mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 16:53:09 +00:00
Add support for VNNI
Adds support for Vector Neural Network Instructions (avx512), as available on Intel Cascade Lake The _mm512_dpbusd_epi32() intrinsic (vpdpbusd instruction) is taylor made for NNUE. on a cascade lake CPU (AWS C5.24x.large, gcc 10) NNUE eval is at roughly 78% nps of classical (single core test) bench 1024 1 24 default depth: target classical NNUE ratio vnni 2207232 1725987 78.20 avx512 2216789 1671734 75.41 avx2 2194006 1611263 73.44 modern 2185001 1352469 61.90 closes https://github.com/official-stockfish/Stockfish/pull/2987 No functional change
This commit is contained in:
parent
6bc0256292
commit
dd63b98fb0
3 changed files with 41 additions and 1 deletions
25
src/Makefile
25
src/Makefile
|
@ -73,6 +73,7 @@ endif
|
|||
# avx2 = yes/no --- -mavx2 --- Use Intel Advanced Vector Extensions 2
|
||||
# pext = yes/no --- -DUSE_PEXT --- Use pext x86_64 asm-instruction
|
||||
# avx512 = yes/no --- -mavx512bw --- Use Intel Advanced Vector Extensions 512
|
||||
# vnni = yes/no --- -mavx512vnni --- Use Intel Vector Neural Network Instructions 512
|
||||
# neon = yes/no --- -DUSE_NEON --- Use ARM SIMD architecture
|
||||
#
|
||||
# Note that Makefile is space sensitive, so when adding new architectures
|
||||
|
@ -93,6 +94,7 @@ sse41 = no
|
|||
avx2 = no
|
||||
pext = no
|
||||
avx512 = no
|
||||
vnni = no
|
||||
neon = no
|
||||
ARCH = x86-64-modern
|
||||
|
||||
|
@ -190,6 +192,19 @@ ifeq ($(ARCH),x86-64-avx512)
|
|||
avx512 = yes
|
||||
endif
|
||||
|
||||
ifeq ($(ARCH),x86-64-vnni)
|
||||
arch = x86_64
|
||||
prefetch = yes
|
||||
popcnt = yes
|
||||
sse = yes
|
||||
ssse3 = yes
|
||||
sse41 = yes
|
||||
avx2 = yes
|
||||
pext = yes
|
||||
avx512 = yes
|
||||
vnni = yes
|
||||
endif
|
||||
|
||||
ifeq ($(ARCH),armv7)
|
||||
arch = armv7
|
||||
prefetch = yes
|
||||
|
@ -420,6 +435,13 @@ ifeq ($(avx512),yes)
|
|||
endif
|
||||
endif
|
||||
|
||||
ifeq ($(vnni),yes)
|
||||
CXXFLAGS += -DUSE_VNNI
|
||||
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
|
||||
CXXFLAGS += -mavx512vnni -mavx512dq -mavx512vl
|
||||
endif
|
||||
endif
|
||||
|
||||
ifeq ($(sse41),yes)
|
||||
CXXFLAGS += -DUSE_SSE41
|
||||
ifeq ($(comp),$(filter $(comp),gcc clang mingw))
|
||||
|
@ -522,6 +544,7 @@ help:
|
|||
@echo ""
|
||||
@echo "Supported archs:"
|
||||
@echo ""
|
||||
@echo "x86-64-vnni > x86 64-bit with vnni support"
|
||||
@echo "x86-64-avx512 > x86 64-bit with avx512 support"
|
||||
@echo "x86-64-bmi2 > x86 64-bit with bmi2 support"
|
||||
@echo "x86-64-avx2 > x86 64-bit with avx2 support"
|
||||
|
@ -640,6 +663,7 @@ config-sanity:
|
|||
@echo "avx2: '$(avx2)'"
|
||||
@echo "pext: '$(pext)'"
|
||||
@echo "avx512: '$(avx512)'"
|
||||
@echo "vnni: '$(vnni)'"
|
||||
@echo "neon: '$(neon)'"
