1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-02 09:39:36 +00:00

Make init_magic() piece agnostic

All the piece dependant data is passed now as
function arguments so that the code is exactly
the same for bishop and rook.

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba 2012-01-15 08:24:50 +01:00
parent 20621ed3e3
commit dfd030b67a
2 changed files with 40 additions and 42 deletions

View file

@ -59,11 +59,13 @@ namespace {
CACHE_LINE_ALIGNMENT CACHE_LINE_ALIGNMENT
int BSFTable[64]; int BSFTable[64];
Bitboard RookTable[0x19000]; // Storage space for rook attacks Bitboard RTable[0x19000]; // Storage space for rook attacks
Bitboard BishopTable[0x1480]; // Storage space for bishop attacks Bitboard BTable[0x1480]; // Storage space for bishop attacks
void init_magic_bitboards(PieceType pt, Bitboard* attacks[], Bitboard magics[], typedef unsigned (Fn)(Square, Bitboard);
Bitboard masks[], int shifts[]);
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], int shifts[], Square deltas[], Fn get_index);
} }
@ -220,8 +222,11 @@ void bitboards_init() {
set_bit(&StepAttacksBB[make_piece(c, pt)][s], to); set_bit(&StepAttacksBB[make_piece(c, pt)][s], to);
} }
init_magic_bitboards(ROOK, RAttacks, RMagics, RMasks, RShifts); Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W };
init_magic_bitboards(BISHOP, BAttacks, BMagics, BMasks, BShifts); Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, r_index);
init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, b_index);
for (Square s = SQ_A1; s <= SQ_H8; s++) for (Square s = SQ_A1; s <= SQ_H8; s++)
{ {
@ -244,28 +249,22 @@ void bitboards_init() {
namespace { namespace {
Bitboard sliding_attacks(PieceType pt, Square sq, Bitboard occupied) { Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) {
Square deltas[][4] = { { DELTA_N, DELTA_E, DELTA_S, DELTA_W }, Bitboard attack = 0;
{ DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW } };
Bitboard attacks = 0;
Square* delta = (pt == ROOK ? deltas[0] : deltas[1]);
for (int i = 0; i < 4; i++) for (int i = 0; i < 4; i++)
{ for (Square s = sq + deltas[i];
Square s = sq + delta[i]; square_is_ok(s) && square_distance(s, s - deltas[i]) == 1;
s += deltas[i])
while (square_is_ok(s) && square_distance(s, s - delta[i]) == 1)
{ {
set_bit(&attacks, s); set_bit(&attack, s);
if (bit_is_set(occupied, s)) if (bit_is_set(occupied, s))
break; break;
s += delta[i];
} }
}
return attacks; return attack;
} }
@ -291,22 +290,22 @@ namespace {
} }
// init_magic_bitboards() computes all rook and bishop magics at startup. // init_magics() computes all rook and bishop attacks at startup. Magic
// Magic bitboards are used to look up attacks of sliding pieces. As reference // bitboards are used to look up attacks of sliding pieces. As a reference see
// see chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
// use the so called "fancy" approach. // use the so called "fancy" approach.
void init_magic_bitboards(PieceType pt, Bitboard* attacks[], Bitboard magics[], void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], int shifts[]) { Bitboard masks[], int shifts[], Square deltas[], Fn get_index) {
int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 },
{ 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } };
RKISS rk; RKISS rk;
Bitboard occupancy[4096], reference[4096], edges, b; Bitboard occupancy[4096], reference[4096], edges, b;
int i, size, index, booster; int i, size, booster;
// attacks[s] is a pointer to the beginning of the attacks table for square 's' // attacks[s] is a pointer to the beginning of the attacks table for square 's'
attacks[SQ_A1] = (pt == ROOK ? RookTable : BishopTable); attacks[SQ_A1] = table;
for (Square s = SQ_A1; s <= SQ_H8; s++) for (Square s = SQ_A1; s <= SQ_H8; s++)
{ {
@ -318,15 +317,15 @@ namespace {
// all the attacks for each possible subset of the mask and so is 2 power // all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to // the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index. // apply to the 64 or 32 bits word to get the index.
masks[s] = sliding_attacks(pt, s, 0) & ~edges; masks[s] = sliding_attack(deltas, s, 0) & ~edges;
shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]); shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attacks bitboard in reference[]. // store the corresponding sliding attack bitboard in reference[].
b = size = 0; b = size = 0;
do { do {
occupancy[size] = b; occupancy[size] = b;
reference[size++] = sliding_attacks(pt, s, b); reference[size++] = sliding_attack(deltas, s, b);
b = (b - masks[s]) & masks[s]; b = (b - masks[s]) & masks[s];
} while (b); } while (b);
@ -349,14 +348,12 @@ namespace {
// effect of verifying the magic. // effect of verifying the magic.
for (i = 0; i < size; i++) for (i = 0; i < size; i++)
{ {
index = (pt == ROOK ? rook_index(s, occupancy[i]) Bitboard& attack = attacks[s][get_index(s, occupancy[i])];
: bishop_index(s, occupancy[i]));
if (!attacks[s][index]) if (attack && attack != reference[i])
attacks[s][index] = reference[i];
else if (attacks[s][index] != reference[i])
break; break;
attack = reference[i];
} }
} while (i != size); } while (i != size);
} }

View file

@ -140,33 +140,34 @@ inline Bitboard in_front_bb(Color c, Square s) {
#if defined(IS_64BIT) #if defined(IS_64BIT)
FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) { FORCE_INLINE unsigned r_index(Square s, Bitboard occ) {
return unsigned(((occ & RMasks[s]) * RMagics[s]) >> RShifts[s]); return unsigned(((occ & RMasks[s]) * RMagics[s]) >> RShifts[s]);
} }
FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) { FORCE_INLINE unsigned b_index(Square s, Bitboard occ) {
return unsigned(((occ & BMasks[s]) * BMagics[s]) >> BShifts[s]); return unsigned(((occ & BMasks[s]) * BMagics[s]) >> BShifts[s]);
} }
#else // if !defined(IS_64BIT) #else // if !defined(IS_64BIT)
FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) { FORCE_INLINE unsigned r_index(Square s, Bitboard occ) {
Bitboard b = occ & RMasks[s]; Bitboard b = occ & RMasks[s];
return unsigned(int(b) * int(RMagics[s]) ^ int(b >> 32) * int(RMagics[s] >> 32)) >> RShifts[s]; return unsigned(int(b) * int(RMagics[s]) ^ int(b >> 32) * int(RMagics[s] >> 32)) >> RShifts[s];
} }
FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) { FORCE_INLINE unsigned b_index(Square s, Bitboard occ) {
Bitboard b = occ & BMasks[s]; Bitboard b = occ & BMasks[s];
return unsigned(int(b) * int(BMagics[s]) ^ int(b >> 32) * int(BMagics[s] >> 32)) >> BShifts[s]; return unsigned(int(b) * int(BMagics[s]) ^ int(b >> 32) * int(BMagics[s] >> 32)) >> BShifts[s];
} }
#endif #endif
inline Bitboard rook_attacks_bb(Square s, Bitboard occ) { inline Bitboard rook_attacks_bb(Square s, Bitboard occ) {
return RAttacks[s][rook_index(s, occ)]; return RAttacks[s][r_index(s, occ)];
} }
inline Bitboard bishop_attacks_bb(Square s, Bitboard occ) { inline Bitboard bishop_attacks_bb(Square s, Bitboard occ) {
return BAttacks[s][bishop_index(s, occ)]; return BAttacks[s][b_index(s, occ)];
} }