mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 16:53:09 +00:00
Tempeltize material imbalance
Speedup of almost 1% No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
7a84b8ca34
commit
c88eebc989
4 changed files with 105 additions and 108 deletions
166
src/material.cpp
166
src/material.cpp
|
@ -17,11 +17,6 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
////
|
||||
//// Includes
|
||||
////
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <map>
|
||||
|
@ -30,11 +25,6 @@
|
|||
|
||||
using namespace std;
|
||||
|
||||
|
||||
////
|
||||
//// Local definitions
|
||||
////
|
||||
|
||||
namespace {
|
||||
|
||||
// Values modified by Joona Kiiski
|
||||
|
@ -77,7 +67,7 @@ namespace {
|
|||
&& pos.non_pawn_material(Us) >= RookValueMidgame;
|
||||
}
|
||||
|
||||
template<Color Us> bool is_KBPsK(const Position& pos) {
|
||||
template<Color Us> bool is_KBPsKs(const Position& pos) {
|
||||
return pos.non_pawn_material(Us) == BishopValueMidgame
|
||||
&& pos.piece_count(Us, BISHOP) == 1
|
||||
&& pos.piece_count(Us, PAWN) >= 1;
|
||||
|
@ -94,10 +84,6 @@ namespace {
|
|||
}
|
||||
|
||||
|
||||
////
|
||||
//// Classes
|
||||
////
|
||||
|
||||
/// EndgameFunctions class stores endgame evaluation and scaling functions
|
||||
/// in two std::map. Because STL library is not guaranteed to be thread
|
||||
/// safe even for read access, the maps, although with identical content,
|
||||
|
@ -128,29 +114,11 @@ template<> const EFMap& EndgameFunctions::get<EF>() const { return maps.first; }
|
|||
template<> const SFMap& EndgameFunctions::get<SF>() const { return maps.second; }
|
||||
|
||||
|
||||
////
|
||||
//// Functions
|
||||
////
|
||||
/// MaterialInfoTable c'tor and d'tor allocate and free the space for EndgameFunctions
|
||||
|
||||
MaterialInfoTable::MaterialInfoTable() { funcs = new EndgameFunctions(); }
|
||||
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
|
||||
|
||||
/// MaterialInfoTable::game_phase() calculates the phase given the current
|
||||
/// position. Because the phase is strictly a function of the material, it
|
||||
/// is stored in MaterialInfo.
|
||||
|
||||
Phase MaterialInfoTable::game_phase(const Position& pos) {
|
||||
|
||||
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
|
||||
|
||||
if (npm >= MidgameLimit)
|
||||
return PHASE_MIDGAME;
|
||||
|
||||
if (npm <= EndgameLimit)
|
||||
return PHASE_ENDGAME;
|
||||
|
||||
return Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
|
||||
}
|
||||
|
||||
/// MaterialInfoTable::get_material_info() takes a position object as input,
|
||||
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
|
||||
|
@ -158,7 +126,7 @@ Phase MaterialInfoTable::game_phase(const Position& pos) {
|
|||
/// is stored there, so we don't have to recompute everything when the
|
||||
/// same material configuration occurs again.
|
||||
|
||||
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
||||
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
||||
|
||||
Key key = pos.get_material_key();
|
||||
MaterialInfo* mi = find(key);
|
||||
|
@ -169,10 +137,10 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|||
if (mi->key == key)
|
||||
return mi;
|
||||
|
||||
// Clear the MaterialInfo object, and set its key
|
||||
// Initialize MaterialInfo entry
|
||||
memset(mi, 0, sizeof(MaterialInfo));
|
||||
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
mi->key = key;
|
||||
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
|
||||
// Store game phase
|
||||
mi->gamePhase = MaterialInfoTable::game_phase(pos);
|
||||
|
@ -183,15 +151,19 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|||
if ((mi->evaluationFunction = funcs->get<EF>(key)) != NULL)
|
||||
return mi;
|
||||
|
||||
if (is_KXK<WHITE>(pos) || is_KXK<BLACK>(pos))
|
||||
if (is_KXK<WHITE>(pos))
|
||||
{
|
||||
mi->evaluationFunction = is_KXK<WHITE>(pos) ? &EvaluateKXK[WHITE] : &EvaluateKXK[BLACK];
|
||||
mi->evaluationFunction = &EvaluateKXK[WHITE];
|
||||
return mi;
|
||||
}
|
||||
|
||||
if ( pos.pieces(PAWN) == EmptyBoardBB
|
||||
&& pos.pieces(ROOK) == EmptyBoardBB
|
||||
&& pos.pieces(QUEEN) == EmptyBoardBB)
|
||||
if (is_KXK<BLACK>(pos))
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKXK[BLACK];
|
||||
return mi;
|
||||
}
|
||||
|
||||
if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
|
||||
{
|
||||
// Minor piece endgame with at least one minor piece per side and
|
||||
// no pawns. Note that the case KmmK is already handled by KXK.
|
||||
|
@ -222,10 +194,10 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|||
// Generic scaling functions that refer to more then one material
|
||||
// distribution. Should be probed after the specialized ones.
|
||||
// Note that these ones don't return after setting the function.
|
||||
if (is_KBPsK<WHITE>(pos))
|
||||
if (is_KBPsKs<WHITE>(pos))
|
||||
mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
|
||||
|
||||
if (is_KBPsK<BLACK>(pos))
|
||||
if (is_KBPsKs<BLACK>(pos))
|
||||
mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
|
||||
|
||||
if (is_KQKRPs<WHITE>(pos))
|
||||
|
@ -255,32 +227,8 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|||
}
|
||||
}
|
||||
|
||||
// Compute the space weight
|
||||
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >=
|
||||
2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame)
|
||||
{
|
||||
int minorPieceCount = pos.piece_count(WHITE, KNIGHT)
|
||||
+ pos.piece_count(BLACK, KNIGHT)
|
||||
+ pos.piece_count(WHITE, BISHOP)
|
||||
+ pos.piece_count(BLACK, BISHOP);
|
||||
|
||||
mi->spaceWeight = minorPieceCount * minorPieceCount;
|
||||
}
|
||||
|
||||
// Evaluate the material balance
|
||||
const int pieceCount[2][8] = {
|
||||
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
|
||||
pos.piece_count(WHITE, BISHOP), pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
|
||||
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
|
||||
pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
|
||||
|
||||
Color c, them;
|
||||
int sign, pt1, pt2, pc;
|
||||
int v, vv, matValue = 0;
|
||||
|
||||
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
|
||||
{
|
||||
// No pawns makes it difficult to win, even with a material advantage
|
||||
for (Color c = WHITE; c <= BLACK; c++)
|
||||
if ( pos.piece_count(c, PAWN) == 0
|
||||
&& pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame)
|
||||
{
|
||||
|
@ -303,37 +251,83 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|||
}
|
||||
}
|
||||
|
||||
// Compute the space weight
|
||||
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >=
|
||||
2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame)
|
||||
{
|
||||
int minorPieceCount = pos.piece_count(WHITE, KNIGHT)
|
||||
+ pos.piece_count(WHITE, BISHOP)
|
||||
+ pos.piece_count(BLACK, KNIGHT)
|
||||
+ pos.piece_count(BLACK, BISHOP);
|
||||
|
||||
mi->spaceWeight = minorPieceCount * minorPieceCount;
|
||||
}
|
||||
|
||||
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
|
||||
// for the bishop pair "extended piece", this allow us to be more flexible
|
||||
// in defining bishop pair bonuses.
|
||||
const int pieceCount[2][8] = {
|
||||
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
|
||||
pos.piece_count(WHITE, BISHOP), pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
|
||||
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
|
||||
pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
|
||||
|
||||
mi->value = (int16_t)(imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16;
|
||||
return mi;
|
||||
}
|
||||
|
||||
|
||||
/// MaterialInfoTable::imbalance() calculates imbalance comparing piece count of each
|
||||
/// piece type for both colors.
