mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 08:43:09 +00:00
Remove some (int) casts
A cast rarely is the right solution. In this case was enough to redifine 3 variables with type size_t instead of int No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
56774fff20
commit
da6e53a436
1 changed files with 9 additions and 9 deletions
|
@ -151,7 +151,7 @@ namespace {
|
||||||
RootMoveList Rml;
|
RootMoveList Rml;
|
||||||
|
|
||||||
// MultiPV mode
|
// MultiPV mode
|
||||||
int MultiPV, UCIMultiPV, MultiPVIdx;
|
size_t MultiPV, UCIMultiPV, MultiPVIdx;
|
||||||
|
|
||||||
// Time management variables
|
// Time management variables
|
||||||
TimeManager TimeMgr;
|
TimeManager TimeMgr;
|
||||||
|
@ -360,13 +360,13 @@ void Search::think() {
|
||||||
TT.clear();
|
TT.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
UCIMultiPV = Options["MultiPV"].value<int>();
|
UCIMultiPV = Options["MultiPV"].value<size_t>();
|
||||||
SkillLevel = Options["Skill Level"].value<int>();
|
SkillLevel = Options["Skill Level"].value<size_t>();
|
||||||
|
|
||||||
// Do we have to play with skill handicap? In this case enable MultiPV that
|
// Do we have to play with skill handicap? In this case enable MultiPV that
|
||||||
// we will use behind the scenes to retrieve a set of possible moves.
|
// we will use behind the scenes to retrieve a set of possible moves.
|
||||||
SkillLevelEnabled = (SkillLevel < 20);
|
SkillLevelEnabled = (SkillLevel < 20);
|
||||||
MultiPV = (SkillLevelEnabled ? std::max(UCIMultiPV, 4) : UCIMultiPV);
|
MultiPV = (SkillLevelEnabled ? std::max(UCIMultiPV, 4U) : UCIMultiPV);
|
||||||
|
|
||||||
// Write current search header to log file
|
// Write current search header to log file
|
||||||
if (Options["Use Search Log"].value<bool>())
|
if (Options["Use Search Log"].value<bool>())
|
||||||
|
@ -488,7 +488,7 @@ namespace {
|
||||||
Rml.bestMoveChanges = 0;
|
Rml.bestMoveChanges = 0;
|
||||||
|
|
||||||
// MultiPV loop. We perform a full root search for each PV line
|
// MultiPV loop. We perform a full root search for each PV line
|
||||||
for (MultiPVIdx = 0; MultiPVIdx < std::min(MultiPV, (int)Rml.size()); MultiPVIdx++)
|
for (MultiPVIdx = 0; MultiPVIdx < std::min(MultiPV, Rml.size()); MultiPVIdx++)
|
||||||
{
|
{
|
||||||
// Calculate dynamic aspiration window based on previous iterations
|
// Calculate dynamic aspiration window based on previous iterations
|
||||||
if (depth >= 5 && abs(Rml[MultiPVIdx].prevScore) < VALUE_KNOWN_WIN)
|
if (depth >= 5 && abs(Rml[MultiPVIdx].prevScore) < VALUE_KNOWN_WIN)
|
||||||
|
@ -532,7 +532,7 @@ namespace {
|
||||||
|
|
||||||
// Write PV back to transposition table in case the relevant entries
|
// Write PV back to transposition table in case the relevant entries
|
||||||
// have been overwritten during the search.
|
// have been overwritten during the search.
|
||||||
for (int i = 0; i <= MultiPVIdx; i++)
|
for (size_t i = 0; i <= MultiPVIdx; i++)
|
||||||
Rml[i].insert_pv_in_tt(pos);
|
Rml[i].insert_pv_in_tt(pos);
|
||||||
|
|
||||||
// If search has been stopped exit the aspiration window loop,
|
// If search has been stopped exit the aspiration window loop,
|
||||||
|
@ -546,7 +546,7 @@ namespace {
|
||||||
// protocol requires to send all the PV lines also if are still
|
// protocol requires to send all the PV lines also if are still
|
||||||
// to be searched and so refer to the previous search's score.
|
// to be searched and so refer to the previous search's score.
|
||||||
if ((bestValue > alpha && bestValue < beta) || elapsed_time() > 2000)
|
if ((bestValue > alpha && bestValue < beta) || elapsed_time() > 2000)
|
||||||
for (int i = 0; i < std::min(UCIMultiPV, (int)Rml.size()); i++)
|
for (size_t i = 0; i < std::min(UCIMultiPV, Rml.size()); i++)
|
||||||
{
|
{
|
||||||
bool updated = (i <= MultiPVIdx);
|
bool updated = (i <= MultiPVIdx);
|
||||||
|
|
||||||
|
@ -1880,8 +1880,8 @@ split_point_start: // At split points actual search starts from here
|
||||||
|
|
||||||
// Rml list is already sorted by score in descending order
|
// Rml list is already sorted by score in descending order
|
||||||
int s;
|
int s;
|
||||||
|
size_t size = std::min(MultiPV, Rml.size());
|
||||||
int max_s = -VALUE_INFINITE;
|
int max_s = -VALUE_INFINITE;
|
||||||
int size = std::min(MultiPV, (int)Rml.size());
|
|
||||||
int max = Rml[0].score;
|
int max = Rml[0].score;
|
||||||
int var = std::min(max - Rml[size - 1].score, int(PawnValueMidgame));
|
int var = std::min(max - Rml[size - 1].score, int(PawnValueMidgame));
|
||||||
int wk = 120 - 2 * SkillLevel;
|
int wk = 120 - 2 * SkillLevel;
|
||||||
|
@ -1893,7 +1893,7 @@ split_point_start: // At split points actual search starts from here
|
||||||
// Choose best move. For each move's score we add two terms both dependent
|
// Choose best move. For each move's score we add two terms both dependent
|
||||||
// on wk, one deterministic and bigger for weaker moves, and one random,
|
// on wk, one deterministic and bigger for weaker moves, and one random,
|
||||||
// then we choose the move with the resulting highest score.
|
// then we choose the move with the resulting highest score.
|
||||||
for (int i = 0; i < size; i++)
|
for (size_t i = 0; i < size; i++)
|
||||||
{
|
{
|
||||||
s = Rml[i].score;
|
s = Rml[i].score;
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue