1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-07-11 19:49:14 +00:00

remove large input specialization

Removes unused large input specialization for dense affine transform. It has been obsolete since #4612 was merged.

closes https://github.com/official-stockfish/Stockfish/pull/4684

No functional change
This commit is contained in:
AndrovT 2023-07-15 11:00:18 +02:00 committed by Joost VandeVondele
parent ee53f8ed2f
commit a42ab95e1f

View file

@ -29,25 +29,10 @@
/* /*
This file contains the definition for a fully connected layer (aka affine transform). This file contains the definition for a fully connected layer (aka affine transform).
Two approaches are employed, depending on the sizes of the transform.
Approach 1 (a specialization for large inputs):
- used when the PaddedInputDimensions >= 128
- uses AVX512 if possible
- processes inputs in batches of 2*InputSimdWidth
- so in batches of 128 for AVX512
- the weight blocks of size InputSimdWidth are transposed such that
access is sequential
- N columns of the weight matrix are processed a time, where N
depends on the architecture (the amount of registers)
- accumulate + hadd is used
Approach 2 (a specialization for small inputs):
- used when the PaddedInputDimensions < 128
- expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32. - expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32.
- that's why AVX512 is hard to implement - that's why AVX512 is hard to implement
- expected use-case is small layers - expected use-case is small layers
- not optimized as well as the approach 1
- inputs are processed in chunks of 4, weights are respectively transposed - inputs are processed in chunks of 4, weights are respectively transposed
- accumulation happens directly to int32s - accumulation happens directly to int32s
*/ */
@ -55,7 +40,7 @@
namespace Stockfish::Eval::NNUE::Layers { namespace Stockfish::Eval::NNUE::Layers {
// Fallback implementation for older/other architectures. // Fallback implementation for older/other architectures.
// Identical for both approaches. Requires the input to be padded to at least 16 values. // Requires the input to be padded to at least 16 values.
#if !defined(USE_SSSE3) #if !defined(USE_SSSE3)
template <IndexType InputDimensions, IndexType PaddedInputDimensions, IndexType OutputDimensions> template <IndexType InputDimensions, IndexType PaddedInputDimensions, IndexType OutputDimensions>
static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input) static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input)
@ -159,18 +144,8 @@ namespace Stockfish::Eval::NNUE::Layers {
} }
#endif #endif
template <IndexType InDims, IndexType OutDims, typename Enabled = void>
class AffineTransform;
#if defined (USE_AVX512)
constexpr IndexType LargeInputSize = 2 * 64;
#else
constexpr IndexType LargeInputSize = std::numeric_limits<IndexType>::max();
#endif
// A specialization for large inputs
template <IndexType InDims, IndexType OutDims> template <IndexType InDims, IndexType OutDims>
class AffineTransform<InDims, OutDims, std::enable_if_t<(ceil_to_multiple<IndexType>(InDims, MaxSimdWidth) >= LargeInputSize)>> { class AffineTransform {
public: public:
// Input/output type // Input/output type
using InputType = std::uint8_t; using InputType = std::uint8_t;
@ -187,236 +162,6 @@ namespace Stockfish::Eval::NNUE::Layers {
using OutputBuffer = OutputType[PaddedOutputDimensions]; using OutputBuffer = OutputType[PaddedOutputDimensions];
static_assert(PaddedInputDimensions >= LargeInputSize, "Something went wrong. This specialization (for large inputs) should not have been chosen.");
#if defined (USE_AVX512)
static constexpr IndexType InputSimdWidth = 64;
static constexpr IndexType MaxNumOutputRegs = 16;
#elif defined (USE_AVX2)
static constexpr IndexType InputSimdWidth = 32;
static constexpr IndexType MaxNumOutputRegs = 8;
#elif defined (USE_SSSE3)
static constexpr IndexType InputSimdWidth = 16;
static constexpr IndexType MaxNumOutputRegs = 8;
#elif defined (USE_NEON_DOTPROD)
static constexpr IndexType InputSimdWidth = 16;
static constexpr IndexType MaxNumOutputRegs = 8;
#elif defined (USE_NEON)
static constexpr IndexType InputSimdWidth = 8;
static constexpr IndexType MaxNumOutputRegs = 8;
#else
// The fallback implementation will not have permuted weights.
// We define these to avoid a lot of ifdefs later.
static constexpr IndexType InputSimdWidth = 1;
static constexpr IndexType MaxNumOutputRegs = 1;
#endif
// A big block is a region in the weight matrix of the size [PaddedInputDimensions, NumOutputRegs].
// A small block is a region of size [InputSimdWidth, 1]
static constexpr IndexType NumOutputRegs = std::min(MaxNumOutputRegs, OutputDimensions);
static constexpr IndexType SmallBlockSize = InputSimdWidth;
static constexpr IndexType BigBlockSize = NumOutputRegs * PaddedInputDimensions;
static constexpr IndexType NumSmallBlocksInBigBlock = BigBlockSize / SmallBlockSize;
static constexpr IndexType NumSmallBlocksPerOutput = PaddedInputDimensions / SmallBlockSize;
static constexpr IndexType NumBigBlocks = OutputDimensions / NumOutputRegs;
static_assert(OutputDimensions % NumOutputRegs == 0);
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}
/*
Transposes the small blocks within a block.
Effectively means that weights can be traversed sequentially during inference.
*/
static IndexType get_weight_index(IndexType i)
{
const IndexType smallBlock = (i / SmallBlockSize) % NumSmallBlocksInBigBlock;
const IndexType smallBlockCol = smallBlock / NumSmallBlocksPerOutput;
const IndexType smallBlockRow = smallBlock % NumSmallBlocksPerOutput;
const IndexType bigBlock = i / BigBlockSize;
const IndexType rest = i % SmallBlockSize;
const IndexType idx =
bigBlock * BigBlockSize
+ smallBlockRow * SmallBlockSize * NumOutputRegs
+ smallBlockCol * SmallBlockSize
+ rest;
return idx;
}
// Read network parameters
bool read_parameters(std::istream& stream) {
read_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
return !stream.fail();
}
// Forward propagation
const OutputType* propagate(
const InputType* input, OutputType* output) const {
#if defined (USE_AVX512)
using acc_vec_t = __m512i;
using bias_vec_t = __m128i;
using weight_vec_t = __m512i;
using in_vec_t = __m512i;
#define vec_zero _mm512_setzero_si512()
#define vec_add_dpbusd_32x2 Simd::m512_add_dpbusd_epi32x2
#define vec_hadd Simd::m512_hadd
#define vec_haddx4 Simd::m512_haddx4
#elif defined (USE_AVX2)
using acc_vec_t = __m256i;
using bias_vec_t = __m128i;
using weight_vec_t = __m256i;
using in_vec_t = __m256i;
#define vec_zero _mm256_setzero_si256()
#define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2
#define vec_hadd Simd::m256_hadd
#define vec_haddx4 Simd::m256_haddx4
#elif defined (USE_SSSE3)
using acc_vec_t = __m128i;
using bias_vec_t = __m128i;
using weight_vec_t = __m128i;
using in_vec_t = __m128i;
#define vec_zero _mm_setzero_si128()
#define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2
#define vec_hadd Simd::m128_hadd
#define vec_haddx4 Simd::m128_haddx4
#elif defined (USE_NEON_DOTPROD)
using acc_vec_t = int32x4_t;
using bias_vec_t = int32x4_t;
using weight_vec_t = int8x16_t;
using in_vec_t = int8x16_t;
#define vec_zero {0}
#define vec_add_dpbusd_32x2 Simd::dotprod_m128_add_dpbusd_epi32x2
#define vec_hadd Simd::neon_m128_hadd
#define vec_haddx4 Simd::neon_m128_haddx4
#elif defined (USE_NEON)
using acc_vec_t = int32x4_t;
using bias_vec_t = int32x4_t;
using weight_vec_t = int8x8_t;
using in_vec_t = int8x8_t;
#define vec_zero {0}
#define vec_add_dpbusd_32x2 Simd::neon_m128_add_dpbusd_epi32x2
#define vec_hadd Simd::neon_m128_hadd
#define vec_haddx4 Simd::neon_m128_haddx4
#endif
#if defined (USE_SSSE3) || defined (USE_NEON)
const in_vec_t* invec = reinterpret_cast<const in_vec_t*>(input);
// Perform accumulation to registers for each big block
for (IndexType bigBlock = 0; bigBlock < NumBigBlocks; ++bigBlock)
{
acc_vec_t acc[NumOutputRegs] = { vec_zero };
// Each big block has NumOutputRegs small blocks in each "row", one per register.
// We process two small blocks at a time to save on one addition without VNNI.
for (IndexType smallBlock = 0; smallBlock < NumSmallBlocksPerOutput; smallBlock += 2)
{
const weight_vec_t* weightvec =
reinterpret_cast<const weight_vec_t*>(
weights
+ bigBlock * BigBlockSize
+ smallBlock * SmallBlockSize * NumOutputRegs);
const in_vec_t in0 = invec[smallBlock + 0];
const in_vec_t in1 = invec[smallBlock + 1];
for (IndexType k = 0; k < NumOutputRegs; ++k)
vec_add_dpbusd_32x2(acc[k], in0, weightvec[k], in1, weightvec[k + NumOutputRegs]);
}
// Horizontally add all accumulators.
if constexpr (NumOutputRegs % 4 == 0)
{
bias_vec_t* outputvec = reinterpret_cast<bias_vec_t*>(output);
const bias_vec_t* biasvec = reinterpret_cast<const bias_vec_t*>(biases);
for (IndexType k = 0; k < NumOutputRegs; k += 4)
{
const IndexType idx = (bigBlock * NumOutputRegs + k) / 4;
outputvec[idx] = vec_haddx4(acc[k+0], acc[k+1], acc[k+2], acc[k+3], biasvec[idx]);
}
}
else
{
for (IndexType k = 0; k < NumOutputRegs; ++k)
{
const IndexType idx = (bigBlock * NumOutputRegs + k);
output[idx] = vec_hadd(acc[k], biases[idx]);
}
}
}
# undef vec_zero
# undef vec_add_dpbusd_32x2
# undef vec_hadd
# undef vec_haddx4
#else
// Use old implementation for the other architectures.
affine_transform_non_ssse3<
InputDimensions,
PaddedInputDimensions,
OutputDimensions>(output, weights, biases, input);
#endif
return output;
}
private:
using BiasType = OutputType;
using WeightType = std::int8_t;
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
// A specialization for small inputs
template <IndexType InDims, IndexType OutDims>
class AffineTransform<InDims, OutDims, std::enable_if_t<(ceil_to_multiple<IndexType>(InDims, MaxSimdWidth) < LargeInputSize)>> {
public:
// Input/output type
// Input/output type
using InputType = std::uint8_t;
using OutputType = std::int32_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);
using OutputBuffer = OutputType[PaddedOutputDimensions];
static_assert(PaddedInputDimensions < LargeInputSize, "Something went wrong. This specialization (for small inputs) should not have been chosen.");
// Hash value embedded in the evaluation file // Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) { static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u; std::uint32_t hashValue = 0xCC03DAE4u;