|
||||
|
||||
template<Color Us>
|
||||
int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
int pt1, pt2, pc, vv;
|
||||
int value = 0;
|
||||
|
||||
// Redundancy of major pieces, formula based on Kaufman's paper
|
||||
// "The Evaluation of Material Imbalances in Chess"
|
||||
// http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm
|
||||
if (pieceCount[c][ROOK] >= 1)
|
||||
matValue -= sign * ((pieceCount[c][ROOK] - 1) * RedundantRookPenalty + pieceCount[c][QUEEN] * RedundantQueenPenalty);
|
||||
|
||||
them = opposite_color(c);
|
||||
v = 0;
|
||||
if (pieceCount[Us][ROOK] > 0)
|
||||
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
|
||||
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
//
|
||||
// We use PIECE_TYPE_NONE as a place holder for the bishop pair "extended piece",
|
||||
// this allow us to be more flexible in defining bishop pair bonuses.
|
||||
for (pt1 = PIECE_TYPE_NONE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
pc = pieceCount[c][pt1];
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
continue;
|
||||
|
||||
vv = LinearCoefficients[pt1];
|
||||
|
||||
for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++)
|
||||
vv += pieceCount[c][pt2] * QuadraticCoefficientsSameColor[pt1][pt2]
|
||||
+ pieceCount[them][pt2] * QuadraticCoefficientsOppositeColor[pt1][pt2];
|
||||
vv += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
v += pc * vv;
|
||||
value += pc * vv;
|
||||
}
|
||||
matValue += sign * v;
|
||||
}
|
||||
mi->value = (int16_t)(matValue / 16);
|
||||
return mi;
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
/// MaterialInfoTable::game_phase() calculates the phase given the current
|
||||
/// position. Because the phase is strictly a function of the material, it
|
||||
/// is stored in MaterialInfo.
|
||||
|
||||
Phase MaterialInfoTable::game_phase(const Position& pos) {
|
||||
|
||||
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
|
||||
|
||||
if (npm >= MidgameLimit)
|
||||
return PHASE_MIDGAME;
|
||||
|
||||
if (npm <= EndgameLimit)
|
||||
return PHASE_ENDGAME;
|
||||
|
||||
return Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -68,10 +68,13 @@ class MaterialInfoTable : public SimpleHash<MaterialInfo, MaterialTableSize> {
|
|||
public:
|
||||
MaterialInfoTable();
|
||||
~MaterialInfoTable();
|
||||
MaterialInfo* get_material_info(const Position& pos);
|
||||
MaterialInfo* get_material_info(const Position& pos) const;
|
||||
static Phase game_phase(const Position& pos);
|
||||
|
||||
private:
|
||||
template<Color Us>
|
||||
static int imbalance(const int pieceCount[][8]);
|
||||
|
||||
EndgameFunctions* funcs;
|
||||
};
|
||||
|
||||
|
|
|
@ -106,7 +106,7 @@ PawnInfo* PawnInfoTable::get_pawn_info(const Position& pos) const {
|
|||
|
||||
template<Color Us>
|
||||
Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
|
||||
Bitboard theirPawns, PawnInfo* pi) const {
|
||||
Bitboard theirPawns, PawnInfo* pi) {
|
||||
|
||||
const BitCountType Max15 = CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
|
|
@ -71,7 +71,7 @@ public:
|
|||
|
||||
private:
|
||||
template<Color Us>
|
||||
Score evaluate_pawns(const Position& pos, Bitboard ourPawns, Bitboard theirPawns, PawnInfo* pi) const;
|
||||
static Score evaluate_pawns(const Position& pos, Bitboard ourPawns, Bitboard theirPawns, PawnInfo* pi);
|
||||
};
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue