1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-07-11 11:39:15 +00:00

Dynamic aspiration search without research.

Implement system where aspiration search window is calculated using
values from previous iterations.

And then some crazy experimental stuff: If search fails low at the root,
don't widen window, but continue and hope we will find a better move
with given window. If search fails high at the root, cut immediately,
add some more time and start new iteration.

Note: this patch is not complete implementation, but a first test
for this idea. There are many FIXMEs left around. Most importantly
how to deal with the situation when we don't have any move!

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Joona Kiiski 2009-04-11 16:46:35 +03:00 committed by Marco Costalba
parent 44b497a972
commit acef5d6a59
2 changed files with 145 additions and 25 deletions

View file

@ -47,6 +47,7 @@ const std::string EngineVersion = "";
#define Min(x, y) (((x) < (y))? (x) : (y)) #define Min(x, y) (((x) < (y))? (x) : (y))
#define Max(x, y) (((x) < (y))? (y) : (x)) #define Max(x, y) (((x) < (y))? (y) : (x))
#define Abs(a) (((a) < 0) ? -(a) : (a))
//// ////

View file

@ -47,6 +47,60 @@ namespace {
/// Types /// Types
//The IterationInfoType is used to store search history
//iteration by iteration.
//
//Because we use relatively small (dynamic) aspiration window,
//there happens many fail highs and fail lows in root. And
//because we don't do researches in those cases, "value" stored
//here is not necessarily exact. Instead in case of fail high/low
//we guess what the right value might be and store our guess
//as "speculated value" and then move on...
class IterationInfoType {
private:
Value _value;
Value _speculatedValue;
bool _failHigh;
bool _failLow;
public:
IterationInfoType() {
clear();
}
inline void clear() {
set(Value(0));
}
inline void set(Value v) {
set(v, v, false, false);
}
inline void set(Value v, Value specV, bool fHigh, bool fLow) {
_value = v;
_speculatedValue = specV;
_failHigh = fHigh;
_failLow = fLow;
}
inline Value value() {
return _value;
}
inline Value speculated_value() {
return _speculatedValue;
}
inline bool fail_high() {
return _failHigh;
}
inline bool fail_low() {
return _failLow;
}
};
// The BetaCounterType class is used to order moves at ply one. // The BetaCounterType class is used to order moves at ply one.
// Apart for the first one that has its score, following moves // Apart for the first one that has its score, following moves
// normally have score -VALUE_INFINITE, so are ordered according // normally have score -VALUE_INFINITE, so are ordered according
@ -196,7 +250,7 @@ namespace {
BetaCounterType BetaCounter; BetaCounterType BetaCounter;
// Scores and number of times the best move changed for each iteration: // Scores and number of times the best move changed for each iteration:
Value ValueByIteration[PLY_MAX_PLUS_2]; IterationInfoType IterationInfo[PLY_MAX_PLUS_2];
int BestMoveChangesByIteration[PLY_MAX_PLUS_2]; int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
// MultiPV mode // MultiPV mode
@ -214,6 +268,7 @@ namespace {
bool AbortSearch; bool AbortSearch;
bool Quit; bool Quit;
bool FailHigh; bool FailHigh;
bool FailLow;
bool Problem; bool Problem;
bool PonderingEnabled; bool PonderingEnabled;
int ExactMaxTime; int ExactMaxTime;
@ -246,7 +301,8 @@ namespace {
/// Functions /// Functions
Value id_loop(const Position &pos, Move searchMoves[]); Value id_loop(const Position &pos, Move searchMoves[]);
Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml); Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml,
Value alpha, Value beta);
Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta, Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID); Depth depth, int ply, int threadID);
Value search(Position &pos, SearchStack ss[], Value beta, Value search(Position &pos, SearchStack ss[], Value beta,
@ -380,6 +436,7 @@ void think(const Position &pos, bool infinite, bool ponder, int side_to_move,
AbortSearch = false; AbortSearch = false;
Quit = false; Quit = false;
FailHigh = false; FailHigh = false;
FailLow = false;
Problem = false; Problem = false;
ExactMaxTime = maxTime; ExactMaxTime = maxTime;
@ -654,14 +711,13 @@ namespace {
ss[i].init(i); ss[i].init(i);
ss[i].initKillers(); ss[i].initKillers();
} }
ValueByIteration[0] = Value(0); IterationInfo[1].set(rml.get_move_score(0));
ValueByIteration[1] = rml.get_move_score(0);
Iteration = 1; Iteration = 1;
EasyMove = rml.scan_for_easy_move(); EasyMove = rml.scan_for_easy_move();
// Iterative deepening loop // Iterative deepening loop
while (!AbortSearch && Iteration < PLY_MAX) while (Iteration < PLY_MAX)
{ {
// Initialize iteration // Initialize iteration
rml.sort(); rml.sort();
@ -672,8 +728,59 @@ namespace {
std::cout << "info depth " << Iteration << std::endl; std::cout << "info depth " << Iteration << std::endl;
//Calculate dynamic search window based on previous iterations.
Value alpha;
Value beta;
if (MultiPV == 1 && Iteration >= 6) {
Value prevDelta1 = IterationInfo[Iteration - 1].speculated_value() - IterationInfo[Iteration - 2].speculated_value();
Value prevDelta2 = IterationInfo[Iteration - 2].speculated_value() - IterationInfo[Iteration - 3].speculated_value();
Value delta = Max((2 * Abs(prevDelta1) + Abs(prevDelta2)) , ProblemMargin);
alpha = IterationInfo[Iteration - 1].value() - delta;
beta = IterationInfo[Iteration - 1].value() + delta;
if (alpha < - VALUE_INFINITE) alpha = - VALUE_INFINITE;
if (beta > VALUE_INFINITE) beta = VALUE_INFINITE;
} else {
alpha = - VALUE_INFINITE;
beta = VALUE_INFINITE;
}
// Search to the current depth // Search to the current depth
ValueByIteration[Iteration] = root_search(p, ss, rml); Value value = root_search(p, ss, rml, alpha, beta);
if (AbortSearch)
break; //Value cannot be trusted. Break out immediately!
// Write PV to transposition table, in case the relevant entries have
// been overwritten during the search:
TT.insert_pv(p, ss[0].pv);
//Save info about search result
Value speculated_value = value;
bool fHigh = false;
bool fLow = false;
Value prev_value = IterationInfo[Iteration - 1].value();
Value delta = value - prev_value;
if (value >= beta) {
fHigh = true;
speculated_value = prev_value + 2 * delta;
BestMoveChangesByIteration[Iteration] += 2; //This is used to tell time management to allocate more time
} else if (value <= alpha) {
fLow = true;
speculated_value = prev_value + 2 * delta;
BestMoveChangesByIteration[Iteration] += 3; //This is used to tell time management to allocate more time
} else {
//nothing
}
if (speculated_value < - VALUE_INFINITE) speculated_value = - VALUE_INFINITE;
if (speculated_value > VALUE_INFINITE) speculated_value = VALUE_INFINITE;
IterationInfo[Iteration].set(value, speculated_value, fHigh, fLow);
// Erase the easy move if it differs from the new best move // Erase the easy move if it differs from the new best move
if (ss[0].pv[0] != EasyMove) if (ss[0].pv[0] != EasyMove)
@ -692,13 +799,13 @@ namespace {
// Stop search early when the last two iterations returned a mate score // Stop search early when the last two iterations returned a mate score
if ( Iteration >= 6 if ( Iteration >= 6
&& abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100 && abs(IterationInfo[Iteration].value()) >= abs(VALUE_MATE) - 100
&& abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100) && abs(IterationInfo[Iteration-1].value()) >= abs(VALUE_MATE) - 100)
stopSearch = true; stopSearch = true;
// Stop search early if one move seems to be much better than the rest // Stop search early if one move seems to be much better than the rest
int64_t nodes = nodes_searched(); int64_t nodes = nodes_searched();
if ( Iteration >= 8 if ( Iteration >= 8 && !fLow && !fHigh
&& EasyMove == ss[0].pv[0] && EasyMove == ss[0].pv[0]
&& ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
&& current_search_time() > MaxSearchTime / 16) && current_search_time() > MaxSearchTime / 16)
@ -719,15 +826,13 @@ namespace {
if (stopSearch) if (stopSearch)
{ {
//FIXME: Implement fail-low emergency measures
if (!PonderSearch) if (!PonderSearch)
break; break;
else else
StopOnPonderhit = true; StopOnPonderhit = true;
} }
} }
// Write PV to transposition table, in case the relevant entries have
// been overwritten during the search:
TT.insert_pv(p, ss[0].pv);
if (MaxDepth && Iteration >= MaxDepth) if (MaxDepth && Iteration >= MaxDepth)
break; break;
@ -784,15 +889,22 @@ namespace {
// scheme (perhaps we should try to use this at internal PV nodes, too?) // scheme (perhaps we should try to use this at internal PV nodes, too?)
// and prints some information to the standard output. // and prints some information to the standard output.
Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml) { Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta) {
Value alpha = -VALUE_INFINITE; //FIXME: Implement bestValue
Value beta = VALUE_INFINITE, value; Value oldAlpha = alpha;
Value value;
