mirror of
https://github.com/sockspls/badfish
synced 2025-07-11 19:49:14 +00:00
remove large input specialization
Removes unused large input specialization for dense affine transform. It has been obsolete since #4612 was merged. closes https://github.com/official-stockfish/Stockfish/pull/4684 No functional change
This commit is contained in:
parent
ee53f8ed2f
commit
a42ab95e1f
1 changed files with 2 additions and 257 deletions
|
@ -29,25 +29,10 @@
|
||||||
|
|
||||||
/*
|
/*
|
||||||
This file contains the definition for a fully connected layer (aka affine transform).
|
This file contains the definition for a fully connected layer (aka affine transform).
|
||||||
Two approaches are employed, depending on the sizes of the transform.
|
|
||||||
|
|
||||||
Approach 1 (a specialization for large inputs):
|
|
||||||
- used when the PaddedInputDimensions >= 128
|
|
||||||
- uses AVX512 if possible
|
|
||||||
- processes inputs in batches of 2*InputSimdWidth
|
|
||||||
- so in batches of 128 for AVX512
|
|
||||||
- the weight blocks of size InputSimdWidth are transposed such that
|
|
||||||
access is sequential
|
|
||||||
- N columns of the weight matrix are processed a time, where N
|
|
||||||
depends on the architecture (the amount of registers)
|
|
||||||
- accumulate + hadd is used
|
|
||||||
|
|
||||||
Approach 2 (a specialization for small inputs):
|
|
||||||
- used when the PaddedInputDimensions < 128
|
|
||||||
- expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32.
|
- expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32.
|
||||||
- that's why AVX512 is hard to implement
|
- that's why AVX512 is hard to implement
|
||||||
- expected use-case is small layers
|
- expected use-case is small layers
|
||||||
- not optimized as well as the approach 1
|
|
||||||
- inputs are processed in chunks of 4, weights are respectively transposed
|
- inputs are processed in chunks of 4, weights are respectively transposed
|
||||||
- accumulation happens directly to int32s
|
- accumulation happens directly to int32s
|
||||||
*/
|
*/
|
||||||
|
@ -55,7 +40,7 @@
|
||||||
namespace Stockfish::Eval::NNUE::Layers {
|
namespace Stockfish::Eval::NNUE::Layers {
|
||||||
|
|
||||||
// Fallback implementation for older/other architectures.
|
// Fallback implementation for older/other architectures.
|
||||||
// Identical for both approaches. Requires the input to be padded to at least 16 values.
|
// Requires the input to be padded to at least 16 values.
|
||||||
#if !defined(USE_SSSE3)
|
#if !defined(USE_SSSE3)
|
||||||
template <IndexType InputDimensions, IndexType PaddedInputDimensions, IndexType OutputDimensions>
|
template <IndexType InputDimensions, IndexType PaddedInputDimensions, IndexType OutputDimensions>
|
||||||
static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input)
|
static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input)
|
||||||
|
@ -159,18 +144,8 @@ namespace Stockfish::Eval::NNUE::Layers {
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
template <IndexType InDims, IndexType OutDims, typename Enabled = void>
|
|
||||||
class AffineTransform;
|
|
||||||
|
|
||||||
#if defined (USE_AVX512)
|
|
||||||
constexpr IndexType LargeInputSize = 2 * 64;
|
|
||||||
#else
|
|
||||||
constexpr IndexType LargeInputSize = std::numeric_limits<IndexType>::max();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// A specialization for large inputs
|
|
||||||
template <IndexType InDims, IndexType OutDims>
|
template <IndexType InDims, IndexType OutDims>
|
||||||
class AffineTransform<InDims, OutDims, std::enable_if_t<(ceil_to_multiple<IndexType>(InDims, MaxSimdWidth) >= LargeInputSize)>> {
|
class AffineTransform {
|
||||||
public:
|
public:
|
||||||
// Input/output type
|
// Input/output type
|
||||||
using InputType = std::uint8_t;
|
using InputType = std::uint8_t;
|
||||||
|
@ -187,236 +162,6 @@ namespace Stockfish::Eval::NNUE::Layers {
|
||||||
|
|
||||||
using OutputBuffer = OutputType[PaddedOutputDimensions];
|
using OutputBuffer = OutputType[PaddedOutputDimensions];
|
||||||
|
|
||||||
static_assert(PaddedInputDimensions >= LargeInputSize, "Something went wrong. This specialization (for large inputs) should not have been chosen.");
|
|
||||||
|
|
||||||
#if defined (USE_AVX512)
|
|
||||||
static constexpr IndexType InputSimdWidth = 64;
|
|
||||||
static constexpr IndexType MaxNumOutputRegs = 16;
|
|
||||||
#elif defined (USE_AVX2)
|
|
||||||
static constexpr IndexType InputSimdWidth = 32;
|
|
||||||
static constexpr IndexType MaxNumOutputRegs = 8;
|
|
||||||
#elif defined (USE_SSSE3)
|
|
||||||
static constexpr IndexType InputSimdWidth = 16;
|
|
||||||
static constexpr IndexType MaxNumOutputRegs = 8;
|
|
||||||
#elif defined (USE_NEON_DOTPROD)
|
|
||||||
static constexpr IndexType InputSimdWidth = 16;
|
|
||||||
static constexpr IndexType MaxNumOutputRegs = 8;
|
|
||||||
#elif defined (USE_NEON)
|
|
||||||
static constexpr IndexType InputSimdWidth = 8;
|
|
||||||
static constexpr IndexType MaxNumOutputRegs = 8;
|
|
||||||
#else
|
|
||||||
// The fallback implementation will not have permuted weights.
|
|
||||||
// We define these to avoid a lot of ifdefs later.
|
|
||||||
static constexpr IndexType InputSimdWidth = 1;
|
|
||||||
static constexpr IndexType MaxNumOutputRegs = 1;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// A big block is a region in the weight matrix of the size [PaddedInputDimensions, NumOutputRegs].
|
|
||||||
// A small block is a region of size [InputSimdWidth, 1]
|
|
||||||
|
|
||||||
static constexpr IndexType NumOutputRegs = std::min(MaxNumOutputRegs, OutputDimensions);
|
|
||||||
static constexpr IndexType SmallBlockSize = InputSimdWidth;
|
|
||||||
static constexpr IndexType BigBlockSize = NumOutputRegs * PaddedInputDimensions;
|
|
||||||
static constexpr IndexType NumSmallBlocksInBigBlock = BigBlockSize / SmallBlockSize;
|
|
||||||
static constexpr IndexType NumSmallBlocksPerOutput = PaddedInputDimensions / SmallBlockSize;
|
|
||||||
static constexpr IndexType NumBigBlocks = OutputDimensions / NumOutputRegs;
|
|
||||||
|
|
||||||
static_assert(OutputDimensions % NumOutputRegs == 0);
|
|
||||||
|
|
||||||
// Hash value embedded in the evaluation file
|
|
||||||
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
|
|
||||||
std::uint32_t hashValue = 0xCC03DAE4u;
|
|
||||||
hashValue += OutputDimensions;
|
|
||||||
hashValue ^= prevHash >> 1;
|
|
||||||
hashValue ^= prevHash << 31;
|
|
||||||
return hashValue;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
Transposes the small blocks within a block.
|
|
||||||
Effectively means that weights can be traversed sequentially during inference.
|
|
||||||
*/
|
|
||||||
static IndexType get_weight_index(IndexType i)
|
|
||||||
{
|
|
||||||
const IndexType smallBlock = (i / SmallBlockSize) % NumSmallBlocksInBigBlock;
|
|
||||||
const IndexType smallBlockCol = smallBlock / NumSmallBlocksPerOutput;
|
|
||||||
const IndexType smallBlockRow = smallBlock % NumSmallBlocksPerOutput;
|
|
||||||
const IndexType bigBlock = i / BigBlockSize;
|
|
||||||
const IndexType rest = i % SmallBlockSize;
|
|
||||||
|
|
||||||
const IndexType idx =
|
|
||||||
bigBlock * BigBlockSize
|
|
||||||
+ smallBlockRow * SmallBlockSize * NumOutputRegs
|
|
||||||
+ smallBlockCol * SmallBlockSize
|
|
||||||
+ rest;
|
|
||||||
|
|
||||||
return idx;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Read network parameters
|
|
||||||
bool read_parameters(std::istream& stream) {
|
|
||||||
read_little_endian<BiasType>(stream, biases, OutputDimensions);
|
|
||||||
|
|
||||||
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
|
|
||||||
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
|
|
||||||
|
|
||||||
return !stream.fail();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Write network parameters
|
|
||||||
bool write_parameters(std::ostream& stream) const {
|
|
||||||
write_little_endian<BiasType>(stream, biases, OutputDimensions);
|
|
||||||
|
|
||||||
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
|
|
||||||
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
|
|
||||||
|
|
||||||
return !stream.fail();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Forward propagation
|
|
||||||
const OutputType* propagate(
|
|
||||||
const InputType* input, OutputType* output) const {
|
|
||||||
|
|
||||||
#if defined (USE_AVX512)
|
|
||||||
using acc_vec_t = __m512i;
|
|
||||||
using bias_vec_t = __m128i;
|
|
||||||
using weight_vec_t = __m512i;
|
|
||||||
using in_vec_t = __m512i;
|
|
||||||
#define vec_zero _mm512_setzero_si512()
|
|
||||||
#define vec_add_dpbusd_32x2 Simd::m512_add_dpbusd_epi32x2
|
|
||||||
#define vec_hadd Simd::m512_hadd
|
|
||||||
#define vec_haddx4 Simd::m512_haddx4
|
|
||||||
#elif defined (USE_AVX2)
|
|
||||||
using acc_vec_t = __m256i;
|
|
||||||
using bias_vec_t = __m128i;
|
|
||||||
using weight_vec_t = __m256i;
|
|
||||||
using in_vec_t = __m256i;
|
|
||||||
#define vec_zero _mm256_setzero_si256()
|
|
||||||
#define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2
|
|
||||||
#define vec_hadd Simd::m256_hadd
|
|
||||||
#define vec_haddx4 Simd::m256_haddx4
|
|
||||||
#elif defined (USE_SSSE3)
|
|
||||||
using acc_vec_t = __m128i;
|
|
||||||
using bias_vec_t = __m128i;
|
|
||||||
using weight_vec_t = __m128i;
|
|
||||||
using in_vec_t = __m128i;
|
|
||||||
#define vec_zero _mm_setzero_si128()
|
|
||||||
#define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2
|
|
||||||
#define vec_hadd Simd::m128_hadd
|
|
||||||
#define vec_haddx4 Simd::m128_haddx4
|
|
||||||
#elif defined (USE_NEON_DOTPROD)
|
|
||||||
using acc_vec_t = int32x4_t;
|
|
||||||
using bias_vec_t = int32x4_t;
|
|
||||||
using weight_vec_t = int8x16_t;
|
|
||||||
using in_vec_t = int8x16_t;
|
|
||||||
#define vec_zero {0}
|
|
||||||
#define vec_add_dpbusd_32x2 Simd::dotprod_m128_add_dpbusd_epi32x2
|
|
||||||
#define vec_hadd Simd::neon_m128_hadd
|
|
||||||
#define vec_haddx4 Simd::neon_m128_haddx4
|
|
||||||
#elif defined (USE_NEON)
|
|
||||||
using acc_vec_t = int32x4_t;
|
|
||||||
using bias_vec_t = int32x4_t;
|
|
||||||
using weight_vec_t = int8x8_t;
|
|
||||||
using in_vec_t = int8x8_t;
|
|
||||||
#define vec_zero {0}
|
|
||||||
#define vec_add_dpbusd_32x2 Simd::neon_m128_add_dpbusd_epi32x2
|
|
||||||
#define vec_hadd Simd::neon_m128_hadd
|
|
||||||
#define vec_haddx4 Simd::neon_m128_haddx4
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined (USE_SSSE3) || defined (USE_NEON)
|
|
||||||
const in_vec_t* invec = reinterpret_cast<const in_vec_t*>(input);
|
|
||||||
|
|
||||||
// Perform accumulation to registers for each big block
|
|
||||||
for (IndexType bigBlock = 0; bigBlock < NumBigBlocks; ++bigBlock)
|
|
||||||
{
|
|
||||||
acc_vec_t acc[NumOutputRegs] = { vec_zero };
|
|
||||||
|
|
||||||
// Each big block has NumOutputRegs small blocks in each "row", one per register.
|
|
||||||
// We process two small blocks at a time to save on one addition without VNNI.
|
|
||||||
for (IndexType smallBlock = 0; smallBlock < NumSmallBlocksPerOutput; smallBlock += 2)
|
|
||||||
{
|
|
||||||
const weight_vec_t* weightvec =
|
|
||||||
reinterpret_cast<const weight_vec_t*>(
|
|
||||||
weights
|
|
||||||
+ bigBlock * BigBlockSize
|
|
||||||
+ smallBlock * SmallBlockSize * NumOutputRegs);
|
|
||||||
|
|
||||||
const in_vec_t in0 = invec[smallBlock + 0];
|
|
||||||
const in_vec_t in1 = invec[smallBlock + 1];
|
|
||||||
|
|
||||||
for (IndexType k = 0; k < NumOutputRegs; ++k)
|
|
||||||
vec_add_dpbusd_32x2(acc[k], in0, weightvec[k], in1, weightvec[k + NumOutputRegs]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Horizontally add all accumulators.
|
|
||||||
if constexpr (NumOutputRegs % 4 == 0)
|
|
||||||
{
|
|
||||||
bias_vec_t* outputvec = reinterpret_cast<bias_vec_t*>(output);
|
|
||||||
const bias_vec_t* biasvec = reinterpret_cast<const bias_vec_t*>(biases);
|
|
||||||
|
|
||||||
for (IndexType k = 0; k < NumOutputRegs; k += 4)
|
|
||||||
{
|
|
||||||
const IndexType idx = (bigBlock * NumOutputRegs + k) / 4;
|
|
||||||
outputvec[idx] = vec_haddx4(acc[k+0], acc[k+1], acc[k+2], acc[k+3], biasvec[idx]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
for (IndexType k = 0; k < NumOutputRegs; ++k)
|
|
||||||
{
|
|
||||||
const IndexType idx = (bigBlock * NumOutputRegs + k);
|
|
||||||
output[idx] = vec_hadd(acc[k], biases[idx]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
# undef vec_zero
|
|
||||||
# undef vec_add_dpbusd_32x2
|
|
||||||
# undef vec_hadd
|
|
||||||
# undef vec_haddx4
|
|
||||||
#else
|
|
||||||
// Use old implementation for the other architectures.
|
|
||||||
affine_transform_non_ssse3<
|
|
||||||
InputDimensions,
|
|
||||||
PaddedInputDimensions,
|
|
||||||
OutputDimensions>(output, weights, biases, input);
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
return output;
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
using BiasType = OutputType;
|
|
||||||
using WeightType = std::int8_t;
|
|
||||||
|
|
||||||
alignas(CacheLineSize) BiasType biases[OutputDimensions];
|
|
||||||
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
|
|
||||||
};
|
|
||||||
|
|
||||||
// A specialization for small inputs
|
|
||||||
template <IndexType InDims, IndexType OutDims>
|
|
||||||
class AffineTransform<InDims, OutDims, std::enable_if_t<(ceil_to_multiple<IndexType>(InDims, MaxSimdWidth) < LargeInputSize)>> {
|
|
||||||
public:
|
|
||||||
// Input/output type
|
|
||||||
// Input/output type
|
|
||||||
using InputType = std::uint8_t;
|
|
||||||
using OutputType = std::int32_t;
|
|
||||||
|
|
||||||
// Number of input/output dimensions
|
|
||||||
static constexpr IndexType InputDimensions = InDims;
|
|
||||||
static constexpr IndexType OutputDimensions = OutDims;
|
|
||||||
|
|
||||||
static constexpr IndexType PaddedInputDimensions =
|
|
||||||
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
|
|
||||||
static constexpr IndexType PaddedOutputDimensions =
|
|
||||||
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);
|
|
||||||
|
|
||||||
using OutputBuffer = OutputType[PaddedOutputDimensions];
|
|
||||||
|
|
||||||
static_assert(PaddedInputDimensions < LargeInputSize, "Something went wrong. This specialization (for small inputs) should not have been chosen.");
|
|
||||||
|
|
||||||
// Hash value embedded in the evaluation file
|
// Hash value embedded in the evaluation file
|
||||||
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
|
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
|
||||||
std::uint32_t hashValue = 0xCC03DAE4u;
|
std::uint32_t hashValue = 0xCC03DAE4u;
|
||||||
|
|
Loading…
Add table
Reference in a new issue