mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 00:33:09 +00:00
Code style triviality in search.cpp
No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
d2c2af9e1c
commit
b5685fc564
1 changed files with 159 additions and 152 deletions
311
src/search.cpp
311
src/search.cpp
|
@ -109,7 +109,7 @@ namespace {
|
|||
class RootMoveList {
|
||||
|
||||
public:
|
||||
RootMoveList(Position &pos, Move searchMoves[]);
|
||||
RootMoveList(Position& pos, Move searchMoves[]);
|
||||
inline Move get_move(int moveNum) const;
|
||||
inline Value get_move_score(int moveNum) const;
|
||||
inline void set_move_score(int moveNum, Value score);
|
||||
|
@ -142,38 +142,38 @@ namespace {
|
|||
const bool UseIIDAtPVNodes = true;
|
||||
const bool UseIIDAtNonPVNodes = false;
|
||||
|
||||
// Internal iterative deepening margin. At Non-PV moves, when
|
||||
// UseIIDAtNonPVNodes is true, we do an internal iterative deepening search
|
||||
// when the static evaluation is at most IIDMargin below beta.
|
||||
// Internal iterative deepening margin. At Non-PV moves, when
|
||||
// UseIIDAtNonPVNodes is true, we do an internal iterative deepening
|
||||
// search when the static evaluation is at most IIDMargin below beta.
|
||||
const Value IIDMargin = Value(0x100);
|
||||
|
||||
// Easy move margin. An easy move candidate must be at least this much
|
||||
// Easy move margin. An easy move candidate must be at least this much
|
||||
// better than the second best move.
|
||||
const Value EasyMoveMargin = Value(0x200);
|
||||
|
||||
// Problem margin. If the score of the first move at iteration N+1 has
|
||||
// Problem margin. If the score of the first move at iteration N+1 has
|
||||
// dropped by more than this since iteration N, the boolean variable
|
||||
// "Problem" is set to true, which will make the program spend some extra
|
||||
// time looking for a better move.
|
||||
const Value ProblemMargin = Value(0x28);
|
||||
|
||||
// No problem margin. If the boolean "Problem" is true, and a new move
|
||||
// No problem margin. If the boolean "Problem" is true, and a new move
|
||||
// is found at the root which is less than NoProblemMargin worse than the
|
||||
// best move from the previous iteration, Problem is set back to false.
|
||||
const Value NoProblemMargin = Value(0x14);
|
||||
|
||||
// Null move margin. A null move search will not be done if the approximate
|
||||
// Null move margin. A null move search will not be done if the approximate
|
||||
// evaluation of the position is more than NullMoveMargin below beta.
|
||||
const Value NullMoveMargin = Value(0x300);
|
||||
|
||||
// Pruning criterions. See the code and comments in ok_to_prune() to
|
||||
// Pruning criterions. See the code and comments in ok_to_prune() to
|
||||
// understand their precise meaning.
|
||||
const bool PruneEscapeMoves = false;
|
||||
const bool PruneEscapeMoves = false;
|
||||
const bool PruneDefendingMoves = false;
|
||||
const bool PruneBlockingMoves = false;
|
||||
const bool PruneBlockingMoves = false;
|
||||
|
||||
// Margins for futility pruning in the quiescence search, and at frontier
|
||||
// and near frontier nodes
|
||||
// and near frontier nodes.
|
||||
const Value FutilityMarginQS = Value(0x80);
|
||||
|
||||
// Remaining depth: 1 ply 1.5 ply 2 ply 2.5 ply 3 ply 3.5 ply
|
||||
|
@ -190,7 +190,7 @@ namespace {
|
|||
const Value RazorApprMargins[6] = { Value(0x520), Value(0x300), Value(0x300), Value(0x300), Value(0x300), Value(0x300) };
|
||||
|
||||
|
||||
/// Variables initialized from UCI options
|
||||
/// Variables initialized by UCI options
|
||||
|
||||
// Minimum number of full depth (i.e. non-reduced) moves at PV and non-PV nodes
|
||||
int LMRPVMoves, LMRNonPVMoves; // heavy SMP read access for the latter
|
||||
|
@ -274,24 +274,24 @@ namespace {
|
|||
|
||||
/// Functions
|
||||
|
||||
Value id_loop(const Position &pos, Move searchMoves[]);
|
||||
Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta);
|
||||
Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
|
||||
Value search(Position &pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID);
|
||||
Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
|
||||
void sp_search(SplitPoint *sp, int threadID);
|
||||
void sp_search_pv(SplitPoint *sp, int threadID);
|
||||
Value id_loop(const Position& pos, Move searchMoves[]);
|
||||
Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta);
|
||||
Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
|
||||
Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID);
|
||||
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
|
||||
void sp_search(SplitPoint* sp, int threadID);
|
||||
void sp_search_pv(SplitPoint* sp, int threadID);
|
||||
void init_node(SearchStack ss[], int ply, int threadID);
|
||||
void update_pv(SearchStack ss[], int ply);
|
||||
void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply);
|
||||
bool connected_moves(const Position &pos, Move m1, Move m2);
|
||||
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply);
|
||||
bool connected_moves(const Position& pos, Move m1, Move m2);
|
||||
bool value_is_mate(Value value);
|
||||
bool move_is_killer(Move m, const SearchStack& ss);
|
||||
Depth extension(const Position &pos, Move m, bool pvNode, bool capture, bool check, bool singleReply, bool mateThreat, bool* dangerous);
|
||||
bool ok_to_do_nullmove(const Position &pos);
|
||||
bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d, const History& H);
|
||||
Depth extension(const Position& pos, Move m, bool pvNode, bool capture, bool check, bool singleReply, bool mateThreat, bool* dangerous);
|
||||
bool ok_to_do_nullmove(const Position& pos);
|
||||
bool ok_to_prune(const Position& pos, Move m, Move threat, Depth d, const History& H);
|
||||
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
|
||||
bool ok_to_history(const Position &pos, Move m);
|
||||
bool ok_to_history(const Position& pos, Move m);
|
||||
void update_history(const Position& pos, Move m, Depth depth, History& H, Move movesSearched[], int moveCount);
|
||||
void update_killers(Move m, SearchStack& ss);
|
||||
|
||||
|
@ -303,13 +303,13 @@ namespace {
|
|||
void print_current_line(SearchStack ss[], int ply, int threadID);
|
||||
void wait_for_stop_or_ponderhit();
|
||||
|
||||
void idle_loop(int threadID, SplitPoint *waitSp);
|
||||
void idle_loop(int threadID, SplitPoint* waitSp);
|
||||
void init_split_point_stack();
|
||||
void destroy_split_point_stack();
|
||||
bool thread_should_stop(int threadID);
|
||||
bool thread_is_available(int slave, int master);
|
||||
bool idle_thread_exists(int master);
|
||||
bool split(const Position &pos, SearchStack *ss, int ply,
|
||||
bool split(const Position& pos, SearchStack* ss, int ply,
|
||||
Value *alpha, Value *beta, Value *bestValue, Depth depth, int *moves,
|
||||
MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode);
|
||||
void wake_sleeping_threads();
|
||||
|
@ -332,7 +332,7 @@ namespace {
|
|||
/// search-related global variables, and calls root_search(). It returns false
|
||||
/// when a quit command is received during the search.
|
||||
|
||||
bool think(const Position &pos, bool infinite, bool ponder, int side_to_move,
|
||||
bool think(const Position& pos, bool infinite, bool ponder, int side_to_move,
|
||||
int time[], int increment[], int movesToGo, int maxDepth,
|
||||
int maxNodes, int maxTime, Move searchMoves[]) {
|
||||
|
||||
|
@ -397,9 +397,9 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move,
|
|||
MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
|
||||
MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
|
||||
|
||||
LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1;
|
||||
LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1;
|
||||
ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
|
||||
LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1;
|
||||
LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1;
|
||||
ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
|
||||
|
||||
Chess960 = get_option_value_bool("UCI_Chess960");
|
||||
ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
|
||||
|
@ -429,7 +429,7 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move,
|
|||
for (int i = 1; i < ActiveThreads; i++)
|
||||
assert(thread_is_available(i, 0));
|
||||
|
||||
// Set thinking time:
|
||||
// Set thinking time
|
||||
int myTime = time[side_to_move];
|
||||
int myIncrement = increment[side_to_move];
|
||||
|
||||
|
@ -477,18 +477,17 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move,
|
|||
NodesBetweenPolls = 30000;
|
||||
|
||||
|
||||
// Write information to search log file:
|
||||
// Write information to search log file
|
||||
if (UseLogFile)
|
||||
LogFile << "Searching: " << pos.to_fen() << std::endl
|
||||
<< "infinite: " << infinite
|
||||
<< " ponder: " << ponder
|
||||
<< " time: " << myTime
|
||||
<< "infinite: " << infinite
|
||||
<< " ponder: " << ponder
|
||||
<< " time: " << myTime
|
||||
<< " increment: " << myIncrement
|
||||
<< " moves to go: " << movesToGo << std::endl;
|
||||
|
||||
|
||||
// We're ready to start thinking. Call the iterative deepening loop
|
||||
// function:
|
||||
// We're ready to start thinking. Call the iterative deepening loop function
|
||||
if (!looseOnTime)
|
||||
{
|
||||
Value v = id_loop(pos, searchMoves);
|
||||
|
@ -528,7 +527,7 @@ void init_threads() {
|
|||
for (i = 0; i < THREAD_MAX; i++)
|
||||
Threads[i].activeSplitPoints = 0;
|
||||
|
||||
// Initialize global locks:
|
||||
// Initialize global locks
|
||||
lock_init(&MPLock, NULL);
|
||||
lock_init(&IOLock, NULL);
|
||||
|
||||
|
@ -561,7 +560,7 @@ void init_threads() {
|
|||
CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID);
|
||||
#endif
|
||||
|
||||
// Wait until the thread has finished launching:
|
||||
// Wait until the thread has finished launching
|
||||
while (!Threads[i].running);
|
||||
}
|
||||
}
|
||||
|
@ -620,7 +619,7 @@ namespace {
|
|||
// been consumed, the user stops the search, or the maximum search depth is
|
||||
// reached.
|
||||
|
||||
Value id_loop(const Position &pos, Move searchMoves[]) {
|
||||
Value id_loop(const Position& pos, Move searchMoves[]) {
|
||||
|
||||
Position p(pos);
|
||||
SearchStack ss[PLY_MAX_PLUS_2];
|
||||
|
@ -723,7 +722,7 @@ namespace {
|
|||
// Time to stop?
|
||||
bool stopSearch = false;
|
||||
|
||||
// Stop search early if there is only a single legal move:
|
||||
// Stop search early if there is only a single legal move
|
||||
if (Iteration >= 6 && rml.move_count() == 1)
|
||||
stopSearch = true;
|
||||
|
||||
|
@ -821,7 +820,7 @@ namespace {
|
|||
// scheme (perhaps we should try to use this at internal PV nodes, too?)
|
||||
// and prints some information to the standard output.
|
||||
|
||||
Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta) {
|
||||
Value root_search(Position& pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta) {
|
||||
|
||||
Value oldAlpha = alpha;
|
||||
Value value;
|
||||
|
@ -938,7 +937,7 @@ namespace {
|
|||
if (i > 0)
|
||||
BestMoveChangesByIteration[Iteration]++;
|
||||
|
||||
// Print search information to the standard output:
|
||||
// Print search information to the standard output
|
||||
std::cout << "info depth " << Iteration
|
||||
<< " score " << value_to_string(value)
|
||||
<< " time " << current_search_time()
|
||||
|
@ -996,7 +995,7 @@ namespace {
|
|||
|
||||
// search_pv() is the main search function for PV nodes.
|
||||
|
||||
Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta,
|
||||
Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta,
|
||||
Depth depth, int ply, int threadID) {
|
||||
|
||||
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
|
||||
|
@ -1134,7 +1133,7 @@ namespace {
|
|||
}
|
||||
// If we are at ply 1, and we are searching the first root move at
|
||||
// ply 0, set the 'Problem' variable if the score has dropped a lot
|
||||
// (from the computer's point of view) since the previous iteration:
|
||||
// (from the computer's point of view) since the previous iteration.
|
||||
if ( ply == 1
|
||||
&& Iteration >= 2
|
||||
&& -value <= IterationInfo[Iteration-1].value - ProblemMargin)
|
||||
|
@ -1155,7 +1154,7 @@ namespace {
|
|||
}
|
||||
|
||||
// All legal moves have been searched. A special case: If there were
|
||||
// no legal moves, it must be mate or stalemate:
|
||||
// no legal moves, it must be mate or stalemate.
|
||||
if (moveCount == 0)
|
||||
return (isCheck ? value_mated_in(ply) : VALUE_DRAW);
|
||||
|
||||
|
@ -1187,7 +1186,7 @@ namespace {
|
|||
|
||||
// search() is the search function for zero-width nodes.
|
||||
|
||||
Value search(Position &pos, SearchStack ss[], Value beta, Depth depth,
|
||||
Value search(Position& pos, SearchStack ss[], Value beta, Depth depth,
|
||||
int ply, bool allowNullmove, int threadID) {
|
||||
|
||||
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
|
||||
|
@ -1304,7 +1303,7 @@ namespace {
|
|||
}
|
||||
|
||||
// Initialize a MovePicker object for the current position, and prepare
|
||||
// to search all moves:
|
||||
// to search all moves.
|
||||
MovePicker mp = MovePicker(pos, ttMove, depth, Threads[threadID].H, &ss[ply]);
|
||||
|
||||
Move move, movesSearched[256];
|
||||
|
@ -1448,7 +1447,7 @@ namespace {
|
|||
// search function when the remaining depth is zero (or, to be more precise,
|
||||
// less than OnePly).
|
||||
|
||||
Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta,
|
||||
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta,
|
||||
Depth depth, int ply, int threadID) {
|
||||
|
||||
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
|
||||
|
@ -1594,7 +1593,7 @@ namespace {
|
|||
}
|
||||
|
||||
// All legal moves have been searched. A special case: If we're in check
|
||||
// and no legal moves were found, it is checkmate:
|
||||
// and no legal moves were found, it is checkmate.
|
||||
if (pos.is_check() && moveCount == 0) // Mate!
|
||||
return value_mated_in(ply);
|
||||
|
||||
|
@ -1627,13 +1626,13 @@ namespace {
|
|||
// also don't need to store anything to the hash table here: This is taken
|
||||
// care of after we return from the split point.
|
||||
|
||||
void sp_search(SplitPoint *sp, int threadID) {
|
||||
void sp_search(SplitPoint* sp, int threadID) {
|
||||
|
||||
assert(threadID >= 0 && threadID < ActiveThreads);
|
||||
assert(ActiveThreads > 1);
|
||||
|
||||
Position pos = Position(sp->pos);
|
||||
SearchStack *ss = sp->sstack[threadID];
|
||||
SearchStack* ss = sp->sstack[threadID];
|
||||
Value value;
|
||||
Move move;
|
||||
bool isCheck = pos.is_check();
|
||||
|
@ -1721,7 +1720,7 @@ namespace {
|
|||
lock_grab(&(sp->lock));
|
||||
|
||||
// If this is the master thread and we have been asked to stop because of
|
||||
// a beta cutoff higher up in the tree, stop all slave threads:
|
||||
// a beta cutoff higher up in the tree, stop all slave threads.
|
||||
if (sp->master == threadID && thread_should_stop(threadID))
|
||||
for (int i = 0; i < ActiveThreads; i++)
|
||||
if (sp->slaves[i])
|
||||
|
@ -1739,16 +1738,16 @@ namespace {
|
|||
// the normal search_pv() function, but simpler. Because we have already
|
||||
// probed the hash table and searched the first move before splitting, we
|
||||
// don't have to repeat all this work in sp_search_pv(). We also don't
|
||||
// need to store anything to the hash table here: This is taken care of
|
||||
// need to store anything to the hash table here: This is taken care of
|
||||
// after we return from the split point.
|
||||
|
||||
void sp_search_pv(SplitPoint *sp, int threadID) {
|
||||
void sp_search_pv(SplitPoint* sp, int threadID) {
|
||||
|
||||
assert(threadID >= 0 && threadID < ActiveThreads);
|
||||
assert(ActiveThreads > 1);
|
||||
|
||||
Position pos = Position(sp->pos);
|
||||
SearchStack *ss = sp->sstack[threadID];
|
||||
SearchStack* ss = sp->sstack[threadID];
|
||||
Value value;
|
||||
Move move;
|
||||
|
||||
|
@ -1800,7 +1799,7 @@ namespace {
|
|||
{
|
||||
// When the search fails high at ply 1 while searching the first
|
||||
// move at the root, set the flag failHighPly1. This is used for
|
||||
// time managment: We don't want to stop the search early in
|
||||
// time managment: We don't want to stop the search early in
|
||||
// such cases, because resolving the fail high at ply 1 could
|
||||
// result in a big drop in score at the root.
|
||||
if (sp->ply == 1 && RootMoveNumber == 1)
|
||||
|
@ -1829,10 +1828,10 @@ namespace {
|
|||
if (value == value_mate_in(sp->ply + 1))
|
||||
ss[sp->ply].mateKiller = move;
|
||||
|
||||
if(value >= sp->beta)
|
||||
if (value >= sp->beta)
|
||||
{
|
||||
for(int i = 0; i < ActiveThreads; i++)
|
||||
if(i != threadID && (i == sp->master || sp->slaves[i]))
|
||||
for (int i = 0; i < ActiveThreads; i++)
|
||||
if (i != threadID && (i == sp->master || sp->slaves[i]))
|
||||
Threads[i].stop = true;
|
||||
|
||||
sp->finished = true;
|
||||
|
@ -2050,24 +2049,26 @@ namespace {
|
|||
// for user input and checks whether it is time to stop the search.
|
||||
|
||||
void init_node(SearchStack ss[], int ply, int threadID) {
|
||||
|
||||
assert(ply >= 0 && ply < PLY_MAX);
|
||||
assert(threadID >= 0 && threadID < ActiveThreads);
|
||||
|
||||
Threads[threadID].nodes++;
|
||||
|
||||
if(threadID == 0) {
|
||||
NodesSincePoll++;
|
||||
if(NodesSincePoll >= NodesBetweenPolls) {
|
||||
poll();
|
||||
NodesSincePoll = 0;
|
||||
}
|
||||
if (threadID == 0)
|
||||
{
|
||||
NodesSincePoll++;
|
||||
if (NodesSincePoll >= NodesBetweenPolls)
|
||||
{
|
||||
poll();
|
||||
NodesSincePoll = 0;
|
||||
}
|
||||
}
|
||||
|
||||
ss[ply].init(ply);
|
||||
ss[ply+2].initKillers();
|
||||
|
||||
if(Threads[threadID].printCurrentLine)
|
||||
print_current_line(ss, ply, threadID);
|
||||
if (Threads[threadID].printCurrentLine)
|
||||
print_current_line(ss, ply, threadID);
|
||||
}
|
||||
|
||||
|
||||
|
@ -2090,7 +2091,7 @@ namespace {
|
|||
// difference between the two functions is that sp_update_pv also updates
|
||||
// the PV at the parent node.
|
||||
|
||||
void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply) {
|
||||
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) {
|
||||
assert(ply >= 0 && ply < PLY_MAX);
|
||||
|
||||
ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
|
||||
|
@ -2107,62 +2108,62 @@ namespace {
|
|||
// assumed to be the move that was made to reach the current position, while
|
||||
// the second move is assumed to be a move from the current position.
|
||||
|
||||
bool connected_moves(const Position &pos, Move m1, Move m2) {
|
||||
bool connected_moves(const Position& pos, Move m1, Move m2) {
|
||||
Square f1, t1, f2, t2;
|
||||
|
||||
assert(move_is_ok(m1));
|
||||
assert(move_is_ok(m2));
|
||||
|
||||
if(m2 == MOVE_NONE)
|
||||
return false;
|
||||
if (m2 == MOVE_NONE)
|
||||
return false;
|
||||
|
||||
// Case 1: The moving piece is the same in both moves.
|
||||
// Case 1: The moving piece is the same in both moves
|
||||
f2 = move_from(m2);
|
||||
t1 = move_to(m1);
|
||||
if(f2 == t1)
|
||||
return true;
|
||||
if (f2 == t1)
|
||||
return true;
|
||||
|
||||
// Case 2: The destination square for m2 was vacated by m1.
|
||||
// Case 2: The destination square for m2 was vacated by m1
|
||||
t2 = move_to(m2);
|
||||
f1 = move_from(m1);
|
||||
if(t2 == f1)
|
||||
if (t2 == f1)
|
||||
return true;
|
||||
|
||||
// Case 3: Moving through the vacated square
|
||||
if ( piece_is_slider(pos.piece_on(f2))
|
||||
&& bit_is_set(squares_between(f2, t2), f1))
|
||||
return true;
|
||||
|
||||
// Case 3: Moving through the vacated square:
|
||||
if(piece_is_slider(pos.piece_on(f2)) &&
|
||||
bit_is_set(squares_between(f2, t2), f1))
|
||||
return true;
|
||||
// Case 4: The destination square for m2 is attacked by the moving piece in m1
|
||||
if (pos.piece_attacks_square(pos.piece_on(t1), t1, t2))
|
||||
return true;
|
||||
|
||||
// Case 4: The destination square for m2 is attacked by the moving piece
|
||||
// in m1:
|
||||
if(pos.piece_attacks_square(pos.piece_on(t1), t1, t2))
|
||||
return true;
|
||||
|
||||
// Case 5: Discovered check, checking piece is the piece moved in m1:
|
||||
if(piece_is_slider(pos.piece_on(t1)) &&
|
||||
bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())),
|
||||
f2) &&
|
||||
!bit_is_set(squares_between(t2, pos.king_square(pos.side_to_move())),
|
||||
t2)) {
|
||||
Bitboard occ = pos.occupied_squares();
|
||||
Color us = pos.side_to_move();
|
||||
Square ksq = pos.king_square(us);
|
||||
clear_bit(&occ, f2);
|
||||
if(pos.type_of_piece_on(t1) == BISHOP) {
|
||||
if(bit_is_set(bishop_attacks_bb(ksq, occ), t1))
|
||||
return true;
|
||||
}
|
||||
else if(pos.type_of_piece_on(t1) == ROOK) {
|
||||
if(bit_is_set(rook_attacks_bb(ksq, occ), t1))
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
assert(pos.type_of_piece_on(t1) == QUEEN);
|
||||
if(bit_is_set(queen_attacks_bb(ksq, occ), t1))
|
||||
return true;
|
||||
}
|
||||
// Case 5: Discovered check, checking piece is the piece moved in m1
|
||||
if ( piece_is_slider(pos.piece_on(t1))
|
||||
&& bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
|
||||
&& !bit_is_set(squares_between(t2, pos.king_square(pos.side_to_move())), t2))
|
||||
{
|
||||
Bitboard occ = pos.occupied_squares();
|
||||
Color us = pos.side_to_move();
|
||||
Square ksq = pos.king_square(us);
|
||||
clear_bit(&occ, f2);
|
||||
if (pos.type_of_piece_on(t1) == BISHOP)
|
||||
{
|
||||
if (bit_is_set(bishop_attacks_bb(ksq, occ), t1))
|
||||
return true;
|
||||
}
|
||||
else if (pos.type_of_piece_on(t1) == ROOK)
|
||||
{
|
||||
if (bit_is_set(rook_attacks_bb(ksq, occ), t1))
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(pos.type_of_piece_on(t1) == QUEEN);
|
||||
if (bit_is_set(queen_attacks_bb(ksq, occ), t1))
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -2263,10 +2264,9 @@ namespace {
|
|||
// probably a good idea to avoid null moves in at least some more
|
||||
// complicated endgames, e.g. KQ vs KR. FIXME
|
||||
|
||||
bool ok_to_do_nullmove(const Position &pos) {
|
||||
if(pos.non_pawn_material(pos.side_to_move()) == Value(0))
|
||||
return false;
|
||||
return true;
|
||||
bool ok_to_do_nullmove(const Position& pos) {
|
||||
|
||||
return pos.non_pawn_material(pos.side_to_move()) != Value(0);
|
||||
}
|
||||
|
||||
|
||||
|
@ -2274,8 +2274,7 @@ namespace {
|
|||
// non-tactical moves late in the move list close to the leaves are
|
||||
// candidates for pruning.
|
||||
|
||||
bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d, const History& H) {
|
||||
Square mfrom, mto, tfrom, tto;
|
||||
bool ok_to_prune(const Position& pos, Move m, Move threat, Depth d, const History& H) {
|
||||
|
||||
assert(move_is_ok(m));
|
||||
assert(threat == MOVE_NONE || move_is_ok(threat));
|
||||
|
@ -2285,12 +2284,14 @@ namespace {
|
|||
assert(!pos.move_is_passed_pawn_push(m));
|
||||
assert(d >= OnePly);
|
||||
|
||||
Square mfrom, mto, tfrom, tto;
|
||||
|
||||
mfrom = move_from(m);
|
||||
mto = move_to(m);
|
||||
tfrom = move_from(threat);
|
||||
tto = move_to(threat);
|
||||
|
||||
// Case 1: Castling moves are never pruned.
|
||||
// Case 1: Castling moves are never pruned
|
||||
if (move_is_castle(m))
|
||||
return false;
|
||||
|
||||
|
@ -2306,9 +2307,9 @@ namespace {
|
|||
&& ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
|
||||
|| pos.type_of_piece_on(tfrom) == KING)
|
||||
&& pos.move_attacks_square(m, tto))
|
||||
return false;
|
||||
return false;
|
||||
|
||||
// Case 4: Don't prune moves with good history.
|
||||
// Case 4: Don't prune moves with good history
|
||||
if (!H.ok_to_prune(pos.piece_on(mfrom), mto, d))
|
||||
return false;
|
||||
|
||||
|
@ -2319,7 +2320,7 @@ namespace {
|
|||
&& piece_is_slider(pos.piece_on(tfrom))
|
||||
&& bit_is_set(squares_between(tfrom, tto), mto)
|
||||
&& pos.see(m) >= 0)
|
||||
return false;
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -2386,9 +2387,11 @@ namespace {
|
|||
// is used for time managment.
|
||||
|
||||
bool fail_high_ply_1() {
|
||||
|
||||
for(int i = 0; i < ActiveThreads; i++)
|
||||
if(Threads[i].failHighPly1)
|
||||
return true;
|
||||
if (Threads[i].failHighPly1)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -2433,12 +2436,12 @@ namespace {
|
|||
Quit = true;
|
||||
return;
|
||||
}
|
||||
else if(command == "stop")
|
||||
else if (command == "stop")
|
||||
{
|
||||
AbortSearch = true;
|
||||
PonderSearch = false;
|
||||
}
|
||||
else if(command == "ponderhit")
|
||||
else if (command == "ponderhit")
|
||||
ponderhit();
|
||||
}
|
||||
// Print search information
|
||||
|
@ -2487,9 +2490,10 @@ namespace {
|
|||
// it correctly predicted the opponent's move.
|
||||
|
||||
void ponderhit() {
|
||||
|
||||
int t = current_search_time();
|
||||
PonderSearch = false;
|
||||
if(Iteration >= 3 &&
|
||||
if (Iteration >= 3 &&
|
||||
(!InfiniteSearch && (StopOnPonderhit ||
|
||||
t > AbsoluteMaxSearchTime ||
|
||||
(RootMoveNumber == 1 &&
|
||||
|
@ -2504,20 +2508,23 @@ namespace {
|
|||
// thread. Called when the UCI option UCI_ShowCurrLine is 'true'.
|
||||
|
||||
void print_current_line(SearchStack ss[], int ply, int threadID) {
|
||||
|
||||
assert(ply >= 0 && ply < PLY_MAX);
|
||||
assert(threadID >= 0 && threadID < ActiveThreads);
|
||||
|
||||
if(!Threads[threadID].idle) {
|
||||
lock_grab(&IOLock);
|
||||
std::cout << "info currline " << (threadID + 1);
|
||||
for(int p = 0; p < ply; p++)
|
||||
std::cout << " " << ss[p].currentMove;
|
||||
std::cout << std::endl;
|
||||
lock_release(&IOLock);
|
||||
if (!Threads[threadID].idle)
|
||||
{
|
||||
lock_grab(&IOLock);
|
||||
std::cout << "info currline " << (threadID + 1);
|
||||
for (int p = 0; p < ply; p++)
|
||||
std::cout << " " << ss[p].currentMove;
|
||||
|
||||
std::cout << std::endl;
|
||||
lock_release(&IOLock);
|
||||
}
|
||||
Threads[threadID].printCurrentLine = false;
|
||||
if(threadID + 1 < ActiveThreads)
|
||||
Threads[threadID + 1].printCurrentLine = true;
|
||||
if (threadID + 1 < ActiveThreads)
|
||||
Threads[threadID + 1].printCurrentLine = true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -2542,7 +2549,7 @@ namespace {
|
|||
Quit = true;
|
||||
break;
|
||||
}
|
||||
else if(command == "ponderhit" || command == "stop")
|
||||
else if (command == "ponderhit" || command == "stop")
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -2552,7 +2559,7 @@ namespace {
|
|||
// The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
|
||||
// object for which the current thread is the master.
|
||||
|
||||
void idle_loop(int threadID, SplitPoint *waitSp) {
|
||||
void idle_loop(int threadID, SplitPoint* waitSp) {
|
||||
assert(threadID >= 0 && threadID < THREAD_MAX);
|
||||
|
||||
Threads[threadID].running = true;
|
||||
|
@ -2574,7 +2581,7 @@ namespace {
|
|||
#endif
|
||||
}
|
||||
|
||||
// If this thread has been assigned work, launch a search:
|
||||
// If this thread has been assigned work, launch a search
|
||||
if(Threads[threadID].workIsWaiting) {
|
||||
Threads[threadID].workIsWaiting = false;
|
||||
if(Threads[threadID].splitPoint->pvNode)
|
||||
|
@ -2585,7 +2592,7 @@ namespace {
|
|||
}
|
||||
|
||||
// If this thread is the master of a split point and all threads have
|
||||
// finished their work at this split point, return from the idle loop:
|
||||
// finished their work at this split point, return from the idle loop.
|
||||
if(waitSp != NULL && waitSp->cpus == 0)
|
||||
return;
|
||||
}
|
||||
|
@ -2624,7 +2631,7 @@ namespace {
|
|||
bool thread_should_stop(int threadID) {
|
||||
assert(threadID >= 0 && threadID < ActiveThreads);
|
||||
|
||||
SplitPoint *sp;
|
||||
SplitPoint* sp;
|
||||
|
||||
if(Threads[threadID].stop)
|
||||
return true;
|
||||
|
@ -2697,9 +2704,9 @@ namespace {
|
|||
// threads have returned from sp_search_pv (or, equivalently, when
|
||||
// splitPoint->cpus becomes 0), split() returns true.
|
||||
|
||||
bool split(const Position &p, SearchStack *sstck, int ply,
|
||||
Value *alpha, Value *beta, Value *bestValue, Depth depth, int *moves,
|
||||
MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode) {
|
||||
bool split(const Position& p, SearchStack* sstck, int ply,
|
||||
Value* alpha, Value* beta, Value* bestValue, Depth depth, int* moves,
|
||||
MovePicker* mp, Bitboard dcCandidates, int master, bool pvNode) {
|
||||
|
||||
assert(p.is_ok());
|
||||
assert(sstck != NULL);
|
||||
|
@ -2711,24 +2718,24 @@ namespace {
|
|||
assert(master >= 0 && master < ActiveThreads);
|
||||
assert(ActiveThreads > 1);
|
||||
|
||||
SplitPoint *splitPoint;
|
||||
SplitPoint* splitPoint;
|
||||
int i;
|
||||
|
||||
lock_grab(&MPLock);
|
||||
|
||||
// If no other thread is available to help us, or if we have too many
|
||||
// active split points, don't split:
|
||||
// active split points, don't split.
|
||||
if(!idle_thread_exists(master) ||
|
||||
Threads[master].activeSplitPoints >= MaxActiveSplitPoints) {
|
||||
lock_release(&MPLock);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Pick the next available split point object from the split point stack:
|
||||
// Pick the next available split point object from the split point stack
|
||||
splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints;
|
||||
Threads[master].activeSplitPoints++;
|
||||
|
||||
// Initialize the split point object:
|
||||
// Initialize the split point object
|
||||
splitPoint->parent = Threads[master].splitPoint;
|
||||
splitPoint->finished = false;
|
||||
splitPoint->ply = ply;
|
||||
|
@ -2747,11 +2754,11 @@ namespace {
|
|||
for(i = 0; i < ActiveThreads; i++)
|
||||
splitPoint->slaves[i] = 0;
|
||||
|
||||
// Copy the current position and the search stack to the master thread:
|
||||
// Copy the current position and the search stack to the master thread
|
||||
memcpy(splitPoint->sstack[master], sstck, (ply+1)*sizeof(SearchStack));
|
||||
Threads[master].splitPoint = splitPoint;
|
||||
|
||||
// Make copies of the current position and search stack for each thread:
|
||||
// Make copies of the current position and search stack for each thread
|
||||
for(i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint;
|
||||
i++)
|
||||
if(thread_is_available(i, master)) {
|
||||
|
@ -2781,7 +2788,7 @@ namespace {
|
|||
idle_loop(master, splitPoint);
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Update alpha, beta and bestvalue, and return:
|
||||
// finished. Update alpha, beta and bestvalue, and return.
|
||||
lock_grab(&MPLock);
|
||||
if(pvNode) *alpha = splitPoint->alpha;
|
||||
*beta = splitPoint->beta;
|
||||
|
|
Loading…
Add table
Reference in a new issue