN)))
{
st->epSquare = (from + to) / 2;
st->epSquare = Square((from + to) / 2);
k ^= Zobrist::enpassant[file_of(st->epSquare)];
}
@ -809,8 +823,8 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
assert(relative_rank(us, to) == RANK_8);
assert(promotion >= KNIGHT && promotion <= QUEEN);
remove_piece(us, PAWN, to);
put_piece(us, promotion, to);
remove_piece(to, us, PAWN);
put_piece(to, us, promotion);
// Update hash keys
k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to];
@ -827,7 +841,7 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
// Update pawn hash key and prefetch access to pawnsTable
st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to];
prefetch(thisThread->pawnsTable[st->pawnKey]);
prefetch((char*)thisThread->pawnsTable[st->pawnKey]);
// Reset rule 50 draw counter
st->rule50 = 0;
@ -842,8 +856,8 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
// Update the key with the final value
st->key = k;
// Calculate checkers bitboard (if move gives check)
st->checkersBB = givesCheck ? attackers_to(king_square(them)) & pieces(us) : 0;
// Calculate checkers bitboard (if move is check)
st->checkersBB = moveIsCheck ? attackers_to(king_square(them)) & pieces(us) : 0;
sideToMove = ~sideToMove;
@ -870,23 +884,23 @@ void Position::undo_move(Move m) {
if (type_of(m) == PROMOTION)
{
assert(relative_rank(us, to) == RANK_8);
assert(pt == promotion_type(m));
assert(pt >= KNIGHT && pt <= QUEEN);
assert(relative_rank(us, to) == RANK_8);
assert(promotion_type(m) >= KNIGHT && promotion_type(m) <= QUEEN);
remove_piece(us, pt, to);
put_piece(us, PAWN, to);
remove_piece(to, us, promotion_type(m));
put_piece(to, us, PAWN);
pt = PAWN;
}
if (type_of(m) == CASTLING)
{
Square rfrom, rto;
do_castling<false>(us, from, to, rfrom, rto);
do_castling<false>(from, to, rfrom, rto);
}
else
{
move_piece(us, pt, to, from); // Put the piece back at the source square
move_piece(to, from, us, pt); // Put the piece back at the source square
if (st->capturedType)
{
@ -900,10 +914,9 @@ void Position::undo_move(Move m) {
assert(to == st->previous->epSquare);
assert(relative_rank(us, to) == RANK_6);
assert(piece_on(capsq) == NO_PIECE);
assert(st->capturedType == PAWN);
}
put_piece(~us, st->capturedType, capsq); // Restore the captured piece
put_piece(capsq, ~us, st->capturedType); // Restore the captured piece
}
}
@ -918,19 +931,19 @@ void Position::undo_move(Move m) {
/// Position::do_castling() is a helper used to do/undo a castling move. This
/// is a bit tricky, especially in Chess960.
template<bool Do>
void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) {
void Position::do_castling(Square from, Square& to, Square& rfrom, Square& rto) {
bool kingSide = to > from;
rfrom = to; // Castling is encoded as "king captures friendly rook"
rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
rto = relative_square(sideToMove, kingSide ? SQ_F1 : SQ_D1);
to = relative_square(sideToMove, kingSide ? SQ_G1 : SQ_C1);
// Remove both pieces first since squares could overlap in Chess960
remove_piece(us, KING, Do ? from : to);
remove_piece(us, ROOK, Do ? rfrom : rto);
remove_piece(Do ? from : to, sideToMove, KING);
remove_piece(Do ? rfrom : rto, sideToMove, ROOK);
board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us
put_piece(us, KING, Do ? to : from);
put_piece(us, ROOK, Do ? rto : rfrom);
put_piece(Do ? to : from, sideToMove, KING);
put_piece(Do ? rto : rfrom, sideToMove, ROOK);
}
@ -940,9 +953,9 @@ void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Squ
void Position::do_null_move(StateInfo& newSt) {
assert(!checkers());
assert(&newSt != st);
std::memcpy(&newSt, st, sizeof(StateInfo));
std::memcpy(&newSt, st, sizeof(StateInfo)); // Fully copy here
newSt.previous = st;
st = &newSt;
@ -953,7 +966,7 @@ void Position::do_null_move(StateInfo& newSt) {
}
st->key ^= Zobrist::side;
prefetch(TT.first_entry(st->key));
prefetch((char*)TT.first_entry(st->key));
++st->rule50;
st->pliesFromNull = 0;
@ -1063,11 +1076,21 @@ Value Position::see(Move m) const {
// Locate and remove the next least valuable attacker
captured = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
// Stop before processing a king capture
if (captured == KING)
{
if (stmAttackers == attackers)
++slIndex;
break;
}
stm = ~stm;
stmAttackers = attackers & pieces(stm);
++slIndex;
} while (stmAttackers && (captured != KING || (--slIndex, false))); // Stop before a king capture
} while (stmAttackers);
// Having built the swap list, we negamax through it to find the best
// achievable score from the point of view of the side to move.
@ -1102,6 +1125,10 @@ bool Position::is_draw() const {
/// Position::flip() flips position with the white and black sides reversed. This
/// is only useful for debugging e.g. for finding evaluation symmetry bugs.
static char toggle_case(char c) {
return char(islower(c) ? toupper(c) : tolower(c));
}
void Position::flip() {
string f, token;
@ -1119,8 +1146,7 @@ void Position::flip() {
ss >> token; // Castling availability
f += token + " ";
std::transform(f.begin(), f.end(), f.begin(),
[](char c) { return char(islower(c) ? toupper(c) : tolower(c)); });
std::transform(f.begin(), f.end(), f.begin(), toggle_case);
ss >> token; // En passant square
f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3"));
@ -1137,18 +1163,22 @@ void Position::flip() {
/// Position::pos_is_ok() performs some consistency checks for the position object.
/// This is meant to be helpful when debugging.
bool Position::pos_is_ok(int* failedStep) const {
bool Position::pos_is_ok(int* step) const {
const bool Fast = true; // Quick (default) or full check?
// Which parts of the position should be verified?
const bool all = false;
enum { Default, King, Bitboards, State, Lists, Castling };
const bool testBitboards = all || false;
const bool testState = all || false;
const bool testKingCount = all || false;
const bool testKingCapture = all || false;
const bool testPieceCounts = all || false;
const bool testPieceList = all || false;
const bool testCastlingSquares = all || false;
for (int step = Default; step <= (Fast ? Default : Castling); step++)
{
if (failedStep)
*failedStep = step;
if (step)
*step = 1;
if (step == Default)
if ( (sideToMove != WHITE && sideToMove != BLACK)
|| piece_on(king_square(WHITE)) != W_KING
|| piece_on(king_square(BLACK)) != B_KING
@ -1156,58 +1186,73 @@ bool Position::pos_is_ok(int* failedStep) const {
&& relative_rank(sideToMove, ep_square()) != RANK_6))
return false;
if (step == King)
if ( std::count(board, board + SQUARE_NB, W_KING) != 1
|| std::count(board, board + SQUARE_NB, B_KING) != 1
|| attackers_to(king_square(~sideToMove)) & pieces(sideToMove))
return false;
if (step == Bitboards)
if (step && ++*step, testBitboards)
{
if ( (pieces(WHITE) & pieces(BLACK))
||(pieces(WHITE) | pieces(BLACK)) != pieces())
// The intersection of the white and black pieces must be empty
if (pieces(WHITE) & pieces(BLACK))
return false;
// The union of the white and black pieces must be equal to all
// occupied squares
if ((pieces(WHITE) | pieces(BLACK)) != pieces())
return false;
// Separate piece type bitboards must have empty intersections
for (PieceType p1 = PAWN; p1 <= KING; ++p1)
for (PieceType p2 = PAWN; p2 <= KING; ++p2)
if (p1 != p2 && (pieces(p1) & pieces(p2)))
return false;
}
if (step == State)
if (step && ++*step, testState)
{
StateInfo si = *st;
StateInfo si;
set_state(&si);
if (std::memcmp(&si, st, sizeof(StateInfo)))
if ( st->key != si.key
|| st->pawnKey != si.pawnKey
|| st->materialKey != si.materialKey
|| st->nonPawnMaterial[WHITE] != si.nonPawnMaterial[WHITE]
|| st->nonPawnMaterial[BLACK] != si.nonPawnMaterial[BLACK]
|| st->psq != si.psq
|| st->checkersBB != si.checkersBB)
return false;
}
if (step == Lists)
if (step && ++*step, testKingCount)
if ( std::count(board, board + SQUARE_NB, W_KING) != 1
|| std::count(board, board + SQUARE_NB, B_KING) != 1)
return false;
if (step && ++*step, testKingCapture)
if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove))
return false;
if (step && ++*step, testPieceCounts)
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt <= KING; ++pt)
{
if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt)))
return false;
if (step && ++*step, testPieceList)
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt <= KING; ++pt)
for (int i = 0; i < pieceCount[c][pt]; ++i)
if ( board[pieceList[c][pt][i]] != make_piece(c, pt)
|| index[pieceList[c][pt][i]] != i)
return false;
}
if (step == Castling)
if (step && ++*step, testCastlingSquares)
for (Color c = WHITE; c <= BLACK; ++c)
for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
{
if (!can_castle(c | s))
continue;
if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK)
|| castlingRightsMask[castlingRookSquare[c | s]] != (c | s)
||(castlingRightsMask[king_square(c)] & (c | s)) != (c | s))
if ( (castlingRightsMask[king_square(c)] & (c | s)) != (c | s)
|| piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK)
|| castlingRightsMask[castlingRookSquare[c | s]] != (c | s))
return false;
}
}
return true;
}

View file

@ -68,6 +68,11 @@ struct StateInfo {
};
/// When making a move the current StateInfo up to 'key' excluded is copied to
/// the new one. Here we calculate the quad words (64 bit) needed to be copied.
const size_t StateCopySize64 = offsetof(StateInfo, key) / sizeof(uint64_t) + 1;
/// Position class stores information regarding the board representation as
/// pieces, side to move, hash keys, castling info, etc. Important methods are
/// do_move() and undo_move(), used by the search to update node info when
@ -77,11 +82,12 @@ class Position {
friend std::ostream& operator<<(std::ostream&, const Position&);
Position(const Position&); // Disable the default copy constructor
public:
static void init();
Position() = default; // To define the global object RootPos
Position(const Position&) = delete;
Position() {} // To define the global object RootPos
Position(const Position& pos, Thread* th) { *this = pos; thisThread = th; }
Position(const std::string& f, bool c960, Thread* th) { set(f, c960, th); }
Position& operator=(const Position&); // To assign RootPos from UCI
@ -138,7 +144,8 @@ public:
bool opposite_bishops() const;
// Doing and undoing moves
void do_move(Move m, StateInfo& st, bool givesCheck);
void do_move(Move m, StateInfo& st);
void do_move(Move m, StateInfo& st, bool moveIsCheck);
void undo_move(Move m);
void do_null_move(StateInfo& st);
void undo_null_move();
@ -168,7 +175,7 @@ public:
Value non_pawn_material(Color c) const;
// Position consistency check, for debugging
bool pos_is_ok(int* failedStep = nullptr) const;
bool pos_is_ok(int* step = NULL) const;
void flip();
private:
@ -179,11 +186,11 @@ private:
// Other helpers
Bitboard check_blockers(Color c, Color kingColor) const;
void put_piece(Color c, PieceType pt, Square s);
void remove_piece(Color c, PieceType pt, Square s);
void move_piece(Color c, PieceType pt, Square from, Square to);
void put_piece(Square s, Color c, PieceType pt);
void remove_piece(Square s, Color c, PieceType pt);
void move_piece(Square from, Square to, Color c, PieceType pt);
template<bool Do>
void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto);
void do_castling(Square from, Square& to, Square& rfrom, Square& rto);
// Data members
Piece board[SQUARE_NB];
@ -388,7 +395,7 @@ inline Thread* Position::this_thread() const {
return thisThread;
}
inline void Position::put_piece(Color c, PieceType pt, Square s) {
inline void Position::put_piece(Square s, Color c, PieceType pt) {
board[s] = make_piece(c, pt);
byTypeBB[ALL_PIECES] |= s;
@ -399,7 +406,21 @@ inline void Position::put_piece(Color c, PieceType pt, Square s) {
pieceCount[c][ALL_PIECES]++;
}
inline void Position::remove_piece(Color c, PieceType pt, Square s) {
inline void Position::move_piece(Square from, Square to, Color c, PieceType pt) {
// index[from] is not updated and becomes stale. This works as long as index[]
// is accessed just by known occupied squares.
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
byTypeBB[ALL_PIECES] ^= from_to_bb;
byTypeBB[pt] ^= from_to_bb;
byColorBB[c] ^= from_to_bb;
board[from] = NO_PIECE;
board[to] = make_piece(c, pt);
index[to] = index[from];
pieceList[c][pt][index[to]] = to;
}
inline void Position::remove_piece(Square s, Color c, PieceType pt) {
// WARNING: This is not a reversible operation. If we remove a piece in
// do_move() and then replace it in undo_move() we will put it at the end of
@ -416,18 +437,4 @@ inline void Position::remove_piece(Color c, PieceType pt, Square s) {
pieceCount[c][ALL_PIECES]--;
}
inline void Position::move_piece(Color c, PieceType pt, Square from, Square to) {
// index[from] is not updated and becomes stale. This works as long as index[]
// is accessed just by known occupied squares.
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
byTypeBB[ALL_PIECES] ^= from_to_bb;
byTypeBB[pt] ^= from_to_bb;
byColorBB[c] ^= from_to_bb;
board[from] = NO_PIECE;
board[to] = make_piece(c, pt);
index[to] = index[from];
pieceList[c][pt][index[to]] = to;
}
#endif // #ifndef POSITION_H_INCLUDED

View file

@ -41,7 +41,7 @@ namespace Search {
LimitsType Limits;
RootMoveVector RootMoves;
Position RootPos;
TimePoint SearchTime;
Time::point SearchTime;
StateStackPtr SetupStates;
}
@ -66,29 +66,22 @@ namespace {
// Different node types, used as template parameter
enum NodeType { Root, PV, NonPV };
// Razoring and futility margin based on depth
// Dynamic razoring margin based on depth
inline Value razor_margin(Depth d) { return Value(512 + 32 * d); }
inline Value futility_margin(Depth d) { return Value(200 * d); }
// Futility and reductions lookup tables, initialized at startup
// Futility lookup tables (initialized at startup) and their access functions
int FutilityMoveCounts[2][16]; // [improving][depth]
Depth Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
template <bool PvNode> inline Depth reduction(bool i, Depth d, int mn) {
return Reductions[PvNode][i][std::min(d, 63 * ONE_PLY)][std::min(mn, 63)];
inline Value futility_margin(Depth d) {
return Value(200 * d);
}
// Skill struct is used to implement strength limiting
struct Skill {
Skill(int l) : level(l) {}
bool enabled() const { return level < 20; }
bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); }
Move pick_best(size_t multiPV);
// Reduction lookup tables (initialized at startup) and their access function
int8_t Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
int level;
Move best = MOVE_NONE;
};
template <bool PvNode> inline Depth reduction(bool i, Depth d, int mn) {
return (Depth) Reductions[PvNode][i][std::min(int(d), 63)][std::min(mn, 63)];
}
size_t PVIdx;
TimeManager TimeMgr;
@ -109,6 +102,26 @@ namespace {
Value value_from_tt(Value v, int ply);
void update_pv(Move* pv, Move move, Move* childPv);
void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt);
string uci_pv(const Position& pos, Depth depth, Value alpha, Value beta);
struct Skill {
Skill(int l, size_t rootSize) : level(l),
candidates(l < 20 ? std::min(4, (int)rootSize) : 0),
best(MOVE_NONE) {}
~Skill() {
if (candidates) // Swap best PV line with the sub-optimal one
std::swap(RootMoves[0], *std::find(RootMoves.begin(),
RootMoves.end(), best ? best : pick_move()));
}
size_t candidates_size() const { return candidates; }
bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
Move pick_move();
int level;
size_t candidates;
Move best;
};
} // namespace
@ -117,23 +130,25 @@ namespace {
void Search::init() {
const double K[][2] = {{ 0.83, 2.25 }, { 0.50, 3.00 }};
for (int pv = 0; pv <= 1; ++pv)
for (int imp = 0; imp <= 1; ++imp)
// Init reductions array
for (int d = 1; d < 64; ++d)
for (int mc = 1; mc < 64; ++mc)
{
double r = K[pv][0] + log(d) * log(mc) / K[pv][1];
double pvRed = 0.00 + log(double(d)) * log(double(mc)) / 3.00;
double nonPVRed = 0.33 + log(double(d)) * log(double(mc)) / 2.25;
if (r >= 1.5)
Reductions[pv][imp][d][mc] = int(r) * ONE_PLY;
Reductions[1][1][d][mc] = int8_t( pvRed >= 1.0 ? pvRed + 0.5: 0);
Reductions[0][1][d][mc] = int8_t(nonPVRed >= 1.0 ? nonPVRed + 0.5: 0);
Reductions[1][0][d][mc] = Reductions[1][1][d][mc];
Reductions[0][0][d][mc] = Reductions[0][1][d][mc];
// Increase reduction when eval is not improving
if (!pv && !imp && Reductions[pv][imp][d][mc] >= 2 * ONE_PLY)
Reductions[pv][imp][d][mc] += ONE_PLY;
if (Reductions[0][0][d][mc] >= 2)
Reductions[0][0][d][mc] += 1;
}
// Init futility move count array
for (int d = 0; d < 16; ++d)
{
FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8));
@ -152,19 +167,19 @@ uint64_t Search::perft(Position& pos, Depth depth) {
CheckInfo ci(pos);
const bool leaf = (depth == 2 * ONE_PLY);
for (const auto& m : MoveList<LEGAL>(pos))
for (MoveList<LEGAL> it(pos); *it; ++it)
{
if (Root && depth <= ONE_PLY)
cnt = 1, nodes++;
else
{
pos.do_move(m, st, pos.gives_check(m, ci));
pos.do_move(*it, st, pos.gives_check(*it, ci));
cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
nodes += cnt;
pos.undo_move(m);
pos.undo_move(*it);
}
if (Root)
sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
sync_cout << UCI::move(*it, pos.is_chess960()) << ": " << cnt << sync_endl;
}
return nodes;
}
@ -199,7 +214,7 @@ void Search::think() {
if (RootMoves.empty())
{
RootMoves.push_back(RootMove(MOVE_NONE));
RootMoves.push_back(MOVE_NONE);
sync_cout << "info depth 0 score "
<< UCI::value(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
<< sync_endl;
@ -237,8 +252,8 @@ void Search::think() {
}
}
for (Thread* th : Threads)
th->maxPly = 0;
for (size_t i = 0; i < Threads.size(); ++i)
Threads[i]->maxPly = 0;
Threads.timer->run = true;
Threads.timer->notify_one(); // Wake up the recurring timer
@ -294,14 +309,11 @@ namespace {
Followupmoves.clear();
size_t multiPV = Options["MultiPV"];
Skill skill(Options["Skill Level"]);
Skill skill(Options["Skill Level"], RootMoves.size());
// When playing with strength handicap enable MultiPV search that we will
// use behind the scenes to retrieve a set of possible moves.
if (skill.enabled())
multiPV = std::max(multiPV, (size_t)4);
multiPV = std::min(multiPV, RootMoves.size());
// Do we have to play with skill handicap? In this case enable MultiPV search
// that we will use behind the scenes to retrieve a set of possible moves.
multiPV = std::max(multiPV, skill.candidates_size());
// Iterative deepening loop until requested to stop or target depth reached
while (++depth < DEPTH_MAX && !Signals.stop && (!Limits.depth || depth <= Limits.depth))
@ -311,11 +323,11 @@ namespace {
// Save the last iteration's scores before first PV line is searched and
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
for (RootMove& rm : RootMoves)
rm.previousScore = rm.score;
for (size_t i = 0; i < RootMoves.size(); ++i)
RootMoves[i].previousScore = RootMoves[i].score;
// MultiPV loop. We perform a full root search for each PV line
for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx)
for (PVIdx = 0; PVIdx < std::min(multiPV, RootMoves.size()) && !Signals.stop; ++PVIdx)
{
// Reset aspiration window starting size
if (depth >= 5 * ONE_PLY)
@ -355,8 +367,8 @@ namespace {
// the UI) before a re-search.
if ( multiPV == 1
&& (bestValue <= alpha || bestValue >= beta)
&& now() - SearchTime > 3000)
sync_cout << UCI::pv(pos, depth, alpha, beta) << sync_endl;
&& Time::now() - SearchTime > 3000)
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
// In case of failing low/high increase aspiration window and
// re-search, otherwise exit the loop.
@ -386,15 +398,16 @@ namespace {
if (Signals.stop)
sync_cout << "info nodes " << RootPos.nodes_searched()
<< " time " << now() - SearchTime << sync_endl;
<< " time " << Time::now() - SearchTime << sync_endl;
else if (PVIdx + 1 == multiPV || now() - SearchTime > 3000)
sync_cout << UCI::pv(pos, depth, alpha, beta) << sync_endl;
else if ( PVIdx + 1 == std::min(multiPV, RootMoves.size())
|| Time::now() - SearchTime > 3000)
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
}
// If skill level is enabled and time is up, pick a sub-optimal best move
if (skill.enabled() && skill.time_to_pick(depth))
skill.pick_best(multiPV);
// If skill levels are enabled and time is up, pick a sub-optimal best move
if (skill.candidates_size() && skill.time_to_pick(depth))
skill.pick_move();
// Have we found a "mate in x"?
if ( Limits.mate
@ -412,7 +425,7 @@ namespace {
// Stop the search if only one legal move is available or all
// of the available time has been used.
if ( RootMoves.size() == 1
|| now() - SearchTime > TimeMgr.available_time())
|| Time::now() - SearchTime > TimeMgr.available_time())
{
// If we are allowed to ponder do not stop the search now but
// keep pondering until the GUI sends "ponderhit" or "stop".
@ -423,11 +436,6 @@ namespace {
}
}
}
// If skill level is enabled, swap best PV line with the sub-optimal one
if (skill.enabled())
std::swap(RootMoves[0], *std::find(RootMoves.begin(),
RootMoves.end(), skill.best_move(multiPV)));
}
@ -469,7 +477,7 @@ namespace {
splitPoint = ss->splitPoint;
bestMove = splitPoint->bestMove;
bestValue = splitPoint->bestValue;
tte = nullptr;
tte = NULL;
ttHit = false;
ttMove = excludedMove = MOVE_NONE;
ttValue = VALUE_NONE;
@ -532,7 +540,7 @@ namespace {
// If ttMove is quiet, update killers, history, counter move and followup move on TT hit
if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove) && !inCheck)
update_stats(pos, ss, ttMove, depth, nullptr, 0);
update_stats(pos, ss, ttMove, depth, NULL, 0);
return ttValue;
}
@ -765,7 +773,7 @@ moves_loop: // When in check and at SpNode search starts from here
continue;
moveCount = ++splitPoint->moveCount;
splitPoint->spinlock.release();
splitPoint->mutex.unlock();
}
else
++moveCount;
@ -774,14 +782,14 @@ moves_loop: // When in check and at SpNode search starts from here
{
Signals.firstRootMove = (moveCount == 1);
if (thisThread == Threads.main() && now() - SearchTime > 3000)
if (thisThread == Threads.main() && Time::now() - SearchTime > 3000)
sync_cout << "info depth " << depth / ONE_PLY
<< " currmove " << UCI::move(move, pos.is_chess960())
<< " currmovenumber " << moveCount + PVIdx << sync_endl;
}
if (PvNode)
(ss+1)->pv = nullptr;
(ss+1)->pv = NULL;
extension = DEPTH_ZERO;
captureOrPromotion = pos.capture_or_promotion(move);
@ -834,7 +842,7 @@ moves_loop: // When in check and at SpNode search starts from here
&& moveCount >= FutilityMoveCounts[improving][depth])
{
if (SpNode)
splitPoint->spinlock.acquire();
splitPoint->mutex.lock();
continue;
}
@ -853,7 +861,7 @@ moves_loop: // When in check and at SpNode search starts from here
if (SpNode)
{
splitPoint->spinlock.acquire();
splitPoint->mutex.lock();
if (bestValue > splitPoint->bestValue)
splitPoint->bestValue = bestValue;
}
@ -865,14 +873,14 @@ moves_loop: // When in check and at SpNode search starts from here
if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO)
{
if (SpNode)
splitPoint->spinlock.acquire();
splitPoint->mutex.lock();
continue;
}
}
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
prefetch((char*)TT.first_entry(pos.key_after(move)));
// Check for legality just before making the move
if (!RootNode && !SpNode && !pos.legal(move, ci.pinned))
@ -965,7 +973,7 @@ moves_loop: // When in check and at SpNode search starts from here
// Step 18. Check for new best move
if (SpNode)
{
splitPoint->spinlock.acquire();
splitPoint->mutex.lock();
bestValue = splitPoint->bestValue;
alpha = splitPoint->alpha;
}
@ -1240,7 +1248,7 @@ moves_loop: // When in check and at SpNode search starts from here
continue;
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
prefetch((char*)TT.first_entry(pos.key_after(move)));
// Check for legality just before making the move
if (!pos.legal(move, ci.pinned))
@ -1346,7 +1354,6 @@ moves_loop: // When in check and at SpNode search starts from here
// played quiet moves.
Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY));
History.update(pos.moved_piece(move), to_sq(move), bonus);
for (int i = 0; i < quietsCnt; ++i)
{
Move m = quiets[i];
@ -1367,55 +1374,57 @@ moves_loop: // When in check and at SpNode search starts from here
}
// When playing with strength handicap, choose best move among a set of RootMoves
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
// When playing with a strength handicap, choose best move among the first 'candidates'
// RootMoves using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
Move Skill::pick_best(size_t multiPV) {
Move Skill::pick_move() {
// PRNG sequence should be non-deterministic, so we seed it with the time at init
static PRNG rng(now());
static PRNG rng(Time::now());
// RootMoves are already sorted by score in descending order
int variance = std::min(RootMoves[0].score - RootMoves[multiPV - 1].score, PawnValueMg);
int variance = std::min(RootMoves[0].score - RootMoves[candidates - 1].score, PawnValueMg);
int weakness = 120 - 2 * level;
int maxScore = -VALUE_INFINITE;
best = MOVE_NONE;
// Choose best move. For each move score we add two terms both dependent on
// weakness. One deterministic and bigger for weaker levels, and one random,
// weakness. One deterministic and bigger for weaker moves, and one random,
// then we choose the move with the resulting highest score.
for (size_t i = 0; i < multiPV; ++i)
for (size_t i = 0; i < candidates; ++i)
{
int score = RootMoves[i].score;
// This is our magic formula
int push = ( weakness * int(RootMoves[0].score - RootMoves[i].score)
score += ( weakness * int(RootMoves[0].score - score)
+ variance * (rng.rand<unsigned>() % weakness)) / 128;
if (RootMoves[i].score + push > maxScore)
if (score > maxScore)
{
maxScore = RootMoves[i].score + push;
maxScore = score;
best = RootMoves[i].pv[0];
}
}
return best;
}
} // namespace
// uci_pv() formats PV information according to the UCI protocol. UCI
// requires that all (if any) unsearched PV lines are sent using a previous
// search score.
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
/// that all (if any) unsearched PV lines are sent using a previous search score.
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
string uci_pv(const Position& pos, Depth depth, Value alpha, Value beta) {
std::stringstream ss;
TimePoint elapsed = now() - SearchTime + 1;
size_t multiPV = std::min((size_t)Options["MultiPV"], RootMoves.size());
Time::point elapsed = Time::now() - SearchTime + 1;
size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size());
int selDepth = 0;
for (Thread* th : Threads)
if (th->maxPly > selDepth)
selDepth = th->maxPly;
for (size_t i = 0; i < Threads.size(); ++i)
if (Threads[i]->maxPly > selDepth)
selDepth = Threads[i]->maxPly;
for (size_t i = 0; i < multiPV; ++i)
for (size_t i = 0; i < uciPVSize; ++i)
{
bool updated = (i <= PVIdx);
@ -1431,8 +1440,7 @@ string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
if (ss.rdbuf()->in_avail()) // Not at first line
ss << "\n";
ss << "info"
<< " depth " << d / ONE_PLY
ss << "info depth " << d / ONE_PLY
<< " seldepth " << selDepth
<< " multipv " << i + 1
<< " score " << UCI::value(v);
@ -1450,12 +1458,14 @@ string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
<< " time " << elapsed
<< " pv";
for (Move m : RootMoves[i].pv)
ss << " " << UCI::move(m, pos.is_chess960());
for (size_t j = 0; j < RootMoves[i].pv.size(); ++j)
ss << " " << UCI::move(RootMoves[i].pv[j], pos.is_chess960());
}
return ss.str();
}
}
} // namespace
/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
@ -1465,22 +1475,22 @@ string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
void RootMove::insert_pv_in_tt(Position& pos) {
StateInfo state[MAX_PLY], *st = state;
bool ttHit;
size_t idx = 0;
for (Move m : pv)
for ( ; idx < pv.size(); ++idx)
{
assert(MoveList<LEGAL>(pos).contains(m));
bool ttHit;
TTEntry* tte = TT.probe(pos.key(), ttHit);
if (!ttHit || tte->move() != m) // Don't overwrite correct entries
tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, m, VALUE_NONE, TT.generation());
if (!ttHit || tte->move() != pv[idx]) // Don't overwrite correct entries
tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[idx], VALUE_NONE, TT.generation());
pos.do_move(m, *st++, pos.gives_check(m, CheckInfo(pos)));
assert(MoveList<LEGAL>(pos).contains(pv[idx]));
pos.do_move(pv[idx], *st++);
}
for (size_t i = pv.size(); i > 0; )
pos.undo_move(pv[--i]);
while (idx) pos.undo_move(pv[--idx]);
}
@ -1489,25 +1499,22 @@ void RootMove::insert_pv_in_tt(Position& pos) {
/// root. We try hard to have a ponder move to return to the GUI, otherwise in case of
/// 'ponder on' we have nothing to think on.
bool RootMove::extract_ponder_from_tt(Position& pos)
Move RootMove::extract_ponder_from_tt(Position& pos)
{
StateInfo st;
bool ttHit;
bool found;
assert(pv.size() == 1);
pos.do_move(pv[0], st, pos.gives_check(pv[0], CheckInfo(pos)));
TTEntry* tte = TT.probe(pos.key(), ttHit);
pos.do_move(pv[0], st);
TTEntry* tte = TT.probe(pos.key(), found);
Move m = found ? tte->move() : MOVE_NONE;
if (!MoveList<LEGAL>(pos).contains(m))
m = MOVE_NONE;
pos.undo_move(pv[0]);
if (ttHit)
{
Move m = tte->move(); // Local copy to be SMP safe
if (MoveList<LEGAL>(pos).contains(m))
return pv.push_back(m), true;
}
return false;
pv.push_back(m);
return m;
}
@ -1526,13 +1533,13 @@ void Thread::idle_loop() {
// If this thread has been assigned work, launch a search
while (searching)
{
Threads.spinlock.acquire();
Threads.mutex.lock();
assert(activeSplitPoint);
SplitPoint* sp = activeSplitPoint;
Threads.spinlock.release();
Threads.mutex.unlock();
Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2)
Position pos(*sp->pos, this);
@ -1540,9 +1547,9 @@ void Thread::idle_loop() {
std::memcpy(ss-2, sp->ss-2, 5 * sizeof(Stack));
ss->splitPoint = sp;
sp->spinlock.acquire();
sp->mutex.lock();
assert(activePosition == nullptr);
assert(activePosition == NULL);
activePosition = &pos;
@ -1561,7 +1568,7 @@ void Thread::idle_loop() {
assert(searching);
searching = false;
activePosition = nullptr;
activePosition = NULL;
sp->slavesMask.reset(idx);
sp->allSlavesSearching = false;
sp->nodes += pos.nodes_searched();
@ -1578,31 +1585,31 @@ void Thread::idle_loop() {
// After releasing the lock we can't access any SplitPoint related data
// in a safe way because it could have been released under our feet by
// the sp master.
sp->spinlock.release();
sp->mutex.unlock();
// Try to late join to another split point if none of its slaves has
// already finished.
SplitPoint* bestSp = NULL;
int minLevel = INT_MAX;
for (Thread* th : Threads)
for (size_t i = 0; i < Threads.size(); ++i)
{
const size_t size = th->splitPointsSize; // Local copy
sp = size ? &th->splitPoints[size - 1] : nullptr;
const size_t size = Threads[i]->splitPointsSize; // Local copy
sp = size ? &Threads[i]->splitPoints[size - 1] : NULL;
if ( sp
&& sp->allSlavesSearching
&& sp->slavesMask.count() < MAX_SLAVES_PER_SPLITPOINT
&& can_join(sp))
&& available_to(Threads[i]))
{
assert(this != th);
assert(this != Threads[i]);
assert(!(this_sp && this_sp->slavesMask.none()));
assert(Threads.size() > 2);
// Prefer to join to SP with few parents to reduce the probability
// that a cut-off occurs above us, and hence we waste our work.
int level = 0;
for (SplitPoint* p = th->activeSplitPoint; p; p = p->parentSplitPoint)
for (SplitPoint* p = Threads[i]->activeSplitPoint; p; p = p->parentSplitPoint)
level++;
if (level < minLevel)
@ -1618,37 +1625,40 @@ void Thread::idle_loop() {
sp = bestSp;
// Recheck the conditions under lock protection
Threads.spinlock.acquire();
sp->spinlock.acquire();
Threads.mutex.lock();
sp->mutex.lock();
if ( sp->allSlavesSearching
&& sp->slavesMask.count() < MAX_SLAVES_PER_SPLITPOINT
&& can_join(sp))
&& available_to(sp->master))
{
sp->slavesMask.set(idx);
activeSplitPoint = sp;
searching = true;
}
sp->spinlock.release();
Threads.spinlock.release();
sp->mutex.unlock();
Threads.mutex.unlock();
}
}
// Avoid races with notify_one() fired from last slave of the split point
std::unique_lock<std::mutex> lk(mutex);
mutex.lock();
// If we are master and all slaves have finished then exit idle_loop
if (this_sp && this_sp->slavesMask.none())
{
assert(!searching);
mutex.unlock();
break;
}
// If we are not searching, wait for a condition to be signaled instead of
// wasting CPU time polling for work.
if (!searching && !exit)
sleepCondition.wait(lk);
sleepCondition.wait(mutex);
mutex.unlock();
}
}
@ -1659,12 +1669,12 @@ void Thread::idle_loop() {
void check_time() {
static TimePoint lastInfoTime = now();
TimePoint elapsed = now() - SearchTime;
static Time::point lastInfoTime = Time::now();
Time::point elapsed = Time::now() - SearchTime;
if (now() - lastInfoTime >= 1000)
if (Time::now() - lastInfoTime >= 1000)
{
lastInfoTime = now();
lastInfoTime = Time::now();
dbg_print();
}
@ -1687,18 +1697,18 @@ void check_time() {
else if (Limits.nodes)
{
Threads.spinlock.acquire();
Threads.mutex.lock();
int64_t nodes = RootPos.nodes_searched();
// Loop across all split points and sum accumulated SplitPoint nodes plus
// all the currently active positions nodes.
for (Thread* th : Threads)
for (size_t i = 0; i < th->splitPointsSize; ++i)
for (size_t i = 0; i < Threads.size(); ++i)
for (size_t j = 0; j < Threads[i]->splitPointsSize; ++j)
{
SplitPoint& sp = th->splitPoints[i];
SplitPoint& sp = Threads[i]->splitPoints[j];
sp.spinlock.acquire();
sp.mutex.lock();
nodes += sp.nodes;
@ -1706,10 +1716,10 @@ void check_time() {
if (sp.slavesMask.test(idx) && Threads[idx]->activePosition)
nodes += Threads[idx]->activePosition->nodes_searched();
sp.spinlock.release();
sp.mutex.unlock();
}
Threads.spinlock.release();
Threads.mutex.unlock();
if (nodes >= Limits.nodes)
Signals.stop = true;

View file

@ -55,15 +55,15 @@ struct Stack {
struct RootMove {
explicit RootMove(Move m) : pv(1, m) {}
RootMove(Move m) : score(-VALUE_INFINITE), previousScore(-VALUE_INFINITE), pv(1, m) {}
bool operator<(const RootMove& m) const { return score > m.score; } // Ascending sort
bool operator==(const Move& m) const { return pv[0] == m; }
void insert_pv_in_tt(Position& pos);
bool extract_ponder_from_tt(Position& pos);
Move extract_ponder_from_tt(Position& pos);
Value score = -VALUE_INFINITE;
Value previousScore = -VALUE_INFINITE;
Value score;
Value previousScore;
std::vector<Move> pv;
};
@ -96,13 +96,13 @@ struct SignalsType {
bool stop, stopOnPonderhit, firstRootMove, failedLowAtRoot;
};
typedef std::unique_ptr<std::stack<StateInfo>> StateStackPtr;
typedef std::auto_ptr<std::stack<StateInfo> > StateStackPtr;
extern volatile SignalsType Signals;
extern LimitsType Limits;
extern RootMoveVector RootMoves;
extern Position RootPos;
extern TimePoint SearchTime;
extern Time::point SearchTime;
extern StateStackPtr SetupStates;
void init();

View file

@ -7,8 +7,6 @@
this code to other chess engines.
*/
#define NOMINMAX
#include <algorithm>
#include "../position.h"

View file

@ -33,13 +33,19 @@ extern void check_time();
namespace {
// start_routine() is the C function which is called when a new thread
// is launched. It is a wrapper to the virtual function idle_loop().
extern "C" { long start_routine(ThreadBase* th) { th->idle_loop(); return 0; } }
// Helpers to launch a thread after creation and joining before delete. Must be
// outside Thread c'tor and d'tor because the object must be fully initialized
// when start_routine (and hence virtual idle_loop) is called and when joining.
template<typename T> T* new_thread() {
T* th = new T();
th->nativeThread = std::thread(&ThreadBase::idle_loop, th); // Will go to sleep
thread_create(th->handle, start_routine, th); // Will go to sleep
return th;
}
@ -50,7 +56,7 @@ namespace {
th->mutex.unlock();
th->notify_one();
th->nativeThread.join(); // Wait for thread termination
thread_join(th->handle); // Wait for thread termination
delete th;
}
@ -61,8 +67,9 @@ namespace {
void ThreadBase::notify_one() {
std::unique_lock<std::mutex>(this->mutex);
mutex.lock();
sleepCondition.notify_one();
mutex.unlock();
}
@ -70,8 +77,9 @@ void ThreadBase::notify_one() {
void ThreadBase::wait_for(volatile const bool& condition) {
std::unique_lock<std::mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return condition; });
mutex.lock();
while (!condition) sleepCondition.wait(mutex);
mutex.unlock();
}
@ -83,8 +91,8 @@ Thread::Thread() /* : splitPoints() */ { // Initialization of non POD broken in
searching = false;
maxPly = 0;
splitPointsSize = 0;
activeSplitPoint = nullptr;
activePosition = nullptr;
activeSplitPoint = NULL;
activePosition = NULL;
idx = Threads.size(); // Starts from 0
}
@ -102,13 +110,14 @@ bool Thread::cutoff_occurred() const {
}
// Thread::can_join() checks whether the thread is available to join the split
// point 'sp'. An obvious requirement is that thread must be idle. With more than
// two threads, this is not sufficient: If the thread is the master of some split
// point, it is only available as a slave for the split points below his active
// one (the "helpful master" concept in YBWC terminology).
// Thread::available_to() checks whether the thread is available to help the
// thread 'master' at a split point. An obvious requirement is that thread must
// be idle. With more than two threads, this is not sufficient: If the thread is
// the master of some split point, it is only available as a slave to the slaves
// which are busy searching the split point at the top of slave's split point
// stack (the "helpful master concept" in YBWC terminology).
bool Thread::can_join(const SplitPoint* sp) const {
bool Thread::available_to(const Thread* master) const {
if (searching)
return false;
@ -119,7 +128,7 @@ bool Thread::can_join(const SplitPoint* sp) const {
// No split points means that the thread is available as a slave for any
// other thread otherwise apply the "helpful master" concept if possible.
return !size || splitPoints[size - 1].slavesMask.test(sp->master->idx);
return !size || splitPoints[size - 1].slavesMask.test(master->idx);
}
@ -164,21 +173,21 @@ void Thread::split(Position& pos, Stack* ss, Value alpha, Value beta, Value* bes
// Try to allocate available threads and ask them to start searching setting
// 'searching' flag. This must be done under lock protection to avoid concurrent
// allocation of the same slave by another master.
Threads.spinlock.acquire();
sp.spinlock.acquire();
Threads.mutex.lock();
sp.mutex.lock();
sp.allSlavesSearching = true; // Must be set under lock protection
++splitPointsSize;
activeSplitPoint = &sp;
activePosition = nullptr;
activePosition = NULL;
Thread* slave;
while ( sp.slavesMask.count() < MAX_SLAVES_PER_SPLITPOINT
&& (slave = Threads.available_slave(activeSplitPoint)) != nullptr)
&& (slave = Threads.available_slave(this)) != NULL)
{
sp.slavesMask.set(slave->idx);
slave->activeSplitPoint = activeSplitPoint;
slave->activeSplitPoint = &sp;
slave->searching = true; // Slave leaves idle_loop()
slave->notify_one(); // Could be sleeping
}
@ -187,8 +196,8 @@ void Thread::split(Position& pos, Stack* ss, Value alpha, Value beta, Value* bes
// it will instantly launch a search, because its 'searching' flag is set.
// The thread will return from the idle loop when all slaves have finished
// their work at this split point.
sp.spinlock.release();
Threads.spinlock.release();
sp.mutex.unlock();
Threads.mutex.unlock();
Thread::idle_loop(); // Force a call to base class idle_loop()
@ -201,8 +210,8 @@ void Thread::split(Position& pos, Stack* ss, Value alpha, Value beta, Value* bes
// We have returned from the idle loop, which means that all threads are
// finished. Note that setting 'searching' and decreasing splitPointsSize must
// be done under lock protection to avoid a race with Thread::available_to().
Threads.spinlock.acquire();
sp.spinlock.acquire();
Threads.mutex.lock();
sp.mutex.lock();
searching = true;
--splitPointsSize;
@ -212,8 +221,8 @@ void Thread::split(Position& pos, Stack* ss, Value alpha, Value beta, Value* bes
*bestMove = sp.bestMove;
*bestValue = sp.bestValue;
sp.spinlock.release();
Threads.spinlock.release();
sp.mutex.unlock();
Threads.mutex.unlock();
}
@ -224,12 +233,12 @@ void TimerThread::idle_loop() {
while (!exit)
{
std::unique_lock<std::mutex> lk(mutex);
mutex.lock();
if (!exit)
sleepCondition.wait_for(lk, std::chrono::milliseconds(run ? Resolution : INT_MAX));
sleepCondition.wait_for(mutex, run ? Resolution : INT_MAX);
lk.unlock();
mutex.unlock();
if (run)
check_time();
@ -244,17 +253,17 @@ void MainThread::idle_loop() {
while (!exit)
{
std::unique_lock<std::mutex> lk(mutex);
mutex.lock();
thinking = false;
while (!thinking && !exit)
{
Threads.sleepCondition.notify_one(); // Wake up the UI thread if needed
sleepCondition.wait(lk);
sleepCondition.wait(mutex);
}
lk.unlock();
mutex.unlock();
if (!exit)
{
@ -290,8 +299,8 @@ void ThreadPool::exit() {
delete_thread(timer); // As first because check_time() accesses threads data
for (Thread* th : *this)
delete_thread(th);
for (iterator it = begin(); it != end(); ++it)
delete_thread(*it);
}
@ -324,15 +333,15 @@ void ThreadPool::read_uci_options() {
// ThreadPool::available_slave() tries to find an idle thread which is available
// to join SplitPoint 'sp'.
// as a slave for the thread 'master'.
Thread* ThreadPool::available_slave(const SplitPoint* sp) const {
Thread* ThreadPool::available_slave(const Thread* master) const {
for (Thread* th : *this)
if (th->can_join(sp))
return th;
for (const_iterator it = begin(); it != end(); ++it)
if ((*it)->available_to(master))
return *it;
return nullptr;
return NULL;
}
@ -340,8 +349,10 @@ Thread* ThreadPool::available_slave(const SplitPoint* sp) const {
void ThreadPool::wait_for_think_finished() {
std::unique_lock<std::mutex> lk(main()->mutex);
sleepCondition.wait(lk, [&]{ return !main()->thinking; });
MainThread* th = main();
th->mutex.lock();
while (th->thinking) sleepCondition.wait(th->mutex);
th->mutex.unlock();
}
@ -352,7 +363,7 @@ void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
StateStackPtr& states) {
wait_for_think_finished();
SearchTime = now(); // As early as possible
SearchTime = Time::now(); // As early as possible
Signals.stopOnPonderhit = Signals.firstRootMove = false;
Signals.stop = Signals.failedLowAtRoot = false;
@ -362,14 +373,14 @@ void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
Limits = limits;
if (states.get()) // If we don't set a new position, preserve current state
{
SetupStates = std::move(states); // Ownership transfer here
SetupStates = states; // Ownership transfer here
assert(!states.get());
}
for (const auto& m : MoveList<LEGAL>(pos))
for (MoveList<LEGAL> it(pos); *it; ++it)
if ( limits.searchmoves.empty()
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m))
RootMoves.push_back(RootMove(m));
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), *it))
RootMoves.push_back(RootMove(*it));
main()->thinking = true;
main()->notify_one(); // Starts main thread

View file

@ -20,11 +20,7 @@
#ifndef THREAD_H_INCLUDED
#define THREAD_H_INCLUDED
#include <atomic>
#include <bitset>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <vector>
#include "material.h"
@ -39,34 +35,34 @@ const size_t MAX_THREADS = 128;
const size_t MAX_SPLITPOINTS_PER_THREAD = 8;
const size_t MAX_SLAVES_PER_SPLITPOINT = 4;
#if 0
/// Spinlock class wraps low level atomic operations to provide a spin lock
/// Mutex and ConditionVariable struct are wrappers of the low level locking
/// machinery and are modeled after the corresponding C++11 classes.
class Spinlock {
struct Mutex {
Mutex() { lock_init(l); }
~Mutex() { lock_destroy(l); }
std::atomic_int lock;
void lock() { lock_grab(l); }
void unlock() { lock_release(l); }
public:
Spinlock() { lock = 1; } // Init here to workaround a bug with MSVC 2013
void acquire() {
while (lock.fetch_sub(1, std::memory_order_acquire) != 1)
while (lock.load(std::memory_order_relaxed) <= 0) {}
}
void release() { lock.store(1, std::memory_order_release); }
private:
friend struct ConditionVariable;
Lock l;
};
#else
struct ConditionVariable {
ConditionVariable() { cond_init(c); }
~ConditionVariable() { cond_destroy(c); }
class Spinlock {
void wait(Mutex& m) { cond_wait(c, m.l); }
void wait_for(Mutex& m, int ms) { timed_wait(c, m.l, ms); }
void notify_one() { cond_signal(c); }
std::mutex mutex;
public:
void acquire() { mutex.lock(); }
void release() { mutex.unlock(); }
private:
WaitCondition c;
};
#endif
/// SplitPoint struct stores information shared by the threads searching in
/// parallel below the same split point. It is populated at splitting time.
@ -87,7 +83,7 @@ struct SplitPoint {
SplitPoint* parentSplitPoint;
// Shared variable data
Spinlock spinlock;
Mutex mutex;
std::bitset<MAX_THREADS> slavesMask;
volatile bool allSlavesSearching;
volatile uint64_t nodes;
@ -104,15 +100,16 @@ struct SplitPoint {
struct ThreadBase {
virtual ~ThreadBase() = default;
ThreadBase() : handle(NativeHandle()), exit(false) {}
virtual ~ThreadBase() {}
virtual void idle_loop() = 0;
void notify_one();
void wait_for(volatile const bool& b);
std::thread nativeThread;
std::mutex mutex;
std::condition_variable sleepCondition;
volatile bool exit = false;
Mutex mutex;
ConditionVariable sleepCondition;
NativeHandle handle;
volatile bool exit;
};
@ -126,7 +123,7 @@ struct Thread : public ThreadBase {
Thread();
virtual void idle_loop();
bool cutoff_occurred() const;
bool can_join(const SplitPoint* sp) const;
bool available_to(const Thread* master) const;
void split(Position& pos, Search::Stack* ss, Value alpha, Value beta, Value* bestValue, Move* bestMove,
Depth depth, int moveCount, MovePicker* movePicker, int nodeType, bool cutNode);
@ -148,17 +145,19 @@ struct Thread : public ThreadBase {
/// special threads: the main one and the recurring timer.
struct MainThread : public Thread {
MainThread() : thinking(true) {} // Avoid a race with start_thinking()
virtual void idle_loop();
volatile bool thinking = true; // Avoid a race with start_thinking()
volatile bool thinking;
};
struct TimerThread : public ThreadBase {
static const int Resolution = 5; // Millisec between two check_time() calls
TimerThread() : run(false) {}
virtual void idle_loop();
bool run = false;
bool run;
};
@ -173,13 +172,13 @@ struct ThreadPool : public std::vector<Thread*> {
MainThread* main() { return static_cast<MainThread*>(at(0)); }
void read_uci_options();
Thread* available_slave(const SplitPoint* sp) const;
Thread* available_slave(const Thread* master) const;
void wait_for_think_finished();
void start_thinking(const Position&, const Search::LimitsType&, Search::StateStackPtr&);
Depth minimumSplitDepth;
Spinlock spinlock;
std::condition_variable sleepCondition;
Mutex mutex;
ConditionVariable sleepCondition;
TimerThread* timer;
};

View file

@ -32,6 +32,8 @@ TranspositionTable TT; // Our global transposition table
void TranspositionTable::resize(size_t mbSize) {
assert(sizeof(Cluster) == CacheLineSize / 2);
size_t newClusterCount = size_t(1) << msb((mbSize * 1024 * 1024) / sizeof(Cluster));
if (newClusterCount == clusterCount)

View file

@ -81,8 +81,6 @@ class TranspositionTable {
char padding[2]; // Align to the cache line size
};
static_assert(sizeof(Cluster) == CacheLineSize / 2, "Cluster size incorrect");
public:
~TranspositionTable() { free(mem); }
void new_search() { generation8 += 4; } // Lower 2 bits are used by Bound

View file

@ -33,22 +33,13 @@
///
/// -DUSE_POPCNT | Add runtime support for use of popcnt asm-instruction. Works
/// | only in 64-bit mode and requires hardware with popcnt support.
///
/// -DUSE_PEXT | Add runtime support for use of pext asm-instruction. Works
/// | only in 64-bit mode and requires hardware with pext support.
#include <cassert>
#include <cctype>
#include <climits>
#include <cstdint>
#include <cstdlib>
#if defined(_MSC_VER)
// Disable some silly and noisy warning from MSVC compiler
#pragma warning(disable: 4127) // Conditional expression is constant
#pragma warning(disable: 4146) // Unary minus operator applied to unsigned type
#pragma warning(disable: 4800) // Forcing value to bool 'true' or 'false'
#endif
#include "platform.h"
/// Predefined macros hell:
///
@ -180,7 +171,7 @@ enum Bound {
BOUND_EXACT = BOUND_UPPER | BOUND_LOWER
};
enum Value : int {
enum Value {
VALUE_ZERO = 0,
VALUE_DRAW = 0,
VALUE_KNOWN_WIN = 10000,
@ -191,6 +182,9 @@ enum Value : int {
VALUE_MATE_IN_MAX_PLY = VALUE_MATE - 2 * MAX_PLY,
VALUE_MATED_IN_MAX_PLY = -VALUE_MATE + 2 * MAX_PLY,
VALUE_ENSURE_INTEGER_SIZE_P = INT_MAX,
VALUE_ENSURE_INTEGER_SIZE_N = INT_MIN,
PawnValueMg = 198, PawnValueEg = 258,
KnightValueMg = 817, KnightValueEg = 846,
BishopValueMg = 836, BishopValueEg = 857,
@ -261,10 +255,16 @@ enum Rank {
};
/// Score enum stores a middlegame and an endgame value in a single integer
/// (enum). The least significant 16 bits are used to store the endgame value
/// and the upper 16 bits are used to store the middlegame value.
enum Score : int { SCORE_ZERO };
/// Score enum stores a middlegame and an endgame value in a single integer.
/// The least significant 16 bits are used to store the endgame value and
/// the upper 16 bits are used to store the middlegame value. The compiler
/// is free to choose the enum type as long as it can store the data, so we
/// ensure that Score is an integer type by assigning some big int values.
enum Score {
SCORE_ZERO,
SCORE_ENSURE_INTEGER_SIZE_P = INT_MAX,
SCORE_ENSURE_INTEGER_SIZE_N = INT_MIN
};
inline Score make_score(int mg, int eg) {
return Score((mg << 16) + eg);
@ -417,7 +417,7 @@ inline MoveType type_of(Move m) {
}
inline PieceType promotion_type(Move m) {
return PieceType(((m >> 12) & 3) + KNIGHT);
return PieceType(((m >> 12) & 3) + 2);
}
inline Move make_move(Square from, Square to) {

View file

@ -74,7 +74,7 @@ namespace {
while (is >> token && (m = UCI::to_move(pos, token)) != MOVE_NONE)
{
SetupStates->push(StateInfo());
pos.do_move(m, SetupStates->top(), pos.gives_check(m, CheckInfo(pos)));
pos.do_move(m, SetupStates->top());
}
}
@ -232,7 +232,9 @@ string UCI::value(Value v) {
/// UCI::square() converts a Square to a string in algebraic notation (g1, a7, etc.)
std::string UCI::square(Square s) {
return std::string{ char('a' + file_of(s)), char('1' + rank_of(s)) };
char sq[] = { char('a' + file_of(s)), char('1' + rank_of(s)), 0 }; // NULL terminated
return sq;
}
@ -272,9 +274,9 @@ Move UCI::to_move(const Position& pos, string& str) {
if (str.length() == 5) // Junior could send promotion piece in uppercase
str[4] = char(tolower(str[4]));
for (const auto& m : MoveList<LEGAL>(pos))
if (str == UCI::move(m, pos.is_chess960()))
return m;
for (MoveList<LEGAL> it(pos); *it; ++it)
if (str == UCI::move(*it, pos.is_chess960()))
return *it;
return MOVE_NONE;
}

View file

@ -45,10 +45,10 @@ class Option {
typedef void (*OnChange)(const Option&);
public:
Option(OnChange = nullptr);
Option(bool v, OnChange = nullptr);
Option(const char* v, OnChange = nullptr);
Option(int v, int min, int max, OnChange = nullptr);
Option(OnChange = NULL);
Option(bool v, OnChange = NULL);
Option(const char* v, OnChange = NULL);
Option(int v, int min, int max, OnChange = NULL);
Option& operator=(const std::string&);
void operator<<(const Option&);
@ -69,7 +69,6 @@ void loop(int argc, char* argv[]);
std::string value(Value v);
std::string square(Square s);
std::string move(Move m, bool chess960);
std::string pv(const Position& pos, Depth depth, Value alpha, Value beta);
Move to_move(const Position& pos, std::string& str);
} // namespace UCI

View file

@ -19,6 +19,7 @@
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <sstream>
#include "misc.h"
@ -42,10 +43,10 @@ void on_tb_path(const Option& o) { Tablebases::init(o); }
/// Our case insensitive less() function as required by UCI protocol
bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const {
bool ci_less(char c1, char c2) { return tolower(c1) < tolower(c2); }
return std::lexicographical_compare(s1.begin(), s1.end(), s2.begin(), s2.end(),
[](char c1, char c2) { return tolower(c1) < tolower(c2); });
bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const {
return std::lexicographical_compare(s1.begin(), s1.end(), s2.begin(), s2.end(), ci_less);
}
@ -81,11 +82,11 @@ void init(OptionsMap& o) {
std::ostream& operator<<(std::ostream& os, const OptionsMap& om) {
for (size_t idx = 0; idx < om.size(); ++idx)
for (const auto& it : om)
if (it.second.idx == idx)
for (OptionsMap::const_iterator it = om.begin(); it != om.end(); ++it)
if (it->second.idx == idx)
{
const Option& o = it.second;
os << "\noption name " << it.first << " type " << o.type;
const Option& o = it->second;
os << "\noption name " << it->first << " type " << o.type;
if (o.type != "button")
os << " default " << o.defaultValue;
@ -95,7 +96,6 @@ std::ostream& operator<<(std::ostream& os, const OptionsMap& om) {
break;
}
return os;
}
@ -112,11 +112,12 @@ Option::Option(OnChange f) : type("button"), min(0), max(0), on_change(f)
{}
Option::Option(int v, int minv, int maxv, OnChange f) : type("spin"), min(minv), max(maxv), on_change(f)
{ defaultValue = currentValue = std::to_string(v); }
{ std::ostringstream ss; ss << v; defaultValue = currentValue = ss.str(); }
Option::operator int() const {
assert(type == "check" || type == "spin");
return (type == "spin" ? stoi(currentValue) : currentValue == "true");
return (type == "spin" ? atoi(currentValue.c_str()) : currentValue == "true");
}
Option::operator std::string() const {
@ -146,7 +147,7 @@ Option& Option::operator=(const string& v) {
if ( (type != "button" && v.empty())
|| (type == "check" && v != "true" && v != "false")
|| (type == "spin" && (stoi(v) < min || stoi(v) > max)))
|| (type == "spin" && (atoi(v.c_str()) < min || atoi(v.c_str()) > max)))
return *this;
if (type != "button")