1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00

Let material probing to access per-thread table

It is up to material (and pawn) table look up
code to know where the per-thread tables are,
so change API to reflect this.

Also some comment fixing while there

No functional change.
This commit is contained in:
Marco Costalba 2014-12-30 10:31:50 +01:00
parent 19b8249ff4
commit 91cc82aa25
10 changed files with 66 additions and 66 deletions

View file

@ -18,7 +18,7 @@
*/ */
#include <algorithm> #include <algorithm>
#include <cstring> // For memset #include <cstring> // For std::memset
#include "bitboard.h" #include "bitboard.h"
#include "bitcount.h" #include "bitcount.h"

View file

@ -76,7 +76,7 @@ template<typename T>
struct EndgameBase { struct EndgameBase {
virtual ~EndgameBase() {} virtual ~EndgameBase() {}
virtual Color color() const = 0; virtual Color strong_side() const = 0;
virtual T operator()(const Position&) const = 0; virtual T operator()(const Position&) const = 0;
}; };
@ -85,7 +85,7 @@ template<EndgameType E, typename T = typename eg_fun<(E > SCALE_FUNS)>::type>
struct Endgame : public EndgameBase<T> { struct Endgame : public EndgameBase<T> {
explicit Endgame(Color c) : strongSide(c), weakSide(~c) {} explicit Endgame(Color c) : strongSide(c), weakSide(~c) {}
Color color() const { return strongSide; } Color strong_side() const { return strongSide; }
T operator()(const Position&) const; T operator()(const Position&) const;
private: private:

View file

@ -19,6 +19,7 @@
#include <algorithm> #include <algorithm>
#include <cassert> #include <cassert>
#include <cstring> // For std::memset
#include <iomanip> #include <iomanip>
#include <sstream> #include <sstream>
@ -26,7 +27,6 @@
#include "evaluate.h" #include "evaluate.h"
#include "material.h" #include "material.h"
#include "pawns.h" #include "pawns.h"
#include "thread.h"
namespace { namespace {
@ -677,7 +677,6 @@ namespace {
EvalInfo ei; EvalInfo ei;
Score score, mobility[2] = { SCORE_ZERO, SCORE_ZERO }; Score score, mobility[2] = { SCORE_ZERO, SCORE_ZERO };
Thread* thisThread = pos.this_thread();
// Initialize score by reading the incrementally updated scores included // Initialize score by reading the incrementally updated scores included
// in the position object (material + piece square tables). // in the position object (material + piece square tables).
@ -685,7 +684,7 @@ namespace {
score = pos.psq_score(); score = pos.psq_score();
// Probe the material hash table // Probe the material hash table
ei.mi = Material::probe(pos, thisThread->materialTable, thisThread->endgames); ei.mi = Material::probe(pos);
score += ei.mi->imbalance(); score += ei.mi->imbalance();
// If we have a specialized evaluation function for the current material // If we have a specialized evaluation function for the current material
@ -694,7 +693,7 @@ namespace {
return ei.mi->evaluate(pos); return ei.mi->evaluate(pos);
// Probe the pawn hash table // Probe the pawn hash table
ei.pi = Pawns::probe(pos, thisThread->pawnsTable); ei.pi = Pawns::probe(pos);
score += apply_weight(ei.pi->pawns_score(), Weights[PawnStructure]); score += apply_weight(ei.pi->pawns_score(), Weights[PawnStructure]);
// Initialize attack and king safety bitboards // Initialize attack and king safety bitboards

View file

@ -17,11 +17,12 @@
along with this program. If not, see <http://www.gnu.org/licenses/>. along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include <algorithm> // For std::min #include <algorithm> // For std::min
#include <cassert> #include <cassert>
#include <cstring> #include <cstring> // For std::memset
#include "material.h" #include "material.h"
#include "thread.h"
using namespace std; using namespace std;
@ -32,7 +33,7 @@ namespace {
// pair pawn knight bishop rook queen // pair pawn knight bishop rook queen
const int Linear[6] = { 1852, -162, -1122, -183, 249, -154 }; const int Linear[6] = { 1852, -162, -1122, -183, 249, -154 };
const int QuadraticSameSide[][PIECE_TYPE_NB] = { const int QuadraticOurs[][PIECE_TYPE_NB] = {
// OUR PIECES // OUR PIECES
// pair pawn knight bishop rook queen // pair pawn knight bishop rook queen
{ 0 }, // Bishop pair { 0 }, // Bishop pair
@ -43,7 +44,7 @@ namespace {
{-177, 25, 129, 142, -137, 0 } // Queen {-177, 25, 129, 142, -137, 0 } // Queen
}; };
const int QuadraticOppositeSide[][PIECE_TYPE_NB] = { const int QuadraticTheirs[][PIECE_TYPE_NB] = {
// THEIR PIECES // THEIR PIECES
// pair pawn knight bishop rook queen // pair pawn knight bishop rook queen
{ 0 }, // Bishop pair { 0 }, // Bishop pair
@ -56,7 +57,7 @@ namespace {
// Endgame evaluation and scaling functions are accessed directly and not through // Endgame evaluation and scaling functions are accessed directly and not through
// the function maps because they correspond to more than one material hash key. // the function maps because they correspond to more than one material hash key.
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) }; Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) }; Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) }; Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
@ -104,8 +105,8 @@ namespace {
int v = Linear[pt1]; int v = Linear[pt1];
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2) for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
v += QuadraticSameSide[pt1][pt2] * pieceCount[Us][pt2] v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticOppositeSide[pt1][pt2] * pieceCount[Them][pt2]; + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
bonus += pieceCount[Us][pt1] * v; bonus += pieceCount[Us][pt1] * v;
} }
@ -117,19 +118,16 @@ namespace {
namespace Material { namespace Material {
/// Material::probe() takes a position object as input, looks up a MaterialEntry /// Material::probe() looks up the current position's material configuration in
/// object, and returns a pointer to it. If the material configuration is not /// the material hash table. It returns a pointer to the Entry if the position
/// already present in the table, it is computed and stored there, so we don't /// is found. Otherwise a new Entry is computed and stored there, so we don't
/// have to recompute everything when the same material configuration occurs again. /// have to recompute all when the same material configuration occurs again.
Entry* probe(const Position& pos, Table& entries, Endgames& endgames) { Entry* probe(const Position& pos) {
Key key = pos.material_key(); Key key = pos.material_key();
Entry* e = entries[key]; Entry* e = pos.this_thread()->materialTable[key];
// If e->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (e->key == key) if (e->key == key)
return e; return e;
@ -141,7 +139,7 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
// Let's look if we have a specialized evaluation function for this particular // Let's look if we have a specialized evaluation function for this particular
// material configuration. Firstly we look for a fixed configuration one, then // material configuration. Firstly we look for a fixed configuration one, then
// for a generic one if the previous search failed. // for a generic one if the previous search failed.
if (endgames.probe(key, e->evaluationFunction)) if (pos.this_thread()->endgames.probe(key, e->evaluationFunction))
return e; return e;
if (is_KXK<WHITE>(pos)) if (is_KXK<WHITE>(pos))
@ -156,22 +154,19 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
return e; return e;
} }
// OK, we didn't find any special evaluation function for the current // OK, we didn't find any special evaluation function for the current material
// material configuration. Is there a suitable scaling function? // configuration. Is there a suitable specialized scaling function?
//
// We face problems when there are several conflicting applicable
// scaling functions and we need to decide which one to use.
EndgameBase<ScaleFactor>* sf; EndgameBase<ScaleFactor>* sf;
if (endgames.probe(key, sf)) if (pos.this_thread()->endgames.probe(key, sf))
{ {
e->scalingFunction[sf->color()] = sf; e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned
return e; return e;
} }
// Generic scaling functions that refer to more than one material // We didn't find any specialized scaling function, so fall back on generic
// distribution. They should be probed after the specialized ones. // ones that refer to more than one material distribution. Note that in this
// Note that these ones don't return after setting the function. // case we don't return after setting the function.
if (is_KBPsKs<WHITE>(pos)) if (is_KBPsKs<WHITE>(pos))
e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE]; e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
@ -187,16 +182,18 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
Value npm_w = pos.non_pawn_material(WHITE); Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK); Value npm_b = pos.non_pawn_material(BLACK);
if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
{ {
if (!pos.count<PAWN>(BLACK)) if (!pos.count<PAWN>(BLACK))
{ {
assert(pos.count<PAWN>(WHITE) >= 2); assert(pos.count<PAWN>(WHITE) >= 2);
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
} }
else if (!pos.count<PAWN>(WHITE)) else if (!pos.count<PAWN>(WHITE))
{ {
assert(pos.count<PAWN>(BLACK) >= 2); assert(pos.count<PAWN>(BLACK) >= 2);
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
} }
else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1) else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
@ -208,14 +205,16 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
} }
} }
// No pawns makes it difficult to win, even with a material advantage. This // Zero or just one pawn makes it difficult to win, even with a small material
// catches some trivial draws like KK, KBK and KNK and gives a very drawish // advantage. This catches some trivial draws like KK, KBK and KNK and gives a
// scale factor for cases such as KRKBP and KmmKm (except for KBBKN). // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg) if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : npm_b <= BishopValueMg ? 4 : 12); e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW :
npm_b <= BishopValueMg ? 4 : 12);
if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg) if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : npm_w <= BishopValueMg ? 4 : 12); e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW :
npm_w <= BishopValueMg ? 4 : 12);
if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg) if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN; e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN;
@ -226,13 +225,13 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", which allows us to be more flexible // for the bishop pair "extended piece", which allows us to be more flexible
// in defining bishop pair bonuses. // in defining bishop pair bonuses.
const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = { const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = {
{ pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE), { pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) }, pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
{ pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK), { pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } }; pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16); e->value = int16_t((imbalance<WHITE>(PieceCount) - imbalance<BLACK>(PieceCount)) / 16);
return e; return e;
} }

View file

@ -30,11 +30,11 @@ namespace Material {
/// Material::Entry contains various information about a material configuration. /// Material::Entry contains various information about a material configuration.
/// It contains a material imbalance evaluation, a function pointer to a special /// It contains a material imbalance evaluation, a function pointer to a special
/// endgame evaluation function (which in most cases is NULL, meaning that the /// endgame evaluation function (which in most cases is NULL, meaning that the
/// standard evaluation function will be used), and "scale factors". /// standard evaluation function will be used), and scale factors.
/// ///
/// The scale factors are used to scale the evaluation score up or down. /// The scale factors are used to scale the evaluation score up or down. For
/// For instance, in KRB vs KR endgames, the score is scaled down by a factor /// instance, in KRB vs KR endgames, the score is scaled down by a factor of 4,
/// of 4, which will result in scores of absolute value less than one pawn. /// which will result in scores of absolute value less than one pawn.
struct Entry { struct Entry {
@ -43,12 +43,11 @@ struct Entry {
bool specialized_eval_exists() const { return evaluationFunction != NULL; } bool specialized_eval_exists() const { return evaluationFunction != NULL; }
Value evaluate(const Position& pos) const { return (*evaluationFunction)(pos); } Value evaluate(const Position& pos) const { return (*evaluationFunction)(pos); }
// scale_factor takes a position and a color as input, and returns a scale factor // scale_factor takes a position and a color as input and returns a scale factor
// for the given color. We have to provide the position in addition to the color, // for the given color. We have to provide the position in addition to the color
// because the scale factor need not be a constant: It can also be a function // because the scale factor may also be a function which should be applied to
// which should be applied to the position. For instance, in KBP vs K endgames, // the position. For instance, in KBP vs K endgames, the scaling function looks
// a scaling function for draws with rook pawns and wrong-colored bishops. // for rook pawns and wrong-colored bishops.
ScaleFactor scale_factor(const Position& pos, Color c) const { ScaleFactor scale_factor(const Position& pos, Color c) const {
return !scalingFunction[c] || (*scalingFunction[c])(pos) == SCALE_FACTOR_NONE return !scalingFunction[c] || (*scalingFunction[c])(pos) == SCALE_FACTOR_NONE
@ -59,13 +58,14 @@ struct Entry {
int16_t value; int16_t value;
uint8_t factor[COLOR_NB]; uint8_t factor[COLOR_NB];
EndgameBase<Value>* evaluationFunction; EndgameBase<Value>* evaluationFunction;
EndgameBase<ScaleFactor>* scalingFunction[COLOR_NB]; EndgameBase<ScaleFactor>* scalingFunction[COLOR_NB]; // Could be one for each
// side (e.g. KPKP, KBPsKs)
Phase gamePhase; Phase gamePhase;
}; };
typedef HashTable<Entry, 8192> Table; typedef HashTable<Entry, 8192> Table;
Entry* probe(const Position& pos, Table& entries, Endgames& endgames); Entry* probe(const Position& pos);
} // namespace Material } // namespace Material

View file

@ -24,6 +24,7 @@
#include "bitcount.h" #include "bitcount.h"
#include "pawns.h" #include "pawns.h"
#include "position.h" #include "position.h"
#include "thread.h"
namespace { namespace {
@ -202,9 +203,9 @@ namespace {
namespace Pawns { namespace Pawns {
/// init() initializes some tables used by evaluation. Instead of hard-coded /// Pawns::init() initializes some tables needed by evaluation. Instead of using
/// tables, when makes sense, we prefer to calculate them with a formula to /// hard-coded tables, when makes sense, we prefer to calculate them with a formula
/// reduce independent parameters and to allow easier tuning and better insight. /// to reduce independent parameters and to allow easier tuning and better insight.
void init() void init()
{ {
@ -220,14 +221,15 @@ void init()
} }
/// probe() takes a position as input, computes a Entry object, and returns a /// Pawns::probe() looks up the current position's pawns configuration in
/// pointer to it. The result is also stored in a hash table, so we don't have /// the pawns hash table. It returns a pointer to the Entry if the position
/// to recompute everything when the same pawn structure occurs again. /// is found. Otherwise a new Entry is computed and stored there, so we don't
/// have to recompute all when the same pawns configuration occurs again.
Entry* probe(const Position& pos, Table& entries) { Entry* probe(const Position& pos) {
Key key = pos.pawn_key(); Key key = pos.pawn_key();
Entry* e = entries[key]; Entry* e = pos.this_thread()->pawnsTable[key];
if (e->key == key) if (e->key == key)
return e; return e;

View file

@ -80,7 +80,7 @@ struct Entry {
typedef HashTable<Entry, 16384> Table; typedef HashTable<Entry, 16384> Table;
void init(); void init();
Entry* probe(const Position& pos, Table& entries); Entry* probe(const Position& pos);
} // namespace Pawns } // namespace Pawns

View file

@ -19,7 +19,7 @@
#include <algorithm> #include <algorithm>
#include <cassert> #include <cassert>
#include <cstring> #include <cstring> // For std::memset
#include <iomanip> #include <iomanip>
#include <sstream> #include <sstream>

View file

@ -20,7 +20,7 @@
#include <algorithm> #include <algorithm>
#include <cassert> #include <cassert>
#include <cmath> #include <cmath>
#include <cstring> #include <cstring> // For std::memset
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>

View file

@ -17,7 +17,7 @@
along with this program. If not, see <http://www.gnu.org/licenses/>. along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include <cstring> #include <cstring> // For std::memset
#include <iostream> #include <iostream>
#include "bitboard.h" #include "bitboard.h"