mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 00:33:09 +00:00
Move pawn and material tables under Thread class
This change allows to remove some quite a bit of code and seems the natural thing to do. Introduced file thread.cpp to move away from search.cpp a lot of threads related stuff. No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
c9d7e99de6
commit
fecefbb99c
13 changed files with 585 additions and 618 deletions
|
@ -31,10 +31,9 @@ BINDIR = $(PREFIX)/bin
|
|||
PGOBENCH = ./$(EXE) bench 32 1 10 default depth
|
||||
|
||||
### Object files
|
||||
OBJS = bitboard.o pawns.o material.o endgame.o evaluate.o main.o \
|
||||
misc.o move.o movegen.o movepick.o search.o position.o \
|
||||
tt.o uci.o ucioption.o book.o bitbase.o benchmark.o timeman.o
|
||||
|
||||
OBJS = benchmark.o bitbase.o bitboard.o book.o endgame.o evaluate.o main.o \
|
||||
material.o misc.o move.o movegen.o movepick.o pawns.o position.o \
|
||||
search.o thread.o timeman.o tt.o uci.o ucioption.o
|
||||
|
||||
### ==========================================================================
|
||||
### Section 2. High-level Configuration
|
||||
|
|
|
@ -232,13 +232,6 @@ namespace {
|
|||
PASSED = 12, UNSTOPPABLE = 13, SPACE = 14, TOTAL = 15
|
||||
};
|
||||
|
||||
// Pawn and material hash tables, indexed by the current thread id.
|
||||
// We use per-thread tables so that once we get a pointer to an entry
|
||||
// its life time is unlimited and we don't have to care about someone
|
||||
// changing the entry under our feet.
|
||||
MaterialInfoTable* MaterialTable[MAX_THREADS];
|
||||
PawnInfoTable* PawnTable[MAX_THREADS];
|
||||
|
||||
// Function prototypes
|
||||
template<bool HasPopCnt, bool Trace>
|
||||
Value do_evaluate(const Position& pos, Value& margin);
|
||||
|
@ -271,16 +264,6 @@ namespace {
|
|||
}
|
||||
|
||||
|
||||
/// prefetchTables() is called in do_move() to prefetch pawn and material
|
||||
/// hash tables data that will be needed shortly after in evaluation.
|
||||
|
||||
void prefetchTables(Key pKey, Key mKey, int threadID) {
|
||||
|
||||
PawnTable[threadID]->prefetch(pKey);
|
||||
MaterialTable[threadID]->prefetch(mKey);
|
||||
}
|
||||
|
||||
|
||||
/// evaluate() is the main evaluation function. It always computes two
|
||||
/// values, an endgame score and a middle game score, and interpolates
|
||||
/// between them based on the remaining material.
|
||||
|
@ -320,7 +303,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
|
|||
margins[WHITE] = margins[BLACK] = VALUE_ZERO;
|
||||
|
||||
// Probe the material hash table
|
||||
MaterialInfo* mi = MaterialTable[pos.thread()]->get_material_info(pos);
|
||||
MaterialInfo* mi = ThreadsMgr[pos.thread()].materialTable.get_material_info(pos);
|
||||
bonus += mi->material_value();
|
||||
|
||||
// If we have a specialized evaluation function for the current material
|
||||
|
@ -332,7 +315,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
|
|||
}
|
||||
|
||||
// Probe the pawn hash table
|
||||
ei.pi = PawnTable[pos.thread()]->get_pawn_info(pos);
|
||||
ei.pi = ThreadsMgr[pos.thread()].pawnTable.get_pawn_info(pos);
|
||||
bonus += apply_weight(ei.pi->pawns_value(), Weights[PawnStructure]);
|
||||
|
||||
// Initialize attack and king safety bitboards
|
||||
|
@ -433,39 +416,6 @@ Value do_evaluate(const Position& pos, Value& margin) {
|
|||
} // namespace
|
||||
|
||||
|
||||
/// init_eval() initializes various tables used by the evaluation function
|
||||
|
||||
void init_eval(int threads) {
|
||||
|
||||
assert(threads <= MAX_THREADS);
|
||||
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
{
|
||||
if (i >= threads)
|
||||
{
|
||||
delete PawnTable[i];
|
||||
delete MaterialTable[i];
|
||||
PawnTable[i] = NULL;
|
||||
MaterialTable[i] = NULL;
|
||||
continue;
|
||||
}
|
||||
if (!PawnTable[i])
|
||||
PawnTable[i] = new PawnInfoTable();
|
||||
|
||||
if (!MaterialTable[i])
|
||||
MaterialTable[i] = new MaterialInfoTable();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// quit_eval() releases heap-allocated memory at program termination
|
||||
|
||||
void quit_eval() {
|
||||
|
||||
init_eval(0);
|
||||
}
|
||||
|
||||
|
||||
/// read_weights() reads evaluation weights from the corresponding UCI parameters
|
||||
|
||||
void read_evaluation_uci_options(Color us) {
|
||||
|
|
|
@ -26,8 +26,6 @@ class Position;
|
|||
|
||||
extern Value evaluate(const Position& pos, Value& margin);
|
||||
extern std::string trace_evaluate(const Position& pos);
|
||||
extern void init_eval(int threads);
|
||||
extern void quit_eval();
|
||||
extern void read_evaluation_uci_options(Color sideToMove);
|
||||
|
||||
#endif // !defined(EVALUATE_H_INCLUDED)
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
#include "evaluate.h"
|
||||
#include "position.h"
|
||||
#include "thread.h"
|
||||
#include "search.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
#ifdef USE_CALLGRIND
|
||||
|
@ -52,9 +53,9 @@ int main(int argc, char* argv[]) {
|
|||
