1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00

Code style triviality in search.cpp

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba 2009-06-11 15:57:42 +02:00
parent d2c2af9e1c
commit b5685fc564

View file

@ -109,7 +109,7 @@ namespace {
class RootMoveList {
public:
RootMoveList(Position &pos, Move searchMoves[]);
RootMoveList(Position& pos, Move searchMoves[]);
inline Move get_move(int moveNum) const;
inline Value get_move_score(int moveNum) const;
inline void set_move_score(int moveNum, Value score);
@ -142,38 +142,38 @@ namespace {
const bool UseIIDAtPVNodes = true;
const bool UseIIDAtNonPVNodes = false;
// Internal iterative deepening margin. At Non-PV moves, when
// UseIIDAtNonPVNodes is true, we do an internal iterative deepening search
// when the static evaluation is at most IIDMargin below beta.
// Internal iterative deepening margin. At Non-PV moves, when
// UseIIDAtNonPVNodes is true, we do an internal iterative deepening
// search when the static evaluation is at most IIDMargin below beta.
const Value IIDMargin = Value(0x100);
// Easy move margin. An easy move candidate must be at least this much
// Easy move margin. An easy move candidate must be at least this much
// better than the second best move.
const Value EasyMoveMargin = Value(0x200);
// Problem margin. If the score of the first move at iteration N+1 has
// Problem margin. If the score of the first move at iteration N+1 has
// dropped by more than this since iteration N, the boolean variable
// "Problem" is set to true, which will make the program spend some extra
// time looking for a better move.
const Value ProblemMargin = Value(0x28);
// No problem margin. If the boolean "Problem" is true, and a new move
// No problem margin. If the boolean "Problem" is true, and a new move
// is found at the root which is less than NoProblemMargin worse than the
// best move from the previous iteration, Problem is set back to false.
const Value NoProblemMargin = Value(0x14);
// Null move margin. A null move search will not be done if the approximate
// Null move margin. A null move search will not be done if the approximate
// evaluation of the position is more than NullMoveMargin below beta.
const Value NullMoveMargin = Value(0x300);
// Pruning criterions. See the code and comments in ok_to_prune() to
// Pruning criterions. See the code and comments in ok_to_prune() to
// understand their precise meaning.
const bool PruneEscapeMoves = false;
const bool PruneEscapeMoves = false;
const bool PruneDefendingMoves = false;
const bool PruneBlockingMoves = false;
const bool PruneBlockingMoves = false;
// Margins for futility pruning in the quiescence search, and at frontier
// and near frontier nodes
// and near frontier nodes.
const Value FutilityMarginQS = Value(0x80);
// Remaining depth: 1 ply 1.5 ply 2 ply 2.5 ply 3 ply 3.5 ply
@ -190,7 +190,7 @@ namespace {
const Value RazorApprMargins[6] = { Value(0x520), Value(0x300), Value(0x300), Value(0x300), Value(0x300), Value(0x300) };
/// Variables initialized from UCI options
/// Variables initialized by UCI options
// Minimum number of full depth (i.e. non-reduced) moves at PV and non-PV nodes
int LMRPVMoves, LMRNonPVMoves; // heavy SMP read access for the latter
@ -274,24 +274,24 @@ namespace {
/// Functions
Value id_loop(const Position &pos, Move searchMoves[]);
Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta);
Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
Value search(Position &pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID);
Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
void sp_search(SplitPoint *sp, int threadID);
void sp_search_pv(SplitPoint *sp, int threadID);
Value id_loop(const Position& pos, Move searchMoves[]);
Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta);
Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID);
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
void sp_search(SplitPoint* sp, int threadID);
void sp_search_pv(SplitPoint* sp, int threadID);
void init_node(SearchStack ss[], int ply, int threadID);
void update_pv(SearchStack ss[], int ply);
void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply);
bool connected_moves(const Position &pos, Move m1, Move m2);
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply);
bool connected_moves(const Position& pos, Move m1, Move m2);
bool value_is_mate(Value value);
bool move_is_killer(Move m, const SearchStack& ss);
Depth extension(const Position &pos, Move m, bool pvNode, bool capture, bool check, bool singleReply, bool mateThreat, bool* dangerous);
bool ok_to_do_nullmove(const Position &pos);
bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d, const History& H);
Depth extension(const Position& pos, Move m, bool pvNode, bool capture, bool check, bool singleReply, bool mateThreat, bool* dangerous);
bool ok_to_do_nullmove(const Position& pos);
bool ok_to_prune(const Position& pos, Move m, Move threat, Depth d, const History& H);
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
bool ok_to_history(const Position &pos, Move m);
bool ok_to_history(const Position& pos, Move m);
void update_history(const Position& pos, Move m, Depth depth, History& H, Move movesSearched[], int moveCount);
void update_killers(Move m, SearchStack& ss);
@ -303,13 +303,13 @@ namespace {
void print_current_line(SearchStack ss[], int ply, int threadID);
void wait_for_stop_or_ponderhit();
void idle_loop(int threadID, SplitPoint *waitSp);
void idle_loop(int threadID, SplitPoint* waitSp);
void init_split_point_stack();
void destroy_split_point_stack();
bool thread_should_stop(int threadID);
bool thread_is_available(int slave, int master);
bool idle_thread_exists(int master);
bool split(const Position &pos, SearchStack *ss, int ply,
bool split(const Position& pos, SearchStack* ss, int ply,
Value *alpha, Value *beta, Value *bestValue, Depth depth, int *moves,
MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode);
void wake_sleeping_threads();
@ -332,7 +332,7 @@ namespace {
/// search-related global variables, and calls root_search(). It returns false
/// when a quit command is received during the search.
bool think(const Position &pos, bool infinite, bool ponder, int side_to_move,
bool think(const Position& pos, bool infinite, bool ponder, int side_to_move,
int time[], int increment[], int movesToGo, int maxDepth,
int maxNodes, int maxTime, Move searchMoves[]) {
@ -397,9 +397,9 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move,
MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1;
LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1;
ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1;
LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1;
ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
Chess960 = get_option_value_bool("UCI_Chess960");
ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
@ -429,7 +429,7 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move,
for (int i = 1; i < ActiveThreads; i++)
assert(thread_is_available(i, 0));
// Set thinking time:
// Set thinking time
int myTime = time[side_to_move];
int myIncrement = increment[side_to_move];
@ -477,18 +477,17 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move,
NodesBetweenPolls = 30000;
// Write information to search log file:
// Write information to search log file
if (UseLogFile)
LogFile << "Searching: " << pos.to_fen() << std::endl
<< "infinite: " << infinite
<< " ponder: " << ponder
<< " time: " << myTime
<< "infinite: " << infinite
<< " ponder: " << ponder
<< " time: " << myTime
<< " increment: " << myIncrement
<< " moves to go: " << movesToGo << std::endl;
// We're ready to start thinking. Call the iterative deepening loop
// function:
// We're ready to start thinking. Call the iterative deepening loop function
if (!looseOnTime)
{
Value v = id_loop(pos, searchMoves);
@ -528,7 +527,7 @@ void init_threads() {
for (i = 0; i < THREAD_MAX; i++)
Threads[i].activeSplitPoints = 0;
// Initialize global locks:
// Initialize global locks
lock_init(&MPLock, NULL);
lock_init(&IOLock, NULL);
@ -561,7 +560,7 @@ void init_threads() {
CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID);
#endif
// Wait until the thread has finished launching:
// Wait until the thread has finished launching
while (!Threads[i].running);
}
}
@ -620,7 +619,7 @@ namespace {
// been consumed, the user stops the search, or the maximum search depth is
// reached.
Value id_loop(const Position &pos, Move searchMoves[]) {
Value id_loop(const Position& pos, Move searchMoves[]) {
Position p(pos);
SearchStack ss[PLY_MAX_PLUS_2];
@ -723,7 +722,7 @@ namespace {
// Time to stop?
bool stopSearch = false;
// Stop search early if there is only a single legal move:
// Stop search early if there is only a single legal move
if (Iteration >= 6 && rml.move_count() == 1)
stopSearch = true;
@ -821,7 +820,7 @@ namespace {
// scheme (perhaps we should try to use this at internal PV nodes, too?)
// and prints some information to the standard output.
Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta) {
Value root_search(Position& pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta) {
Value oldAlpha = alpha;
Value value;
@ -938,7 +937,7 @@ namespace {
if (i > 0)
BestMoveChangesByIteration[Iteration]++;
// Print search information to the standard output:
// Print search information to the standard output
std::cout << "info depth " << Iteration
<< " score " << value_to_string(value)
<< " time " << current_search_time()
@ -996,7 +995,7 @@ namespace {
// search_pv() is the main search function for PV nodes.
Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta,
Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
@ -1134,7 +1133,7 @@ namespace {
}
// If we are at ply 1, and we are searching the first root move at
// ply 0, set the 'Problem' variable if the score has dropped a lot
// (from the computer's point of view) since the previous iteration:
// (from the computer's point of view) since the previous iteration.
if ( ply == 1
&& Iteration >= 2
&& -value <= IterationInfo[Iteration-1].value - ProblemMargin)
@ -1155,7 +1154,7 @@ namespace {
}
// All legal moves have been searched. A special case: If there were
// no legal moves, it must be mate or stalemate:
// no legal moves, it must be mate or stalemate.
if (moveCount == 0)
return (isCheck ? value_mated_in(ply) : VALUE_DRAW);
@ -1187,7 +1186,7 @@ namespace {
// search() is the search function for zero-width nodes.
Value search(Position &pos, SearchStack ss[], Value beta, Depth depth,
Value search(Position& pos, SearchStack ss[], Value beta, Depth depth,
int ply, bool allowNullmove, int threadID) {
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
@ -1304,7 +1303,7 @@ namespace {
}
// Initialize a MovePicker object for the current position, and prepare
// to search all moves:
// to search all moves.
MovePicker mp = MovePicker(pos, ttMove, depth, Threads[threadID].H, &ss[ply]);
Move move, movesSearched[256];
@ -1448,7 +1447,7 @@ namespace {
// search function when the remaining depth is zero (or, to be more precise,
// less than OnePly).
Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta,
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
@ -1594,7 +1593,7 @@ namespace {
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate:
// and no legal moves were found, it is checkmate.
if (pos.is_check() && moveCount == 0) // Mate!
return value_mated_in(ply);
@ -1627,13 +1626,13 @@ namespace {
// also don't need to store anything to the hash table here: This is taken
// care of after we return from the split point.
void sp_search(SplitPoint *sp, int threadID) {
void sp_search(SplitPoint* sp, int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
assert(ActiveThreads > 1);
Position pos = Position(sp->pos);
SearchStack *ss = sp->sstack[threadID];
SearchStack* ss = sp->sstack[threadID];
Value value;
Move move;
bool isCheck = pos.is_check();
@ -1721,7 +1720,7 @@ namespace {
lock_grab(&(sp->lock));
// If this is the master thread and we have been asked to stop because of
// a beta cutoff higher up in the tree, stop all slave threads:
// a beta cutoff higher up in the tree, stop all slave threads.
if (sp->master == threadID && thread_should_stop(threadID))
for (int i = 0; i < ActiveThreads; i++)
if (sp->slaves[i])
@ -1739,16 +1738,16 @@ namespace {
// the normal search_pv() function, but simpler. Because we have already
// probed the hash table and searched the first move before splitting, we
// don't have to repeat all this work in sp_search_pv(). We also don't
// need to store anything to the hash table here: This is taken care of
// need to store anything to the hash table here: This is taken care of
// after we return from the split point.
void sp_search_pv(SplitPoint *sp, int threadID) {
void sp_search_pv(SplitPoint* sp, int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
assert(ActiveThreads > 1);
Position pos = Position(sp->pos);
SearchStack *ss = sp->sstack[threadID];
SearchStack* ss = sp->sstack[threadID];
Value value;
Move move;
@ -1800,7 +1799,7 @@ namespace {
{
// When the search fails high at ply 1 while searching the first
// move at the root, set the flag failHighPly1. This is used for
// time managment: We don't want to stop the search early in
// time managment: We don't want to stop the search early in
// such cases, because resolving the fail high at ply 1 could
// result in a big drop in score at the root.
if (sp->ply == 1 && RootMoveNumber == 1)
@ -1829,10 +1828,10 @@ namespace {
if (value == value_mate_in(sp->ply + 1))
ss[sp->ply].mateKiller = move;
if(value >= sp->beta)
if (value >= sp->beta)
{
for(int i = 0; i < ActiveThreads; i++)
if(i != threadID && (i == sp->master || sp->slaves[i]))
for (int i = 0; i < ActiveThreads; i++)
if (i != threadID && (i == sp->master || sp->slaves[i]))
Threads[i].stop = true;
sp->finished = true;
@ -2050,24 +2049,26 @@ namespace {
// for user input and checks whether it is time to stop the search.
void init_node(SearchStack ss[], int ply, int threadID) {
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
Threads[threadID].nodes++;
if(threadID == 0) {
NodesSincePoll++;
if(NodesSincePoll >= NodesBetweenPolls) {
poll();
NodesSincePoll = 0;
}
if (threadID == 0)
{
NodesSincePoll++;
if (NodesSincePoll >= NodesBetweenPolls)
{
poll();
NodesSincePoll = 0;
}
}
ss[ply].init(ply);
ss[ply+2].initKillers();
if(Threads[threadID].printCurrentLine)
print_current_line(ss, ply, threadID);
if (Threads[threadID].printCurrentLine)
print_current_line(ss, ply, threadID);
}
@ -2090,7 +2091,7 @@ namespace {
// difference between the two functions is that sp_update_pv also updates
// the PV at the parent node.
void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply) {
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) {
assert(ply >= 0 && ply < PLY_MAX);
ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
@ -2107,62 +2108,62 @@ namespace {
// assumed to be the move that was made to reach the current position, while
// the second move is assumed to be a move from the current position.
bool connected_moves(const Position &pos, Move m1, Move m2) {
bool connected_moves(const Position& pos, Move m1, Move m2) {
Square f1, t1, f2, t2;
assert(move_is_ok(m1));
assert(move_is_ok(m2));
if(m2 == MOVE_NONE)
return false;
if (m2 == MOVE_NONE)
return false;
// Case 1: The moving piece is the same in both moves.
// Case 1: The moving piece is the same in both moves
f2 = move_from(m2);
t1 = move_to(m1);
if(f2 == t1)
return true;
if (f2 == t1)
return true;
// Case 2: The destination square for m2 was vacated by m1.
// Case 2: The destination square for m2 was vacated by m1
t2 = move_to(m2);
f1 = move_from(m1);
if(t2 == f1)
if (t2 == f1)
return true;
// Case 3: Moving through the vacated square
if ( piece_is_slider(pos.piece_on(f2))
&& bit_is_set(squares_between(f2, t2), f1))
return true;
// Case 3: Moving through the vacated square:
if(piece_is_slider(pos.piece_on(f2)) &&
bit_is_set(squares_between(f2, t2), f1))
return true;
// Case 4: The destination square for m2 is attacked by the moving piece in m1
if (pos.piece_attacks_square(pos.piece_on(t1), t1, t2))
return true;
// Case 4: The destination square for m2 is attacked by the moving piece
// in m1:
if(pos.piece_attacks_square(pos.piece_on(t1), t1, t2))
return true;
// Case 5: Discovered check, checking piece is the piece moved in m1:
if(piece_is_slider(pos.piece_on(t1)) &&
bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())),
f2) &&
!bit_is_set(squares_between(t2, pos.king_square(pos.side_to_move())),
t2)) {
Bitboard occ = pos.occupied_squares();
Color us = pos.side_to_move();
Square ksq = pos.king_square(us);
clear_bit(&occ, f2);
if(pos.type_of_piece_on(t1) == BISHOP) {
if(bit_is_set(bishop_attacks_bb(ksq, occ), t1))
return true;
}
else if(pos.type_of_piece_on(t1) == ROOK) {
if(bit_is_set(rook_attacks_bb(ksq, occ), t1))
return true;
}
else {
assert(pos.type_of_piece_on(t1) == QUEEN);
if(bit_is_set(queen_attacks_bb(ksq, occ), t1))
return true;
}
// Case 5: Discovered check, checking piece is the piece moved in m1
if ( piece_is_slider(pos.piece_on(t1))
&& bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
&& !bit_is_set(squares_between(t2, pos.king_square(pos.side_to_move())), t2))
{
Bitboard occ = pos.occupied_squares();
Color us = pos.side_to_move();
Square ksq = pos.king_square(us);
clear_bit(&occ, f2);
if (pos.type_of_piece_on(t1) == BISHOP)
{
if (bit_is_set(bishop_attacks_bb(ksq, occ), t1))
return true;
}
else if (pos.type_of_piece_on(t1) == ROOK)
{
if (bit_is_set(rook_attacks_bb(ksq, occ), t1))
return true;
}
else
{
assert(pos.type_of_piece_on(t1) == QUEEN);
if (bit_is_set(queen_attacks_bb(ksq, occ), t1))
return true;
}
}
return false;
}
@ -2263,10 +2264,9 @@ namespace {
// probably a good idea to avoid null moves in at least some more
// complicated endgames, e.g. KQ vs KR. FIXME
bool ok_to_do_nullmove(const Position &pos) {
if(pos.non_pawn_material(pos.side_to_move()) == Value(0))
return false;
return true;
bool ok_to_do_nullmove(const Position& pos) {
return pos.non_pawn_material(pos.side_to_move()) != Value(0);
}
@ -2274,8 +2274,7 @@ namespace {
// non-tactical moves late in the move list close to the leaves are
// candidates for pruning.
bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d, const History& H) {
Square mfrom, mto, tfrom, tto;
bool ok_to_prune(const Position& pos, Move m, Move threat, Depth d, const History& H) {
assert(move_is_ok(m));
assert(threat == MOVE_NONE || move_is_ok(threat));
@ -2285,12 +2284,14 @@ namespace {
assert(!pos.move_is_passed_pawn_push(m));
assert(d >= OnePly);
Square mfrom, mto, tfrom, tto;
mfrom = move_from(m);
mto = move_to(m);
tfrom = move_from(threat);
tto = move_to(threat);
// Case 1: Castling moves are never pruned.
// Case 1: Castling moves are never pruned
if (move_is_castle(m))
return false;
@ -2306,9 +2307,9 @@ namespace {
&& ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
|| pos.type_of_piece_on(tfrom) == KING)
&& pos.move_attacks_square(m, tto))
return false;
return false;
// Case 4: Don't prune moves with good history.
// Case 4: Don't prune moves with good history
if (!H.ok_to_prune(pos.piece_on(mfrom), mto, d))
return false;
@ -2319,7 +2320,7 @@ namespace {
&& piece_is_slider(pos.piece_on(tfrom))
&& bit_is_set(squares_between(tfrom, tto), mto)
&& pos.see(m) >= 0)
return false;
return false;
return true;
}
@ -2386,9 +2387,11 @@ namespace {
// is used for time managment.
bool fail_high_ply_1() {
for(int i = 0; i < ActiveThreads; i++)
if(Threads[i].failHighPly1)
return true;
if (Threads[i].failHighPly1)
return true;
return false;
}
@ -2433,12 +2436,12 @@ namespace {
Quit = true;
return;
}
else if(command == "stop")
else if (command == "stop")
{
AbortSearch = true;
PonderSearch = false;
}
else if(command == "ponderhit")
else if (command == "ponderhit")
ponderhit();
}
// Print search information
@ -2487,9 +2490,10 @@ namespace {
// it correctly predicted the opponent's move.
void ponderhit() {
int t = current_search_time();
PonderSearch = false;
if(Iteration >= 3 &&
if (Iteration >= 3 &&
(!InfiniteSearch && (StopOnPonderhit ||
t > AbsoluteMaxSearchTime ||
(RootMoveNumber == 1 &&
@ -2504,20 +2508,23 @@ namespace {
// thread. Called when the UCI option UCI_ShowCurrLine is 'true'.
void print_current_line(SearchStack ss[], int ply, int threadID) {
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
if(!Threads[threadID].idle) {
lock_grab(&IOLock);
std::cout << "info currline " << (threadID + 1);
for(int p = 0; p < ply; p++)
std::cout << " " << ss[p].currentMove;
std::cout << std::endl;
lock_release(&IOLock);
if (!Threads[threadID].idle)
{
lock_grab(&IOLock);
std::cout << "info currline " << (threadID + 1);
for (int p = 0; p < ply; p++)
std::cout << " " << ss[p].currentMove;
std::cout << std::endl;
lock_release(&IOLock);
}
Threads[threadID].printCurrentLine = false;
if(threadID + 1 < ActiveThreads)
Threads[threadID + 1].printCurrentLine = true;
if (threadID + 1 < ActiveThreads)
Threads[threadID + 1].printCurrentLine = true;
}
@ -2542,7 +2549,7 @@ namespace {
Quit = true;
break;
}
else if(command == "ponderhit" || command == "stop")
else if (command == "ponderhit" || command == "stop")
break;
}
}
@ -2552,7 +2559,7 @@ namespace {
// The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
// object for which the current thread is the master.
void idle_loop(int threadID, SplitPoint *waitSp) {
void idle_loop(int threadID, SplitPoint* waitSp) {
assert(threadID >= 0 && threadID < THREAD_MAX);
Threads[threadID].running = true;
@ -2574,7 +2581,7 @@ namespace {
#endif
}
// If this thread has been assigned work, launch a search:
// If this thread has been assigned work, launch a search
if(Threads[threadID].workIsWaiting) {
Threads[threadID].workIsWaiting = false;
if(Threads[threadID].splitPoint->pvNode)
@ -2585,7 +2592,7 @@ namespace {
}
// If this thread is the master of a split point and all threads have
// finished their work at this split point, return from the idle loop:
// finished their work at this split point, return from the idle loop.
if(waitSp != NULL && waitSp->cpus == 0)
return;
}
@ -2624,7 +2631,7 @@ namespace {
bool thread_should_stop(int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
SplitPoint *sp;
SplitPoint* sp;
if(Threads[threadID].stop)
return true;
@ -2697,9 +2704,9 @@ namespace {
// threads have returned from sp_search_pv (or, equivalently, when
// splitPoint->cpus becomes 0), split() returns true.
bool split(const Position &p, SearchStack *sstck, int ply,
Value *alpha, Value *beta, Value *bestValue, Depth depth, int *moves,
MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode) {
bool split(const Position& p, SearchStack* sstck, int ply,
Value* alpha, Value* beta, Value* bestValue, Depth depth, int* moves,
MovePicker* mp, Bitboard dcCandidates, int master, bool pvNode) {
assert(p.is_ok());
assert(sstck != NULL);
@ -2711,24 +2718,24 @@ namespace {
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
SplitPoint *splitPoint;
SplitPoint* splitPoint;
int i;
lock_grab(&MPLock);
// If no other thread is available to help us, or if we have too many
// active split points, don't split:
// active split points, don't split.
if(!idle_thread_exists(master) ||
Threads[master].activeSplitPoints >= MaxActiveSplitPoints) {
lock_release(&MPLock);
return false;
}
// Pick the next available split point object from the split point stack:
// Pick the next available split point object from the split point stack
splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints;
Threads[master].activeSplitPoints++;
// Initialize the split point object:
// Initialize the split point object
splitPoint->parent = Threads[master].splitPoint;
splitPoint->finished = false;
splitPoint->ply = ply;
@ -2747,11 +2754,11 @@ namespace {
for(i = 0; i < ActiveThreads; i++)
splitPoint->slaves[i] = 0;
// Copy the current position and the search stack to the master thread:
// Copy the current position and the search stack to the master thread
memcpy(splitPoint->sstack[master], sstck, (ply+1)*sizeof(SearchStack));
Threads[master].splitPoint = splitPoint;
// Make copies of the current position and search stack for each thread:
// Make copies of the current position and search stack for each thread
for(i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint;
i++)
if(thread_is_available(i, master)) {
@ -2781,7 +2788,7 @@ namespace {
idle_loop(master, splitPoint);
// We have returned from the idle loop, which means that all threads are
// finished. Update alpha, beta and bestvalue, and return:
// finished. Update alpha, beta and bestvalue, and return.
lock_grab(&MPLock);
if(pvNode) *alpha = splitPoint->alpha;
*beta = splitPoint->beta;