mirror of
https://github.com/sockspls/badfish
synced 2025-04-29 08:13:08 +00:00
Finally retire sp_search()
Fix the movcount updating bug and let search() to completely subsititute sp_search(). No functional change even with fakes split. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
65606bc49e
commit
f6e11ee2a3
1 changed files with 11 additions and 180 deletions
191
src/search.cpp
191
src/search.cpp
|
@ -284,9 +284,6 @@ namespace {
|
|||
return search<PvNode, false>(pos, ss, alpha, beta, depth, ply);
|
||||
}
|
||||
|
||||
template <NodeType PvNode>
|
||||
void sp_search(Position& pos, SearchStack* ss, Value, Value beta, Depth depth, int ply);
|
||||
|
||||
template <NodeType PvNode>
|
||||
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
|
||||
|
||||
|
@ -1246,7 +1243,10 @@ split_point_start: // At split points actual search starts from here
|
|||
newDepth = depth - ONE_PLY + ext;
|
||||
|
||||
// Update current move (this must be done after singular extension search)
|
||||
movesSearched[moveCount++] = ss->currentMove = move;
|
||||
movesSearched[moveCount] = ss->currentMove = move;
|
||||
|
||||
if (!SpNode)
|
||||
moveCount++;
|
||||
|
||||
// Step 12. Futility pruning (is omitted in PV nodes)
|
||||
if ( !PvNode
|
||||
|
@ -1383,7 +1383,7 @@ split_point_start: // At split points actual search starts from here
|
|||
sp->alpha = value;
|
||||
}
|
||||
|
||||
if (value == value_mate_in(ply + 1))
|
||||
if (!SpNode && value == value_mate_in(ply + 1))
|
||||
ss->mateKiller = move;
|
||||
|
||||
ss->bestMove = move;
|
||||
|
@ -1615,172 +1615,6 @@ split_point_start: // At split points actual search starts from here
|
|||
}
|
||||
|
||||
|
||||
// sp_search() is used to search from a split point. This function is called
|
||||
// by each thread working at the split point. It is similar to the normal
|
||||
// search() function, but simpler. Because we have already probed the hash
|
||||
// table, done a null move search, and searched the first move before
|
||||
// splitting, we don't have to repeat all this work in sp_search(). We
|
||||
// also don't need to store anything to the hash table here: This is taken
|
||||
// care of after we return from the split point.
|
||||
|
||||
template <NodeType PvNode>
|
||||
void sp_search(Position& pos, SearchStack* ss, Value, Value beta, Depth depth, int ply) {
|
||||
|
||||
StateInfo st;
|
||||
Move move;
|
||||
Depth ext, newDepth;
|
||||
Value value;
|
||||
Value futilityValueScaled; // NonPV specific
|
||||
bool isCheck, moveIsCheck, captureOrPromotion, dangerous;
|
||||
int moveCount;
|
||||
value = -VALUE_INFINITE;
|
||||
SplitPoint* sp = ss->sp;
|
||||
Move threatMove = sp->threatMove;
|
||||
MovePicker& mp = *sp->mp;
|
||||
int threadID = pos.thread();
|
||||
|
||||
CheckInfo ci(pos);
|
||||
isCheck = pos.is_check();
|
||||
|
||||
// Step 10. Loop through moves
|
||||
// Loop through all legal moves until no moves remain or a beta cutoff occurs
|
||||
lock_grab(&(sp->lock));
|
||||
|
||||
while ( sp->bestValue < beta
|
||||
&& (move = mp.get_next_move()) != MOVE_NONE
|
||||
&& !ThreadsMgr.thread_should_stop(threadID))
|
||||
{
|
||||
moveCount = ++sp->moveCount;
|
||||
lock_release(&(sp->lock));
|
||||
|
||||
assert(move_is_ok(move));
|
||||
|
||||
moveIsCheck = pos.move_is_check(move, ci);
|
||||
captureOrPromotion = pos.move_is_capture_or_promotion(move);
|
||||
|
||||
// Step 11. Decide the new search depth
|
||||
ext = extension<PvNode>(pos, move, captureOrPromotion, moveIsCheck, false, sp->mateThreat, &dangerous);
|
||||
newDepth = depth - ONE_PLY + ext;
|
||||
|
||||
// Update current move
|
||||
ss->currentMove = move;
|
||||
|
||||
// Step 12. Futility pruning (is omitted in PV nodes)
|
||||
if ( !PvNode
|
||||
&& !captureOrPromotion
|
||||
&& !isCheck
|
||||
&& !dangerous
|
||||
&& !move_is_castle(move))
|
||||
{
|
||||
// Move count based pruning
|
||||
if ( moveCount >= futility_move_count(depth)
|
||||
&& !(threatMove && connected_threat(pos, move, threatMove))
|
||||
&& sp->bestValue > value_mated_in(PLY_MAX))
|
||||
{
|
||||
lock_grab(&(sp->lock));
|
||||
continue;
|
||||
}
|
||||
|
||||
// Value based pruning
|
||||
Depth predictedDepth = newDepth - reduction<NonPV>(depth, moveCount);
|
||||
futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount)
|
||||
+ H.gain(pos.piece_on(move_from(move)), move_to(move));
|
||||
|
||||
if (futilityValueScaled < beta)
|
||||
{
|
||||
lock_grab(&(sp->lock));
|
||||
|
||||
if (futilityValueScaled > sp->bestValue)
|
||||
sp->bestValue = futilityValueScaled;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Step 13. Make the move
|
||||
pos.do_move(move, st, ci, moveIsCheck);
|
||||
|
||||
// Step 14. Reduced search
|
||||
// If the move fails high will be re-searched at full depth.
