1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00

Document the LEB128 patch

Add some comments and harmonize style for the LEB128 patch.

closes https://github.com/official-stockfish/Stockfish/pull/4642

No functional change
This commit is contained in:
Stéphane Nicolet 2023-06-27 12:03:00 +02:00 committed by Joost VandeVondele
parent ef94f77f8c
commit e355c70594

View file

@ -86,6 +86,7 @@ namespace Stockfish::Eval::NNUE {
return (n + base - 1) / base * base;
}
// read_little_endian() is our utility to read an integer (signed or unsigned, any size)
// from a stream in little-endian order. We swap the byte order after the read if
// necessary to return a result with the byte ordering of the compiling machine.
@ -110,6 +111,7 @@ namespace Stockfish::Eval::NNUE {
return result;
}
// write_little_endian() is our utility to write an integer (signed or unsigned, any size)
// to a stream in little-endian order. We swap the byte order before the write if
// necessary to always write in little endian order, independently of the byte
@ -140,6 +142,7 @@ namespace Stockfish::Eval::NNUE {
}
}
// read_little_endian(s, out, N) : read integers in bulk from a little indian stream.
// This reads N integers from stream s and put them in array out.
template <typename IntType>
@ -151,6 +154,7 @@ namespace Stockfish::Eval::NNUE {
out[i] = read_little_endian<IntType>(stream);
}
// write_little_endian(s, values, N) : write integers in bulk to a little indian stream.
// This takes N integers from array values and writes them on stream s.
template <typename IntType>
@ -162,77 +166,119 @@ namespace Stockfish::Eval::NNUE {
write_little_endian<IntType>(stream, values[i]);
}
// read_leb_128(s, out, N) : read N signed integers from the stream s, putting them in
// the array out. The stream is assumed to be compressed using the signed LEB128 format.
// See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme.
template <typename IntType>
inline void read_leb_128(std::istream& stream, IntType* out, std::size_t count) {
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
// Check the presence of our LEB128 magic string
char leb128MagicString[Leb128MagicStringSize];
stream.read(leb128MagicString, Leb128MagicStringSize);
assert(strncmp(Leb128MagicString, leb128MagicString, Leb128MagicStringSize) == 0);
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
const std::uint32_t BUF_SIZE = 4096;
std::uint8_t buf[BUF_SIZE];
auto bytes_left = read_little_endian<std::uint32_t>(stream);
std::uint32_t buf_pos = BUF_SIZE;
for (std::size_t i = 0; i < count; ++i) {
for (std::size_t i = 0; i < count; ++i)
{
IntType result = 0;
size_t shift = 0;
do {
if (buf_pos == BUF_SIZE) {
do
{
if (buf_pos == BUF_SIZE)
{
stream.read(reinterpret_cast<char*>(buf), std::min(bytes_left, BUF_SIZE));
buf_pos = 0;
}
std::uint8_t byte = buf[buf_pos++];
--bytes_left;
result |= (byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0) {
out[i] = sizeof(IntType) * 8 <= shift || (byte & 0x40) == 0 ? result : result | ~((1 << shift) - 1);
if ((byte & 0x80) == 0)
{
out[i] = (sizeof(IntType) * 8 <= shift || (byte & 0x40) == 0) ? result
: result | ~((1 << shift) - 1);
break;
}
} while (shift < sizeof(IntType) * 8);
}
while (shift < sizeof(IntType) * 8);
}
assert(bytes_left == 0);
}
// write_leb_128(s, values, N) : write signed integers to a stream with LEB128 compression.
// This takes N integers from array values, compress them with the LEB128 algorithm and
// writes the result on the stream s.
// See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme.
template <typename IntType>
inline void write_leb_128(std::ostream& stream, const IntType* values, std::size_t count) {
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
// Write our LEB128 magic string
stream.write(Leb128MagicString, Leb128MagicStringSize);
static_assert(std::is_signed_v<IntType>, "Not implemented for unsigned types");
std::uint32_t byte_count = 0;
for (std::size_t i = 0; i < count; ++i) {
for (std::size_t i = 0; i < count; ++i)
{
IntType value = values[i];
std::uint8_t byte;
do {
do
{
byte = value & 0x7f;
value >>= 7;
++byte_count;
} while ((byte & 0x40) == 0 ? value != 0 : value != -1);
}
while ((byte & 0x40) == 0 ? value != 0 : value != -1);
}
write_little_endian(stream, byte_count);
const std::uint32_t BUF_SIZE = 4096;
std::uint8_t buf[BUF_SIZE];
std::uint32_t buf_pos = 0;
auto flush = [&]() {
if (buf_pos > 0) {
if (buf_pos > 0)
{
stream.write(reinterpret_cast<char*>(buf), buf_pos);
buf_pos = 0;
}
};
auto write = [&](std::uint8_t byte) {
buf[buf_pos++] = byte;
if (buf_pos == BUF_SIZE) flush();
if (buf_pos == BUF_SIZE)
flush();
};
for (std::size_t i = 0; i < count; ++i) {
for (std::size_t i = 0; i < count; ++i)
{
IntType value = values[i];
while (true) {
while (true)
{
std::uint8_t byte = value & 0x7f;
value >>= 7;
if ((byte & 0x40) == 0 ? value == 0 : value == -1) {
if ((byte & 0x40) == 0 ? value == 0 : value == -1)
{
write(byte);
break;
}
write(byte | 0x80);
}
}
flush();
}