mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 08:43:09 +00:00
Remove unused return type from propagate()
Also make two get_weight_index() static methods constexpr, for consistency with the other static get_hash_value() method right above. Tested for speed by user Torom (thanks). closes https://github.com/official-stockfish/Stockfish/pull/4708 No functional change
This commit is contained in:
parent
2667316ffc
commit
cb22520a9c
4 changed files with 8 additions and 17 deletions
|
@ -171,7 +171,7 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
return hashValue;
|
||||
}
|
||||
|
||||
static IndexType get_weight_index_scrambled(IndexType i)
|
||||
static constexpr IndexType get_weight_index_scrambled(IndexType i)
|
||||
{
|
||||
return
|
||||
(i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 +
|
||||
|
@ -179,7 +179,7 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
i % 4;
|
||||
}
|
||||
|
||||
static IndexType get_weight_index(IndexType i)
|
||||
static constexpr IndexType get_weight_index(IndexType i)
|
||||
{
|
||||
#if defined (USE_SSSE3)
|
||||
return get_weight_index_scrambled(i);
|
||||
|
@ -207,7 +207,7 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
return !stream.fail();
|
||||
}
|
||||
// Forward propagation
|
||||
const OutputType* propagate(
|
||||
void propagate(
|
||||
const InputType* input, OutputType* output) const {
|
||||
|
||||
#if defined (USE_AVX512)
|
||||
|
@ -291,8 +291,6 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
PaddedInputDimensions,
|
||||
OutputDimensions>(output, weights, biases, input);
|
||||
#endif
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
|
@ -102,7 +102,6 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
template <IndexType InDims, IndexType OutDims>
|
||||
class AffineTransformSparseInput {
|
||||
public:
|
||||
// Input/output type
|
||||
// Input/output type
|
||||
using InputType = std::uint8_t;
|
||||
using OutputType = std::int32_t;
|
||||
|
@ -135,7 +134,7 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
return hashValue;
|
||||
}
|
||||
|
||||
static IndexType get_weight_index_scrambled(IndexType i)
|
||||
static constexpr IndexType get_weight_index_scrambled(IndexType i)
|
||||
{
|
||||
return
|
||||
(i / ChunkSize) % (PaddedInputDimensions / ChunkSize) * OutputDimensions * ChunkSize +
|
||||
|
@ -143,7 +142,7 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
i % ChunkSize;
|
||||
}
|
||||
|
||||
static IndexType get_weight_index(IndexType i)
|
||||
static constexpr IndexType get_weight_index(IndexType i)
|
||||
{
|
||||
#if defined (USE_SSSE3)
|
||||
return get_weight_index_scrambled(i);
|
||||
|
@ -171,7 +170,7 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
return !stream.fail();
|
||||
}
|
||||
// Forward propagation
|
||||
const OutputType* propagate(
|
||||
void propagate(
|
||||
const InputType* input, OutputType* output) const {
|
||||
|
||||
#if defined (USE_SSSE3)
|
||||
|
@ -230,8 +229,6 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
PaddedInputDimensions,
|
||||
OutputDimensions>(output, weights, biases, input);
|
||||
#endif
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
|
@ -59,7 +59,7 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
}
|
||||
|
||||
// Forward propagation
|
||||
const OutputType* propagate(
|
||||
void propagate(
|
||||
const InputType* input, OutputType* output) const {
|
||||
|
||||
#if defined(USE_AVX2)
|
||||
|
@ -170,8 +170,6 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
output[i] = static_cast<OutputType>(
|
||||
std::max(0, std::min(127, input[i] >> WeightScaleBits)));
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -59,7 +59,7 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
}
|
||||
|
||||
// Forward propagation
|
||||
const OutputType* propagate(
|
||||
void propagate(
|
||||
const InputType* input, OutputType* output) const {
|
||||
|
||||
#if defined(USE_SSE2)
|
||||
|
@ -110,8 +110,6 @@ namespace Stockfish::Eval::NNUE::Layers {
|
|||
// needs to be accounted for in the trainer
|
||||
std::max(0ll, std::min(127ll, (((long long)input[i] * input[i]) >> (2 * WeightScaleBits)) / 128)));
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue