mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 08:43:09 +00:00
Micro-optimize get_material_info()
No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
4c58db0dab
commit
89fe8bc0a6
1 changed files with 17 additions and 14 deletions
|
@ -44,7 +44,8 @@ namespace {
|
|||
// Polynomial material balance parameters
|
||||
const Value RedundantQueenPenalty = Value(320);
|
||||
const Value RedundantRookPenalty = Value(554);
|
||||
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
|
||||
|
||||
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
|
||||
|
||||
const int QuadraticCoefficientsSameColor[][6] = {
|
||||
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
|
||||
|
@ -133,7 +134,7 @@ MaterialInfoTable::~MaterialInfoTable() {
|
|||
}
|
||||
|
||||
|
||||
/// MaterialInfoTable::game_phase() calculate the phase given the current
|
||||
/// MaterialInfoTable::game_phase() calculates the phase given the current
|
||||
/// position. Because the phase is strictly a function of the material, it
|
||||
/// is stored in MaterialInfo.
|
||||
|
||||
|
@ -171,7 +172,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|||
mi->clear();
|
||||
mi->key = key;
|
||||
|
||||
// Calculate game phase
|
||||
// Store game phase
|
||||
mi->gamePhase = MaterialInfoTable::game_phase(pos);
|
||||
|
||||
// Let's look if we have a specialized evaluation function for this
|
||||
|
@ -292,8 +293,8 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|||
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
|
||||
pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
|
||||
Color c, them;
|
||||
int sign;
|
||||
int matValue = 0;
|
||||
int sign, pt1, pt2, pc;
|
||||
int v, vv, matValue = 0;
|
||||
|
||||
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
|
||||
{
|
||||
|
@ -327,25 +328,27 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|||
matValue -= sign * ((pieceCount[c][ROOK] - 1) * RedundantRookPenalty + pieceCount[c][QUEEN] * RedundantQueenPenalty);
|
||||
|
||||
them = opposite_color(c);
|
||||
v = 0;
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
//
|
||||
// We use NO_PIECE_TYPE as a place holder for the bishop pair "extended piece",
|
||||
// this allow us to be more flexible in defining bishop pair bonuses.
|
||||
for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
int c1 = sign * pieceCount[c][pt1];
|
||||
if (!c1)
|
||||
pc = pieceCount[c][pt1];
|
||||
if (!pc)
|
||||
continue;
|
||||
|
||||
matValue += c1 * LinearCoefficients[pt1];
|
||||
vv = LinearCoefficients[pt1];
|
||||
|
||||
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
{
|
||||
matValue += c1 * pieceCount[c][pt2] * QuadraticCoefficientsSameColor[pt1][pt2];
|
||||
matValue += c1 * pieceCount[them][pt2] * QuadraticCoefficientsOppositeColor[pt1][pt2];
|
||||
}
|
||||
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
vv += pieceCount[c][pt2] * QuadraticCoefficientsSameColor[pt1][pt2]
|
||||
+ pieceCount[them][pt2] * QuadraticCoefficientsOppositeColor[pt1][pt2];
|
||||
|
||||
v += pc * vv;
|
||||
}
|
||||
matValue += sign * v;
|
||||
}
|
||||
mi->value = int16_t(matValue / 16);
|
||||
return mi;
|
||||
|
|
Loading…
Add table
Reference in a new issue