1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00

Accumulator cache bugfix and cleanup

STC:
https://tests.stockfishchess.org/tests/view/663068913a05f1bf7a511dc2
LLR: 2.98 (-2.94,2.94) <-1.75,0.25>
Total: 70304 W: 18211 L: 18026 D: 34067
Ptnml(0-2): 232, 7966, 18582, 8129, 243

1) Fixes a bug introduced in
   https://github.com/official-stockfish/Stockfish/pull/5194. Only one
   psqtOnly flag was used for two perspectives which was causing
   wrong entries to be cleared and marked.
2) The finny caches should be cleared like histories and not at the
   start of every search.

closes https://github.com/official-stockfish/Stockfish/pull/5203

No functional change
This commit is contained in:
mstembera 2024-04-29 20:37:54 -07:00 committed by Disservin
parent 6a9b8a0c7b
commit be142337d8
3 changed files with 28 additions and 35 deletions

View file

@ -59,31 +59,27 @@ struct AccumulatorCaches {
struct alignas(CacheLineSize) Cache {
struct alignas(CacheLineSize) Entry {
BiasType accumulation[COLOR_NB][Size];
PSQTWeightType psqtAccumulation[COLOR_NB][PSQTBuckets];
Bitboard byColorBB[COLOR_NB][COLOR_NB];
Bitboard byTypeBB[COLOR_NB][PIECE_TYPE_NB];
BiasType accumulation[Size];
PSQTWeightType psqtAccumulation[PSQTBuckets];
Bitboard byColorBB[COLOR_NB];
Bitboard byTypeBB[PIECE_TYPE_NB];
bool psqtOnly;
// To initialize a refresh entry, we set all its bitboards empty,
// so we put the biases in the accumulation, without any weights on top
void clear(const BiasType* biases) {
std::memset(byColorBB, 0, sizeof(byColorBB));
std::memset(byTypeBB, 0, sizeof(byTypeBB));
psqtOnly = false;
std::memcpy(accumulation[WHITE], biases, Size * sizeof(BiasType));
std::memcpy(accumulation[BLACK], biases, Size * sizeof(BiasType));
std::memset(psqtAccumulation, 0, sizeof(psqtAccumulation));
std::memcpy(accumulation, biases, sizeof(accumulation));
std::memset((uint8_t*) this + offsetof(Entry, psqtAccumulation), 0,
sizeof(Entry) - offsetof(Entry, psqtAccumulation));
}
};
template<typename Network>
void clear(const Network& network) {
for (auto& entry : entries)
entry.clear(network.featureTransformer->biases);
for (auto& entries1D : entries)
for (auto& entry : entries1D)
entry.clear(network.featureTransformer->biases);
}
void clear(const BiasType* biases) {
@ -91,9 +87,9 @@ struct AccumulatorCaches {
entry.clear(biases);
}
Entry& operator[](Square sq) { return entries[sq]; }
std::array<Entry, COLOR_NB>& operator[](Square sq) { return entries[sq]; }
std::array<Entry, SQUARE_NB> entries;
std::array<std::array<Entry, COLOR_NB>, SQUARE_NB> entries;
};
template<typename Networks>

View file

@ -652,7 +652,7 @@ class FeatureTransformer {
assert(cache != nullptr);
Square ksq = pos.square<KING>(Perspective);
auto& entry = (*cache)[ksq];
auto& entry = (*cache)[ksq][Perspective];
FeatureSet::IndexList removed, added;
if (entry.psqtOnly && !psqtOnly)
@ -666,9 +666,8 @@ class FeatureTransformer {
{
for (PieceType pt = PAWN; pt <= KING; ++pt)
{
const Piece piece = make_piece(c, pt);
const Bitboard oldBB =
entry.byColorBB[Perspective][c] & entry.byTypeBB[Perspective][pt];
const Piece piece = make_piece(c, pt);
const Bitboard oldBB = entry.byColorBB[c] & entry.byTypeBB[pt];
const Bitboard newBB = pos.pieces(c, pt);
Bitboard toRemove = oldBB & ~newBB;
Bitboard toAdd = newBB & ~oldBB;
@ -698,8 +697,7 @@ class FeatureTransformer {
if (!psqtOnly)
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
{
auto entryTile =
reinterpret_cast<vec_t*>(&entry.accumulation[Perspective][j * TileHeight]);
auto entryTile = reinterpret_cast<vec_t*>(&entry.accumulation[j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = entryTile[k];
@ -741,8 +739,8 @@ class FeatureTransformer {
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
{
auto entryTilePsqt = reinterpret_cast<psqt_vec_t*>(
&entry.psqtAccumulation[Perspective][j * PsqtTileHeight]);
auto entryTilePsqt =
reinterpret_cast<psqt_vec_t*>(&entry.psqtAccumulation[j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = entryTilePsqt[k];
@ -777,11 +775,11 @@ class FeatureTransformer {
{
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
entry.accumulation[Perspective][j] -= weights[offset + j];
entry.accumulation[j] -= weights[offset + j];
}
for (std::size_t k = 0; k < PSQTBuckets; ++k)
entry.psqtAccumulation[Perspective][k] -= psqtWeights[index * PSQTBuckets + k];
entry.psqtAccumulation[k] -= psqtWeights[index * PSQTBuckets + k];
}
for (const auto index : added)
{
@ -789,11 +787,11 @@ class FeatureTransformer {
{
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
entry.accumulation[Perspective][j] += weights[offset + j];
entry.accumulation[j] += weights[offset + j];
}
for (std::size_t k = 0; k < PSQTBuckets; ++k)
entry.psqtAccumulation[Perspective][k] += psqtWeights[index * PSQTBuckets + k];
entry.psqtAccumulation[k] += psqtWeights[index * PSQTBuckets + k];
}
#endif
@ -802,17 +800,17 @@ class FeatureTransformer {
// Now copy its content to the actual accumulator we were refreshing
if (!psqtOnly)
std::memcpy(accumulator.accumulation[Perspective], entry.accumulation[Perspective],
std::memcpy(accumulator.accumulation[Perspective], entry.accumulation,
sizeof(BiasType) * HalfDimensions);
std::memcpy(accumulator.psqtAccumulation[Perspective], entry.psqtAccumulation[Perspective],
std::memcpy(accumulator.psqtAccumulation[Perspective], entry.psqtAccumulation,
sizeof(int32_t) * PSQTBuckets);
for (Color c : {WHITE, BLACK})
entry.byColorBB[Perspective][c] = pos.pieces(c);
entry.byColorBB[c] = pos.pieces(c);
for (PieceType pt = PAWN; pt <= KING; ++pt)
entry.byTypeBB[Perspective][pt] = pos.pieces(pt);
entry.byTypeBB[pt] = pos.pieces(pt);
entry.psqtOnly = psqtOnly;
}

View file

@ -147,9 +147,6 @@ Search::Worker::Worker(SharedState& sharedState,
void Search::Worker::start_searching() {
// Initialize accumulator refresh entries
refreshTable.clear(networks);
// Non-main threads go directly to iterative_deepening()
if (!is_mainthread())
{
@ -506,6 +503,8 @@ void Search::Worker::clear() {
for (size_t i = 1; i < reductions.size(); ++i)
reductions[i] = int((20.14 + std::log(size_t(options["Threads"])) / 2) * std::log(i));
refreshTable.clear(networks);
}