1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00

Move EndgameFunctions to endgame.cpp

And cleanup code while there.

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba 2011-04-11 18:12:41 +02:00
parent 08c464c690
commit b5d5646c84
5 changed files with 201 additions and 209 deletions

View file

@ -23,6 +23,8 @@
#include "endgame.h"
#include "pawns.h"
using std::string;
extern uint32_t probe_kpk_bitbase(Square wksq, Square wpsq, Square bksq, Color stm);
namespace {
@ -78,15 +80,102 @@ namespace {
return Value(KRKNKingKnightDistancePenalty[d]);
}
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
const string swapColors(const string& keyCode) {
size_t idx = keyCode.find('K', 1);
return keyCode.substr(idx) + keyCode.substr(0, idx);
}
// Build up a fen string with the given pieces, note that the fen string
// could be of an illegal position.
Key buildKey(const string& keyCode) {
assert(keyCode.length() > 0 && keyCode.length() < 8);
assert(keyCode[0] == 'K');
string fen;
bool upcase = false;
for (size_t i = 0; i < keyCode.length(); i++)
{
if (keyCode[i] == 'K')
upcase = !upcase;
fen += char(upcase ? toupper(keyCode[i]) : tolower(keyCode[i]));
}
fen += char(8 - keyCode.length() + '0');
fen += "/8/8/8/8/8/8/8 w - -";
return Position(fen, false, 0).get_material_key();
}
typedef EndgameBase<Value> EF;
typedef EndgameBase<ScaleFactor> SF;
} // namespace
/// Endgames member definitions
template<> const Endgames::EFMap& Endgames::get<EF>() const { return maps.first; }
template<> const Endgames::SFMap& Endgames::get<SF>() const { return maps.second; }
Endgames::Endgames() {
add<Endgame<Value, KNNK> >("KNNK");
add<Endgame<Value, KPK> >("KPK");
add<Endgame<Value, KBNK> >("KBNK");
add<Endgame<Value, KRKP> >("KRKP");
add<Endgame<Value, KRKB> >("KRKB");
add<Endgame<Value, KRKN> >("KRKN");
add<Endgame<Value, KQKR> >("KQKR");
add<Endgame<Value, KBBKN> >("KBBKN");
add<Endgame<ScaleFactor, KNPK> >("KNPK");
add<Endgame<ScaleFactor, KRPKR> >("KRPKR");
add<Endgame<ScaleFactor, KBPKB> >("KBPKB");
add<Endgame<ScaleFactor, KBPPKB> >("KBPPKB");
add<Endgame<ScaleFactor, KBPKN> >("KBPKN");
add<Endgame<ScaleFactor, KRPPKRP> >("KRPPKRP");
}
Endgames::~Endgames() {
for (EFMap::const_iterator it = get<EF>().begin(); it != get<EF>().end(); ++it)
delete it->second;
for (SFMap::const_iterator it = get<SF>().begin(); it != get<SF>().end(); ++it)
delete it->second;
}
template<class T>
void Endgames::add(const string& keyCode) {
typedef typename T::Base F;
typedef std::map<Key, F*> M;
const_cast<M&>(get<F>()).insert(std::pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
const_cast<M&>(get<F>()).insert(std::pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
}
template<class T>
T* Endgames::get(Key key) const {
typename std::map<Key, T*>::const_iterator it = get<T>().find(key);
return it != get<T>().end() ? it->second : NULL;
}
// Explicit template instantiations
template EF* Endgames::get<EF>(Key key) const;
template SF* Endgames::get<SF>(Key key) const;
/// Mate with KX vs K. This function is used to evaluate positions with
/// King and plenty of material vs a lone king. It simply gives the
/// attacking side a bonus for driving the defending king towards the edge
/// of the board, and for keeping the distance between the two kings small.
template<>
Value EvaluationFunction<KXK>::apply(const Position& pos) const {
Value Endgame<Value, KXK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
@ -112,7 +201,7 @@ Value EvaluationFunction<KXK>::apply(const Position& pos) const {
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
/// defending king towards a corner square of the right color.
template<>
Value EvaluationFunction<KBNK>::apply(const Position& pos) const {
Value Endgame<Value, KBNK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
@ -144,7 +233,7 @@ Value EvaluationFunction<KBNK>::apply(const Position& pos) const {
/// KP vs K. This endgame is evaluated with the help of a bitbase.
template<>
Value EvaluationFunction<KPK>::apply(const Position& pos) const {
Value Endgame<Value, KPK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
@ -192,7 +281,7 @@ Value EvaluationFunction<KPK>::apply(const Position& pos) const {
/// far advanced with support of the king, while the attacking king is far
/// away.
template<>
Value EvaluationFunction<KRKP>::apply(const Position& pos) const {
Value Endgame<Value, KRKP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -249,7 +338,7 @@ Value EvaluationFunction<KRKP>::apply(const Position& pos) const {
/// KR vs KB. This is very simple, and always returns drawish scores. The
/// score is slightly bigger when the defending king is close to the edge.
template<>
Value EvaluationFunction<KRKB>::apply(const Position& pos) const {
Value Endgame<Value, KRKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -265,7 +354,7 @@ Value EvaluationFunction<KRKB>::apply(const Position& pos) const {
/// KR vs KN. The attacking side has slightly better winning chances than