|
||||
bool doFullDepthSearch = true;
|
||||
|
||||
if ( !captureOrPromotion
|
||||
&& !dangerous
|
||||
&& !move_is_castle(move)
|
||||
&& !(ss->killers[0] == move || ss->killers[1] == move))
|
||||
{
|
||||
ss->reduction = reduction<PvNode>(depth, moveCount);
|
||||
if (ss->reduction)
|
||||
{
|
||||
Value localAlpha = sp->alpha;
|
||||
Depth d = newDepth - ss->reduction;
|
||||
value = d < ONE_PLY ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, DEPTH_ZERO, ply+1)
|
||||
: - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, d, ply+1);
|
||||
|
||||
doFullDepthSearch = (value > localAlpha);
|
||||
}
|
||||
|
||||
// The move failed high, but if reduction is very big we could
|
||||
// face a false positive, retry with a less aggressive reduction,
|
||||
// if the move fails high again then go with full depth search.
|
||||
if (doFullDepthSearch && ss->reduction > 2 * ONE_PLY)
|
||||
{
|
||||
assert(newDepth - ONE_PLY >= ONE_PLY);
|
||||
|
||||
ss->reduction = ONE_PLY;
|
||||
Value localAlpha = sp->alpha;
|
||||
value = -search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction, ply+1);
|
||||
doFullDepthSearch = (value > localAlpha);
|
||||
}
|
||||
ss->reduction = DEPTH_ZERO; // Restore original reduction
|
||||
}
|
||||
|
||||
// Step 15. Full depth search
|
||||
if (doFullDepthSearch)
|
||||
{
|
||||
Value localAlpha = sp->alpha;
|
||||
value = newDepth < ONE_PLY ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, DEPTH_ZERO, ply+1)
|
||||
: - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth, ply+1);
|
||||
|
||||
// Step extra. pv search (only in PV nodes)
|
||||
// Search only for possible new PV nodes, if instead value >= beta then
|
||||
// parent node fails low with value <= alpha and tries another move.
|
||||
if (PvNode && value > localAlpha && value < beta)
|
||||
value = newDepth < ONE_PLY ? -qsearch<PV>(pos, ss+1, -beta, -sp->alpha, DEPTH_ZERO, ply+1)
|
||||
: - search<PV>(pos, ss+1, -beta, -sp->alpha, newDepth, ply+1);
|
||||
}
|
||||
|
||||
// Step 16. Undo move
|
||||
pos.undo_move(move);
|
||||
|
||||
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
||||
|
||||
// Step 17. Check for new best move
|
||||
lock_grab(&(sp->lock));
|
||||
|
||||
if (value > sp->bestValue && !ThreadsMgr.thread_should_stop(threadID))
|
||||
{
|
||||
sp->bestValue = value;
|
||||
if (value > sp->alpha)
|
||||
{
|
||||
if (!PvNode || value >= beta)
|
||||
sp->stopRequest = true;
|
||||
|
||||
if (PvNode && value < beta) // We want always sp->alpha < beta
|
||||
sp->alpha = value;
|
||||
|
||||
sp->parentSstack->bestMove = ss->bestMove = move;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Here we have the lock still grabbed */
|
||||
|
||||
sp->slaves[threadID] = 0;
|
||||
|
||||
lock_release(&(sp->lock));
|
||||
}
|
||||
|
||||
|
||||
// connected_moves() tests whether two moves are 'connected' in the sense
|
||||
// that the first move somehow made the second move possible (for instance
|
||||
// if the moving piece is the same in both moves). The first move is assumed
|
||||
|
@ -2432,12 +2266,10 @@ split_point_start: // At split points actual search starts from here
|
|||
ss->sp = tsp;
|
||||
|
||||
if (tsp->pvNode)
|
||||
//search<PV, true>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
|
||||
sp_search<PV>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
|
||||
else
|
||||
//search<NonPV, true>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
|
||||
sp_search<NonPV>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
|
||||
|
||||
search<PV, true>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
|
||||
else {
|
||||
search<NonPV, true>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
|
||||
}
|
||||
assert(threads[threadID].state == THREAD_SEARCHING);
|
||||
|
||||
threads[threadID].state = THREAD_AVAILABLE;
|
||||
|
@ -2619,9 +2451,8 @@ split_point_start: // At split points actual search starts from here
|
|||
// split point objects), the function immediately returns. If splitting is
|
||||
// possible, a SplitPoint object is initialized with all the data that must be
|
||||
// copied to the helper threads and we tell our helper threads that they have
|
||||
// been assigned work. This will cause them to instantly leave their idle loops
|
||||
// and call sp_search(). When all threads have returned from sp_search() then
|
||||
// split() returns.
|
||||
// been assigned work. This will cause them to instantly leave their idle loops and
|
||||
// call search().When all threads have returned from search() then split() returns.
|
||||
|
||||
template <bool Fake>
|
||||
void ThreadsManager::split(const Position& p, SearchStack* ss, int ply, Value* alpha,
|
||||
|
|
Loading…
Add table
Reference in a new issue