mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 00:33:09 +00:00
Remove magics
This commit is contained in:
parent
1e66854938
commit
a69619e174
2 changed files with 1 additions and 111 deletions
110
src/bitboard.cpp
110
src/bitboard.cpp
|
@ -26,16 +26,6 @@
|
|||
|
||||
int SquareDistance[SQUARE_NB][SQUARE_NB];
|
||||
|
||||
Bitboard RookMasks [SQUARE_NB];
|
||||
Bitboard RookMagics [SQUARE_NB];
|
||||
Bitboard* RookAttacks[SQUARE_NB];
|
||||
unsigned RookShifts [SQUARE_NB];
|
||||
|
||||
Bitboard BishopMasks [SQUARE_NB];
|
||||
Bitboard BishopMagics [SQUARE_NB];
|
||||
Bitboard* BishopAttacks[SQUARE_NB];
|
||||
unsigned BishopShifts [SQUARE_NB];
|
||||
|
||||
Bitboard SquareBB[SQUARE_NB];
|
||||
Bitboard FileBB[FILE_NB];
|
||||
Bitboard RankBB[RANK_NB];
|
||||
|
@ -58,13 +48,9 @@ namespace {
|
|||
|
||||
int MS1BTable[256]; // To implement software msb()
|
||||
Square BSFTable[SQUARE_NB]; // To implement software bitscan
|
||||
Bitboard RookTable[0x19000]; // To store rook attacks
|
||||
Bitboard BishopTable[0x1480]; // To store bishop attacks
|
||||
|
||||
typedef unsigned (Fn)(Square, Bitboard);
|
||||
|
||||
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
|
||||
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
|
||||
|
||||
// bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
|
||||
// Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
|
||||
|
@ -193,9 +179,6 @@ void Bitboards::init() {
|
|||
Square RookDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W };
|
||||
Square BishopDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
|
||||
|
||||
init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>);
|
||||
init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>);
|
||||
|
||||
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
||||
{
|
||||
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
|
||||
|
@ -215,96 +198,3 @@ void Bitboards::init() {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
|
||||
Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) {
|
||||
|
||||
Bitboard attack = 0;
|
||||
|
||||
for (int i = 0; i < 4; ++i)
|
||||
for (Square s = sq + deltas[i];
|
||||
is_ok(s) && distance(s, s - deltas[i]) == 1;
|
||||
s += deltas[i])
|
||||
{
|
||||
attack |= s;
|
||||
|
||||
if (occupied & s)
|
||||
break;
|
||||
}
|
||||
|
||||
return attack;
|
||||
}
|
||||
|
||||
|
||||
// init_magics() computes all rook and bishop attacks at startup. Magic
|
||||
// bitboards are used to look up attacks of sliding pieces. As a reference see
|
||||
// chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
|
||||
// use the so called "fancy" approach.
|
||||
|
||||
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
|
||||
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
|
||||
|
||||
Bitboard occupancy[4096], reference[4096], edges, b;
|
||||
int i, size;
|
||||
|
||||
// attacks[s] is a pointer to the beginning of the attacks table for square 's'
|
||||
attacks[SQ_A1] = table;
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
||||
{
|
||||
// Board edges are not considered in the relevant occupancies
|
||||
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
|
||||
|
||||
// Given a square 's', the mask is the bitboard of sliding attacks from
|
||||
// 's' computed on an empty board. The index must be big enough to contain
|
||||
// all the attacks for each possible subset of the mask and so is 2 power
|
||||
// the number of 1s of the mask. Hence we deduce the size of the shift to
|
||||
// apply to the 64 or 32 bits word to get the index.
|
||||
masks[s] = sliding_attack(deltas, s, 0) & ~edges;
|
||||
shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
|
||||
|
||||
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
|
||||
// store the corresponding sliding attack bitboard in reference[].
|
||||
b = size = 0;
|
||||
do {
|
||||
occupancy[size] = b;
|
||||
reference[size] = sliding_attack(deltas, s, b);
|
||||
|
||||
size++;
|
||||
b = (b - masks[s]) & masks[s];
|
||||
} while (b);
|
||||
|
||||
// Set the offset for the table of the next square. We have individual
|
||||
// table sizes for each square with "Fancy Magic Bitboards".
|
||||
if (s < SQ_H8)
|
||||
attacks[s + 1] = attacks[s] + size;
|
||||
|
||||
// Find a magic for square 's' picking up an (almost) random number
|
||||
// until we find the one that passes the verification test.
|
||||
do {
|
||||
do
|
||||
magics[s] = 0ULL;
|
||||
while (popcount<Max15>((magics[s] * masks[s]) >> 56) < 6);
|
||||
|
||||
std::memset(attacks[s], 0, size * sizeof(Bitboard));
|
||||
|
||||
// A good magic must map every possible occupancy to an index that
|
||||
// looks up the correct sliding attack in the attacks[s] database.
|
||||
// Note that we build up the database for square 's' as a side
|
||||
// effect of verifying the magic.
|
||||
for (i = 0; i < size; ++i)
|
||||
{
|
||||
Bitboard& attack = attacks[s][index(s, occupancy[i])];
|
||||
|
||||
if (attack && attack != reference[i])
|
||||
break;
|
||||
|
||||
assert(reference[i]);
|
||||
|
||||
attack = reference[i];
|
||||
}
|
||||
} while (i < size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -244,7 +244,7 @@ inline unsigned magic_index(Square s, Bitboard occupied) {
|
|||
|
||||
template<PieceType Pt>
|
||||
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
|
||||
return (Pt == ROOK ? RookAttacks : BishopAttacks)[s][magic_index<Pt>(s, occupied)];
|
||||
return 0ULL;
|
||||
}
|
||||
|
||||
inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) {
|
||||
|
|
Loading…
Add table
Reference in a new issue