/// in KR vs KB, particularly if the king and the knight are far apart.
template<>
Value EvaluationFunction<KRKN>::apply(const Position& pos) const {
Value Endgame<Value, KRKN>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -291,7 +380,7 @@ Value EvaluationFunction<KRKN>::apply(const Position& pos) const {
/// for the defending side in the search, this is usually sufficient to be
/// able to win KQ vs KR.
template<>
Value EvaluationFunction<KQKR>::apply(const Position& pos) const {
Value Endgame<Value, KQKR>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -310,7 +399,7 @@ Value EvaluationFunction<KQKR>::apply(const Position& pos) const {
}
template<>
Value EvaluationFunction<KBBKN>::apply(const Position& pos) const {
Value Endgame<Value, KBBKN>::apply(const Position& pos) const {
assert(pos.piece_count(strongerSide, BISHOP) == 2);
assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
@ -339,12 +428,12 @@ Value EvaluationFunction<KBBKN>::apply(const Position& pos) const {
/// K and two minors vs K and one or two minors or K and two knights against
/// king alone are always draw.
template<>
Value EvaluationFunction<KmmKm>::apply(const Position&) const {
Value Endgame<Value, KmmKm>::apply(const Position&) const {
return VALUE_DRAW;
}
template<>
Value EvaluationFunction<KNNK>::apply(const Position&) const {
Value Endgame<Value, KNNK>::apply(const Position&) const {
return VALUE_DRAW;
}
@ -354,7 +443,7 @@ Value EvaluationFunction<KNNK>::apply(const Position&) const {
/// returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
/// will be used.
template<>
ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KBPsK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
@ -408,7 +497,7 @@ ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) const {
/// It tests for fortress draws with a rook on the third rank defended by
/// a pawn.
template<>
ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KQKRPs>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, QUEEN) == 1);
@ -439,7 +528,7 @@ ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) const {
/// It would also be nice to rewrite the actual code for this function,
/// which is mostly copied from Glaurung 1.x, and not very pretty.
template<>
ScaleFactor ScalingFunction<KRPKR>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 1);
@ -557,7 +646,7 @@ ScaleFactor ScalingFunction<KRPKR>::apply(const Position& pos) const {
/// single pattern: If the stronger side has no pawns and the defending king
/// is actively placed, the position is drawish.
template<>
ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KRPPKRP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 2);
@ -596,7 +685,7 @@ ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position& pos) const {
/// against king. There is just a single rule here: If all pawns are on
/// the same rook file and are blocked by the defending king, it's a draw.
template<>
ScaleFactor ScalingFunction<KPsK>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KPsK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.piece_count(strongerSide, PAWN) >= 2);
@ -634,7 +723,7 @@ ScaleFactor ScalingFunction<KPsK>::apply(const Position& pos) const {
/// it's a draw. If the two bishops have opposite color, it's almost always
/// a draw.
template<>
ScaleFactor ScalingFunction<KBPKB>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KBPKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
@ -689,7 +778,7 @@ ScaleFactor ScalingFunction<KBPKB>::apply(const Position& pos) const {
/// KBPPKBScalingFunction scales KBPP vs KB endgames. It detects a few basic
/// draws with opposite-colored bishops.
template<>
ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KBPPKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
@ -765,7 +854,7 @@ ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) const {
/// square of the king is not of the same color as the stronger side's bishop,
/// it's a draw.
template<>
ScaleFactor ScalingFunction<KBPKN>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KBPKN>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
@ -792,7 +881,7 @@ ScaleFactor ScalingFunction<KBPKN>::apply(const Position& pos) const {
/// If the pawn is a rook pawn on the 7th rank and the defending king prevents
/// the pawn from advancing, the position is drawn.
template<>
ScaleFactor ScalingFunction<KNPK>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KNPK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
assert(pos.piece_count(strongerSide, KNIGHT) == 1);
@ -822,7 +911,7 @@ ScaleFactor ScalingFunction<KNPK>::apply(const Position& pos) const {
/// advanced and not on a rook file; in this case it is often possible to win
/// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
template<>
ScaleFactor ScalingFunction<KPKP>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KPKP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);

View file

@ -20,43 +20,52 @@
#if !defined(ENDGAME_H_INCLUDED)
#define ENDGAME_H_INCLUDED
#include <string>
#include <map>
#include "position.h"
#include "types.h"
/// EndgameType lists all supported endgames
enum EndgameType {
// Evaluation functions
KXK, // Generic "mate lone king" eval
KBNK, // KBN vs K
KPK, // KP vs K
KRKP, // KR vs KP
KRKB, // KR vs KB
KRKN, // KR vs KN
KQKR, // KQ vs KR
KBBKN, // KBB vs KN
KNNK, // KNN vs K
KmmKm, // K and two minors vs K and one or two minors
// Evaluation functions
KXK, // Generic "mate lone king" eval
KBNK, // KBN vs K
KPK, // KP vs K
KRKP, // KR vs KP
KRKB, // KR vs KB
KRKN, // KR vs KN
KQKR, // KQ vs KR
KBBKN, // KBB vs KN
KNNK, // KNN vs K
KmmKm, // K and two minors vs K and one or two minors
// Scaling functions
KBPsK, // KB+pawns vs K
KQKRPs, // KQ vs KR+pawns
KRPKR, // KRP vs KR
KRPPKRP, // KRPP vs KRP
KPsK, // King and pawns vs king
KBPKB, // KBP vs KB
KBPPKB, // KBPP vs KB
KBPKN, // KBP vs KN
KNPK, // KNP vs K
KPKP // KP vs KP
// Scaling functions
KBPsK, // KB+pawns vs K
KQKRPs, // KQ vs KR+pawns
KRPKR, // KRP vs KR
KRPPKRP, // KRPP vs KRP
KPsK, // King and pawns vs king
KBPKB, // KBP vs KB
KBPPKB, // KBPP vs KB
KBPKN, // KBP vs KN
KNPK, // KNP vs K
KPKP // KP vs KP
};
/// Template abstract base class for all special endgame functions
/// Base and derived template class for endgame evaluation and scaling functions
template<typename T>
class EndgameFunctionBase {
public:
EndgameFunctionBase(Color c) : strongerSide(c), weakerSide(opposite_color(c)) {}
virtual ~EndgameFunctionBase() {}
struct EndgameBase {
typedef EndgameBase<T> Base;
EndgameBase(Color c) : strongerSide(c), weakerSide(opposite_color(c)) {}
virtual ~EndgameBase() {}
virtual T apply(const Position&) const = 0;
Color color() const { return strongerSide; }
@ -64,24 +73,37 @@ protected:
Color strongerSide, weakerSide;
};
typedef EndgameFunctionBase<Value> EndgameEvaluationFunctionBase;
typedef EndgameFunctionBase<ScaleFactor> EndgameScalingFunctionBase;
template<typename T, EndgameType>
struct Endgame : public EndgameBase<T> {
/// Templates subclass for various concrete endgames
template<EndgameType>
struct EvaluationFunction : public EndgameEvaluationFunctionBase {
typedef EndgameEvaluationFunctionBase Base;
explicit EvaluationFunction(Color c): EndgameEvaluationFunctionBase(c) {}
Value apply(const Position&) const;
explicit Endgame(Color c): EndgameBase<T>(c) {}
T apply(const Position&) const;
};
template<EndgameType>
struct ScalingFunction : public EndgameScalingFunctionBase {
typedef EndgameScalingFunctionBase Base;
explicit ScalingFunction(Color c) : EndgameScalingFunctionBase(c) {}
ScaleFactor apply(const Position&) const;
/// Endgames class stores in two std::map the pointers to endgame evaluation
/// and scaling base objects. Then we use polymorphism to invoke the actual
/// endgame function calling its apply() method that is virtual.
class Endgames {
typedef std::map<Key, EndgameBase<Value>*> EFMap;
typedef std::map<Key, EndgameBase<ScaleFactor>*> SFMap;
public:
Endgames();
~Endgames();
template<class T> T* get(Key key) const;
private:
template<class T> void add(const std::string& keyCode);
// Here we store two maps, for evaluate and scaling functions...
std::pair<EFMap, SFMap> maps;
// ...and here is the accessing template function
template<typename T> const std::map<Key, T*>& get() const;
};
#endif // !defined(ENDGAME_H_INCLUDED)

View file

@ -19,7 +19,6 @@
#include <cassert>
#include <cstring>
#include <map>
#include "material.h"
@ -48,19 +47,15 @@ namespace {
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
typedef EndgameEvaluationFunctionBase EF;
typedef EndgameScalingFunctionBase SF;
typedef map<Key, EF*> EFMap;
typedef map<Key, SF*> SFMap;
// Endgame evaluation and scaling functions accessed direcly and not through
// the function maps because correspond to more then one material hash key.
EvaluationFunction<KmmKm> EvaluateKmmKm[] = { EvaluationFunction<KmmKm>(WHITE), EvaluationFunction<KmmKm>(BLACK) };
EvaluationFunction<KXK> EvaluateKXK[] = { EvaluationFunction<KXK>(WHITE), EvaluationFunction<KXK>(BLACK) };
ScalingFunction<KBPsK> ScaleKBPsK[] = { ScalingFunction<KBPsK>(WHITE), ScalingFunction<KBPsK>(BLACK) };
ScalingFunction<KQKRPs> ScaleKQKRPs[] = { ScalingFunction<KQKRPs>(WHITE), ScalingFunction<KQKRPs>(BLACK) };
ScalingFunction<KPsK> ScaleKPsK[] = { ScalingFunction<KPsK>(WHITE), ScalingFunction<KPsK>(BLACK) };
ScalingFunction<KPKP> ScaleKPKP[] = { ScalingFunction<KPKP>(WHITE), ScalingFunction<KPKP>(BLACK) };
Endgame<Value, KmmKm> EvaluateKmmKm[] = { Endgame<Value, KmmKm>(WHITE), Endgame<Value, KmmKm>(BLACK) };
Endgame<Value, KXK> EvaluateKXK[] = { Endgame<Value, KXK>(WHITE), Endgame<Value, KXK>(BLACK) };
Endgame<ScaleFactor, KBPsK> ScaleKBPsK[] = { Endgame<ScaleFactor, KBPsK>(WHITE), Endgame<ScaleFactor, KBPsK>(BLACK) };
Endgame<ScaleFactor, KQKRPs> ScaleKQKRPs[] = { Endgame<ScaleFactor, KQKRPs>(WHITE), Endgame<ScaleFactor, KQKRPs>(BLACK) };
Endgame<ScaleFactor, KPsK> ScaleKPsK[] = { Endgame<ScaleFactor, KPsK>(WHITE), Endgame<ScaleFactor, KPsK>(BLACK) };
Endgame<ScaleFactor, KPKP> ScaleKPKP[] = { Endgame<ScaleFactor, KPKP>(WHITE), Endgame<ScaleFactor, KPKP>(BLACK) };
// Helper templates used to detect a given material distribution
template<Color Us> bool is_KXK(const Position& pos) {
@ -84,42 +79,13 @@ namespace {
&& pos.piece_count(Them, ROOK) == 1
&& pos.piece_count(Them, PAWN) >= 1;
}
}
} // namespace
/// EndgameFunctions class stores endgame evaluation and scaling functions
/// in two std::map. Because STL library is not guaranteed to be thread
/// safe even for read access, the maps, although with identical content,
/// are replicated for each thread. This is faster then using locks.
/// MaterialInfoTable c'tor and d'tor allocate and free the space for Endgames
class EndgameFunctions {
public:
EndgameFunctions();
~EndgameFunctions();
template<class T> T* get(Key key) const;
private:
template<class T> void add(const string& keyCode);
static Key buildKey(const string& keyCode);
static const string swapColors(const string& keyCode);
// Here we store two maps, for evaluate and scaling functions...
pair<EFMap, SFMap> maps;
// ...and here is the accessing template function
template<typename T> const map<Key, T*>& get() const;
};
// Explicit specializations of a member function shall be declared in
// the namespace of which the class template is a member.
template<> const EFMap& EndgameFunctions::get<EF>() const { return maps.first; }
template<> const SFMap& EndgameFunctions::get<SF>() const { return maps.second; }
/// MaterialInfoTable c'tor and d'tor allocate and free the space for EndgameFunctions
MaterialInfoTable::MaterialInfoTable() { funcs = new EndgameFunctions(); }
MaterialInfoTable::MaterialInfoTable() { funcs = new Endgames(); }
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
@ -151,7 +117,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
// configuration one, then a generic one if previous search failed.
if ((mi->evaluationFunction = funcs->get<EF>(key)) != NULL)
if ((mi->evaluationFunction = funcs->get<EndgameBase<Value> >(key)) != NULL)
return mi;
if (is_KXK<WHITE>(pos))
@ -186,9 +152,9 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
//
// We face problems when there are several conflicting applicable
// scaling functions and we need to decide which one to use.
SF* sf;
EndgameBase<ScaleFactor>* sf;
if ((sf = funcs->get<SF>(key)) != NULL)
if ((sf = funcs->get<EndgameBase<ScaleFactor> >(key)) != NULL)
{
mi->scalingFunction[sf->color()] = sf;
return mi;
@ -277,7 +243,7 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
int pt1, pt2, pc, vv;
int pt1, pt2, pc, v;
int value = 0;
// Redundancy of major pieces, formula based on Kaufman's paper
@ -293,13 +259,13 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
if (!pc)
continue;
vv = LinearCoefficients[pt1];
v = LinearCoefficients[pt1];
for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++)
vv += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
value += pc * vv;
value += pc * v;
}
return value;
}
@ -313,88 +279,7 @@ Phase MaterialInfoTable::game_phase(const Position& pos) {
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
if (npm >= MidgameLimit)
return PHASE_MIDGAME;
if (npm <= EndgameLimit)
return PHASE_ENDGAME;
return Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
}
/// EndgameFunctions member definitions
EndgameFunctions::EndgameFunctions() {
add<EvaluationFunction<KNNK> >("KNNK");
add<EvaluationFunction<KPK> >("KPK");
add<EvaluationFunction<KBNK> >("KBNK");
add<EvaluationFunction<KRKP> >("KRKP");
add<EvaluationFunction<KRKB> >("KRKB");
add<EvaluationFunction<KRKN> >("KRKN");
add<EvaluationFunction<KQKR> >("KQKR");
add<EvaluationFunction<KBBKN> >("KBBKN");
add<ScalingFunction<KNPK> >("KNPK");
add<ScalingFunction<KRPKR> >("KRPKR");
add<ScalingFunction<KBPKB> >("KBPKB");
add<ScalingFunction<KBPPKB> >("KBPPKB");
add<ScalingFunction<KBPKN> >("KBPKN");
add<ScalingFunction<KRPPKRP> >("KRPPKRP");
}
EndgameFunctions::~EndgameFunctions() {
for (EFMap::const_iterator it = maps.first.begin(); it != maps.first.end(); ++it)
delete it->second;
for (SFMap::const_iterator it = maps.second.begin(); it != maps.second.end(); ++it)
delete it->second;
}
Key EndgameFunctions::buildKey(const string& keyCode) {
assert(keyCode.length() > 0 && keyCode.length() < 8);
assert(keyCode[0] == 'K');
string fen;
bool upcase = false;
// Build up a fen string with the given pieces, note that
// the fen string could be of an illegal position.
for (size_t i = 0; i < keyCode.length(); i++)
{
if (keyCode[i] == 'K')
upcase = !upcase;
fen += char(upcase ? toupper(keyCode[i]) : tolower(keyCode[i]));
}
fen += char(8 - keyCode.length() + '0');
fen += "/8/8/8/8/8/8/8 w - -";
return Position(fen, false, 0).get_material_key();
}
const string EndgameFunctions::swapColors(const string& keyCode) {
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
size_t idx = keyCode.find('K', 1);
return keyCode.substr(idx) + keyCode.substr(0, idx);
}
template<class T>
void EndgameFunctions::add(const string& keyCode) {
typedef typename T::Base F;
typedef map<Key, F*> M;
const_cast<M&>(get<F>()).insert(pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
const_cast<M&>(get<F>()).insert(pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
}
template<class T>
T* EndgameFunctions::get(Key key) const {
typename map<Key, T*>::const_iterator it = get<T>().find(key);
return it != get<T>().end() ? it->second : NULL;
return npm >= MidgameLimit ? PHASE_MIDGAME
: npm <= EndgameLimit ? PHASE_ENDGAME
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
}

View file

@ -53,8 +53,8 @@ private:
Key key;
int16_t value;
uint8_t factor[2];
EndgameEvaluationFunctionBase* evaluationFunction;
EndgameScalingFunctionBase* scalingFunction[2];
EndgameBase<Value>* evaluationFunction;
EndgameBase<ScaleFactor>* scalingFunction[2];
int spaceWeight;
Phase gamePhase;
};
@ -62,7 +62,6 @@ private:
/// The MaterialInfoTable class represents a pawn hash table. The most important
/// method is get_material_info, which returns a pointer to a MaterialInfo object.
class EndgameFunctions;
class MaterialInfoTable : public SimpleHash<MaterialInfo, MaterialTableSize> {
public:
@ -75,7 +74,7 @@ private:
template<Color Us>
static int imbalance(const int pieceCount[][8]);
EndgameFunctions* funcs;
Endgames* funcs;
};
@ -95,6 +94,10 @@ inline ScaleFactor MaterialInfo::scale_factor(const Position& pos, Color c) cons
return sf == SCALE_FACTOR_NONE ? ScaleFactor(factor[c]) : sf;
}
inline Value MaterialInfo::evaluate(const Position& pos) const {
return evaluationFunction->apply(pos);
}
inline Score MaterialInfo::material_value() const {
return make_score(value, value);
}
@ -111,8 +114,4 @@ inline bool MaterialInfo::specialized_eval_exists() const {
return evaluationFunction != NULL;
}
inline Value MaterialInfo::evaluate(const Position& pos) const {
return evaluationFunction->apply(pos);
}
#endif // !defined(MATERIAL_H_INCLUDED)

View file

@ -104,9 +104,6 @@ struct StateInfo {
class Position {
friend class MaterialInfo;
friend class EndgameFunctions;
Position(); // No default or copy c'tor allowed
Position(const Position& pos);