Bitboard dcCandidates = pos.discovered_check_candidates(pos.side_to_move()); Bitboard dcCandidates = pos.discovered_check_candidates(pos.side_to_move());
// Loop through all the moves in the root move list // Loop through all the moves in the root move list
for (int i = 0; i < rml.move_count() && !AbortSearch; i++) for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
{ {
if (alpha >= beta) {
rml.set_move_score(i, -VALUE_INFINITE);
//Leave node-counters and beta-counters as they are.
continue;
}
int64_t nodes; int64_t nodes;
Move move; Move move;
StateInfo st; StateInfo st;
@ -825,12 +937,12 @@ namespace {
if (i < MultiPV) if (i < MultiPV)
{ {
value = -search_pv(pos, ss, -beta, VALUE_INFINITE, newDepth, 1, 0); value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
// If the value has dropped a lot compared to the last iteration, // If the value has dropped a lot compared to the last iteration,
// set the boolean variable Problem to true. This variable is used // set the boolean variable Problem to true. This variable is used
// for time managment: When Problem is true, we try to complete the // for time managment: When Problem is true, we try to complete the
// current iteration before playing a move. // current iteration before playing a move.
Problem = (Iteration >= 2 && value <= ValueByIteration[Iteration-1] - ProblemMargin); Problem = (Iteration >= 2 && value <= IterationInfo[Iteration-1].value() - ProblemMargin);
if (Problem && StopOnPonderhit) if (Problem && StopOnPonderhit)
StopOnPonderhit = false; StopOnPonderhit = false;
@ -906,11 +1018,12 @@ namespace {
LogFile << pretty_pv(pos, current_search_time(), Iteration, nodes_searched(), value, ss[0].pv) LogFile << pretty_pv(pos, current_search_time(), Iteration, nodes_searched(), value, ss[0].pv)
<< std::endl; << std::endl;
alpha = value; if (value > alpha)
alpha = value;
// Reset the global variable Problem to false if the value isn't too // Reset the global variable Problem to false if the value isn't too
// far below the final value from the last iteration. // far below the final value from the last iteration.
if (value > ValueByIteration[Iteration - 1] - NoProblemMargin) if (value > IterationInfo[Iteration - 1].value() - NoProblemMargin)
Problem = false; Problem = false;
} }
else // MultiPV > 1 else // MultiPV > 1
@ -935,6 +1048,12 @@ namespace {
alpha = rml.get_move_score(Min(i, MultiPV-1)); alpha = rml.get_move_score(Min(i, MultiPV-1));
} }
} }
if (alpha <= oldAlpha)
FailLow = true;
else
FailLow = false;
} }
return alpha; return alpha;
} }
@ -1083,7 +1202,7 @@ namespace {
// (from the computer's point of view) since the previous iteration: // (from the computer's point of view) since the previous iteration:
if ( ply == 1 if ( ply == 1
&& Iteration >= 2 && Iteration >= 2
&& -value <= ValueByIteration[Iteration-1] - ProblemMargin) && -value <= IterationInfo[Iteration-1].value() - ProblemMargin)
Problem = true; Problem = true;
} }
@ -1796,7 +1915,7 @@ namespace {
// (from the computer's point of view) since the previous iteration. // (from the computer's point of view) since the previous iteration.
if ( sp->ply == 1 if ( sp->ply == 1
&& Iteration >= 2 && Iteration >= 2
&& -value <= ValueByIteration[Iteration-1] - ProblemMargin) && -value <= IterationInfo[Iteration-1].value() - ProblemMargin)
Problem = true; Problem = true;
} }
lock_release(&(sp->lock)); lock_release(&(sp->lock));
@ -2425,8 +2544,8 @@ namespace {
return; return;
bool overTime = t > AbsoluteMaxSearchTime bool overTime = t > AbsoluteMaxSearchTime
|| (RootMoveNumber == 1 && t > MaxSearchTime + ExtraSearchTime) || (RootMoveNumber == 1 && t > MaxSearchTime + ExtraSearchTime && !FailLow) //FIXME: BUG??
|| ( !FailHigh && !fail_high_ply_1() && !Problem || ( !FailHigh && !FailLow && !fail_high_ply_1() && !Problem
&& t > 6*(MaxSearchTime + ExtraSearchTime)); && t > 6*(MaxSearchTime + ExtraSearchTime));
if ( (Iteration >= 3 && (!InfiniteSearch && overTime)) if ( (Iteration >= 3 && (!InfiniteSearch && overTime))
@ -2447,8 +2566,8 @@ namespace {
(!InfiniteSearch && (StopOnPonderhit || (!InfiniteSearch && (StopOnPonderhit ||
t > AbsoluteMaxSearchTime || t > AbsoluteMaxSearchTime ||
(RootMoveNumber == 1 && (RootMoveNumber == 1 &&
t > MaxSearchTime + ExtraSearchTime) || t > MaxSearchTime + ExtraSearchTime && !FailLow) ||
(!FailHigh && !fail_high_ply_1() && !Problem && (!FailHigh && !FailLow && !fail_high_ply_1() && !Problem &&
t > 6*(MaxSearchTime + ExtraSearchTime))))) t > 6*(MaxSearchTime + ExtraSearchTime)))))
AbortSearch = true; AbortSearch = true;
} }