|
||||
@echo ""
|
||||
@echo "Flags:"
|
||||
|
@ -664,6 +688,7 @@ config-sanity:
|
|||
@test "$(avx2)" = "yes" || test "$(avx2)" = "no"
|
||||
@test "$(pext)" = "yes" || test "$(pext)" = "no"
|
||||
@test "$(avx512)" = "yes" || test "$(avx512)" = "no"
|
||||
@test "$(vnni)" = "yes" || test "$(vnni)" = "no"
|
||||
@test "$(neon)" = "yes" || test "$(neon)" = "no"
|
||||
@test "$(comp)" = "gcc" || test "$(comp)" = "icc" || test "$(comp)" = "mingw" || test "$(comp)" = "clang"
|
||||
|
||||
|
|
|
@ -219,6 +219,9 @@ const std::string compiler_info() {
|
|||
|
||||
compiler += "\nCompilation settings include: ";
|
||||
compiler += (Is64Bit ? " 64bit" : " 32bit");
|
||||
#if defined(USE_VNNI)
|
||||
compiler += " VNNI";
|
||||
#endif
|
||||
#if defined(USE_AVX512)
|
||||
compiler += " AVX512";
|
||||
#endif
|
||||
|
|
|
@ -79,8 +79,10 @@ namespace Eval::NNUE::Layers {
|
|||
|
||||
#if defined(USE_AVX512)
|
||||
constexpr IndexType kNumChunks = kPaddedInputDimensions / (kSimdWidth * 2);
|
||||
const __m512i kOnes = _mm512_set1_epi16(1);
|
||||
const auto input_vector = reinterpret_cast<const __m512i*>(input);
|
||||
#if !defined(USE_VNNI)
|
||||
const __m512i kOnes = _mm512_set1_epi16(1);
|
||||
#endif
|
||||
|
||||
#elif defined(USE_AVX2)
|
||||
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
|
||||
|
@ -113,9 +115,13 @@ namespace Eval::NNUE::Layers {
|
|||
__m512i sum = _mm512_setzero_si512();
|
||||
const auto row = reinterpret_cast<const __m512i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
#if defined(USE_VNNI)
|
||||
sum = _mm512_dpbusd_epi32(sum, _mm512_loadA_si512(&input_vector[j]), _mm512_load_si512(&row[j]));
|
||||
#else
|
||||
__m512i product = _mm512_maddubs_epi16(_mm512_loadA_si512(&input_vector[j]), _mm512_load_si512(&row[j]));
|
||||
product = _mm512_madd_epi16(product, kOnes);
|
||||
sum = _mm512_add_epi32(sum, product);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Note: Changing kMaxSimdWidth from 32 to 64 breaks loading existing networks.
|
||||
|
@ -125,8 +131,14 @@ namespace Eval::NNUE::Layers {
|
|||
{
|
||||
const auto iv256 = reinterpret_cast<const __m256i*>(&input_vector[kNumChunks]);
|
||||
const auto row256 = reinterpret_cast<const __m256i*>(&row[kNumChunks]);
|
||||
#if defined(USE_VNNI)
|
||||
__m256i product256 = _mm256_dpbusd_epi32(
|
||||
_mm512_castsi512_si256(sum), _mm256_loadA_si256(&iv256[0]), _mm256_load_si256(&row256[0]));
|
||||
sum = _mm512_inserti32x8(sum, product256, 0);
|
||||
#else
|
||||
__m256i product256 = _mm256_maddubs_epi16(_mm256_loadA_si256(&iv256[0]), _mm256_load_si256(&row256[0]));
|
||||
sum = _mm512_add_epi32(sum, _mm512_cvtepi16_epi32(product256));
|
||||
#endif
|
||||
}
|
||||
output[i] = _mm512_reduce_add_epi32(sum) + biases_[i];
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue