1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00

Move split() under Thread

Previous renaming patch suggested this reformat:
when a better naming leads to a better code!

No functional change.
This commit is contained in:
Marco Costalba 2013-02-04 22:09:52 +01:00
parent b8c5ea869c
commit 91427c8242
3 changed files with 35 additions and 37 deletions

View file

@ -1030,8 +1030,8 @@ split_point_start: // At split points actual search starts from here
{ {
assert(bestValue < beta); assert(bestValue < beta);
bestValue = Threads.split<FakeSplit>(pos, ss, alpha, beta, bestValue, &bestMove, bestValue = thisThread->split<FakeSplit>(pos, ss, alpha, beta, bestValue, &bestMove,
depth, threatMove, moveCount, mp, NT); depth, threatMove, moveCount, mp, NT);
if (bestValue >= beta) if (bestValue >= beta)
break; break;
} }

View file

@ -249,26 +249,24 @@ bool ThreadPool::slave_available(Thread* master) const {
// search() then split() returns. // search() then split() returns.
template <bool Fake> template <bool Fake>
Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta, Value Thread::split(Position& pos, Stack* ss, Value alpha, Value beta,
Value bestValue, Move* bestMove, Depth depth, Move threatMove, Value bestValue, Move* bestMove, Depth depth, Move threatMove,
int moveCount, MovePicker& mp, int nodeType) { int moveCount, MovePicker& mp, int nodeType) {
assert(pos.pos_is_ok()); assert(pos.pos_is_ok());
assert(bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(bestValue > -VALUE_INFINITE); assert(bestValue > -VALUE_INFINITE);
assert(depth >= Threads.minimumSplitDepth); assert(depth >= Threads.minimumSplitDepth);
Thread* thisThread = pos.this_thread(); assert(searching);
assert(splitPointsSize < MAX_SPLITPOINTS_PER_THREAD);
assert(thisThread->searching);
assert(thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD);
// Pick the next available split point from the split point stack // Pick the next available split point from the split point stack
SplitPoint& sp = thisThread->splitPoints[thisThread->splitPointsSize]; SplitPoint& sp = splitPoints[splitPointsSize];
sp.masterThread = thisThread; sp.masterThread = this;
sp.parentSplitPoint = thisThread->activeSplitPoint; sp.parentSplitPoint = activeSplitPoint;
sp.slavesMask = 1ULL << thisThread->idx; sp.slavesMask = 1ULL << idx;
sp.depth = depth; sp.depth = depth;
sp.bestMove = *bestMove; sp.bestMove = *bestMove;
sp.threatMove = threatMove; sp.threatMove = threatMove;
@ -286,25 +284,25 @@ Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta,
// Try to allocate available threads and ask them to start searching setting // Try to allocate available threads and ask them to start searching setting
// 'searching' flag. This must be done under lock protection to avoid concurrent // 'searching' flag. This must be done under lock protection to avoid concurrent
// allocation of the same slave by another master. // allocation of the same slave by another master.
mutex.lock(); Threads.mutex.lock();
sp.mutex.lock(); sp.mutex.lock();
thisThread->splitPointsSize++; splitPointsSize++;
thisThread->activeSplitPoint = &sp; activeSplitPoint = &sp;
size_t slavesCnt = 1; // Master is always included size_t slavesCnt = 1; // Master is always included
for (size_t i = 0; i < threads.size() && !Fake; ++i) for (size_t i = 0; i < Threads.size() && !Fake; ++i)
if (threads[i]->is_available_to(thisThread) && ++slavesCnt <= maxThreadsPerSplitPoint) if (Threads[i].is_available_to(this) && ++slavesCnt <= Threads.maxThreadsPerSplitPoint)
{ {
sp.slavesMask |= 1ULL << threads[i]->idx; sp.slavesMask |= 1ULL << Threads[i].idx;
threads[i]->activeSplitPoint = &sp; Threads[i].activeSplitPoint = &sp;
threads[i]->searching = true; // Slave leaves idle_loop() Threads[i].searching = true; // Slave leaves idle_loop()
threads[i]->notify_one(); // Could be sleeping Threads[i].notify_one(); // Could be sleeping
} }
sp.mutex.unlock(); sp.mutex.unlock();
mutex.unlock(); Threads.mutex.unlock();
// Everything is set up. The master thread enters the idle loop, from which // Everything is set up. The master thread enters the idle loop, from which
// it will instantly launch a search, because its 'searching' flag is set. // it will instantly launch a search, because its 'searching' flag is set.
@ -312,34 +310,34 @@ Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta,
// their work at this split point. // their work at this split point.
if (slavesCnt > 1 || Fake) if (slavesCnt > 1 || Fake)
{ {
thisThread->Thread::idle_loop(); // Force a call to base class idle_loop() Thread::idle_loop(); // Force a call to base class idle_loop()
// In helpful master concept a master can help only a sub-tree of its split // In helpful master concept a master can help only a sub-tree of its split
// point, and because here is all finished is not possible master is booked. // point, and because here is all finished is not possible master is booked.
assert(!thisThread->searching); assert(!searching);
} }
// We have returned from the idle loop, which means that all threads are // We have returned from the idle loop, which means that all threads are
// finished. Note that setting 'searching' and decreasing splitPointsSize is // finished. Note that setting 'searching' and decreasing splitPointsSize is
// done under lock protection to avoid a race with Thread::is_available_to(). // done under lock protection to avoid a race with Thread::is_available_to().
mutex.lock(); Threads.mutex.lock();
sp.mutex.lock(); sp.mutex.lock();
thisThread->searching = true; searching = true;
thisThread->splitPointsSize--; splitPointsSize--;
thisThread->activeSplitPoint = sp.parentSplitPoint; activeSplitPoint = sp.parentSplitPoint;
pos.set_nodes_searched(pos.nodes_searched() + sp.nodes); pos.set_nodes_searched(pos.nodes_searched() + sp.nodes);
*bestMove = sp.bestMove; *bestMove = sp.bestMove;
sp.mutex.unlock(); sp.mutex.unlock();
mutex.unlock(); Threads.mutex.unlock();
return sp.bestValue; return sp.bestValue;
} }
// Explicit template instantiations // Explicit template instantiations
template Value ThreadPool::split<false>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker&, int); template Value Thread::split<false>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker&, int);
template Value ThreadPool::split<true>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker&, int); template Value Thread::split<true>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker&, int);
// wait_for_think_finished() waits for main thread to go to sleep then returns // wait_for_think_finished() waits for main thread to go to sleep then returns

View file

@ -102,6 +102,10 @@ struct Thread {
bool is_available_to(Thread* master) const; bool is_available_to(Thread* master) const;
void wait_for(volatile const bool& b); void wait_for(volatile const bool& b);
template <bool Fake>
Value split(Position& pos, Search::Stack* ss, Value alpha, Value beta, Value bestValue, Move* bestMove,
Depth depth, Move threatMove, int moveCount, MovePicker& mp, int nodeType);
SplitPoint splitPoints[MAX_SPLITPOINTS_PER_THREAD]; SplitPoint splitPoints[MAX_SPLITPOINTS_PER_THREAD];
Material::Table materialTable; Material::Table materialTable;
Endgames endgames; Endgames endgames;
@ -155,19 +159,15 @@ public:
void start_thinking(const Position&, const Search::LimitsType&, void start_thinking(const Position&, const Search::LimitsType&,
const std::vector<Move>&, Search::StateStackPtr&); const std::vector<Move>&, Search::StateStackPtr&);
template <bool Fake>
Value split(Position& pos, Search::Stack* ss, Value alpha, Value beta, Value bestValue, Move* bestMove,
Depth depth, Move threatMove, int moveCount, MovePicker& mp, int nodeType);
bool sleepWhileIdle; bool sleepWhileIdle;
Depth minimumSplitDepth; Depth minimumSplitDepth;
size_t maxThreadsPerSplitPoint;
Mutex mutex; Mutex mutex;
ConditionVariable sleepCondition; ConditionVariable sleepCondition;
private: private:
std::vector<Thread*> threads; std::vector<Thread*> threads;
TimerThread* timer; TimerThread* timer;
size_t maxThreadsPerSplitPoint;
}; };
extern ThreadPool Threads; extern ThreadPool Threads;