init_bitboards();
|
||||
Position::init_zobrist();
|
||||
Position::init_piece_square_tables();
|
||||
init_eval(1);
|
||||
init_kpk_bitbase();
|
||||
init_threads();
|
||||
init_search();
|
||||
ThreadsMgr.init_threads();
|
||||
|
||||
#ifdef USE_CALLGRIND
|
||||
CALLGRIND_START_INSTRUMENTATION;
|
||||
|
@ -81,7 +82,6 @@ int main(int argc, char* argv[]) {
|
|||
<< "[limit = 12] [fen positions file = default] "
|
||||
<< "[depth, time, perft or node limited = depth]" << endl;
|
||||
|
||||
exit_threads();
|
||||
quit_eval();
|
||||
ThreadsMgr.exit_threads();
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -85,7 +85,7 @@ namespace {
|
|||
|
||||
/// MaterialInfoTable c'tor and d'tor allocate and free the space for Endgames
|
||||
|
||||
MaterialInfoTable::MaterialInfoTable() { funcs = new Endgames(); }
|
||||
void MaterialInfoTable::init() { Base::init(); funcs = new Endgames(); }
|
||||
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
|
||||
|
||||
|
||||
|
|
|
@ -65,8 +65,8 @@ private:
|
|||
|
||||
class MaterialInfoTable : public SimpleHash<MaterialInfo, MaterialTableSize> {
|
||||
public:
|
||||
MaterialInfoTable();
|
||||
~MaterialInfoTable();
|
||||
void init();
|
||||
MaterialInfo* get_material_info(const Position& pos) const;
|
||||
static Phase game_phase(const Position& pos);
|
||||
|
||||
|
|
|
@ -29,7 +29,6 @@ extern int get_system_time();
|
|||
extern int cpu_count();
|
||||
extern int input_available();
|
||||
extern void prefetch(char* addr);
|
||||
extern void prefetchTables(Key pKey, Key mKey, int threadID);
|
||||
|
||||
extern void dbg_hit_on(bool b);
|
||||
extern void dbg_hit_on_c(bool c, bool b);
|
||||
|
|
|
@ -29,6 +29,7 @@
|
|||
#include "position.h"
|
||||
#include "psqtab.h"
|
||||
#include "rkiss.h"
|
||||
#include "thread.h"
|
||||
#include "tt.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
|
@ -1047,7 +1048,8 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
|||
}
|
||||
|
||||
// Prefetch pawn and material hash tables
|
||||
prefetchTables(st->pawnKey, st->materialKey, threadID);
|
||||
ThreadsMgr[threadID].pawnTable.prefetch(st->pawnKey);
|
||||
ThreadsMgr[threadID].materialTable.prefetch(st->materialKey);
|
||||
|
||||
// Update incremental scores
|
||||
st->value += pst_delta(piece, from, to);
|
||||
|
|
729
src/search.cpp
729
src/search.cpp
|
@ -32,7 +32,6 @@
|
|||
#include "move.h"
|
||||
#include "movegen.h"
|
||||
#include "movepick.h"
|
||||
#include "lock.h"
|
||||
#include "search.h"
|
||||
#include "timeman.h"
|
||||
#include "thread.h"
|
||||
|
@ -54,44 +53,6 @@ namespace {
|
|||
const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
|
||||
inline bool piece_is_slider(Piece p) { return Slidings[p]; }
|
||||
|
||||
// ThreadsManager class is used to handle all the threads related stuff like init,
|
||||
// starting, parking and, the most important, launching a slave thread at a split
|
||||
// point. All the access to shared thread data is done through this class.
|
||||
|
||||
class ThreadsManager {
|
||||
/* As long as the single ThreadsManager object is defined as a global we don't
|
||||
need to explicitly initialize to zero its data members because variables with
|
||||
static storage duration are automatically set to zero before enter main()
|
||||
*/
|
||||
public:
|
||||
Thread& operator[](int threadID) { return threads[threadID]; }
|
||||
void init_threads();
|
||||
void exit_threads();
|
||||
|
||||
int min_split_depth() const { return minimumSplitDepth; }
|
||||
int active_threads() const { return activeThreads; }
|
||||
void set_active_threads(int cnt) { activeThreads = cnt; }
|
||||
|
||||
void read_uci_options();
|
||||
bool available_thread_exists(int master) const;
|
||||
bool thread_is_available(int slave, int master) const;
|
||||
bool cutoff_at_splitpoint(int threadID) const;
|
||||
void idle_loop(int threadID, SplitPoint* sp);
|
||||
|
||||
template <bool Fake>
|
||||
void split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue,
|
||||
Depth depth, Move threatMove, int moveCount, MovePicker* mp, bool pvNode);
|
||||
private:
|
||||
Lock mpLock;
|
||||
Depth minimumSplitDepth;
|
||||
int maxThreadsPerSplitPoint;
|
||||
bool useSleepingThreads;
|
||||
int activeThreads;
|
||||
volatile bool allThreadsShouldExit;
|
||||
Thread threads[MAX_THREADS];
|
||||
};
|
||||
|
||||
|
||||
// RootMove struct is used for moves at the root of the tree. For each root
|
||||
// move, we store two scores, a node count, and a PV (really a refutation
|
||||
// in the case of moves which fail low). Value pv_score is normally set at
|
||||
|
@ -203,27 +164,29 @@ namespace {
|
|||
const Value FutilityMarginQS = Value(0x80);
|
||||
|
||||
// Futility lookup tables (initialized at startup) and their access functions
|
||||
Value FutilityMarginsMatrix[16][64]; // [depth][moveNumber]
|
||||
int FutilityMoveCountArray[32]; // [depth]
|
||||
Value FutilityMargins[16][64]; // [depth][moveNumber]
|
||||
int FutilityMoveCounts[32]; // [depth]
|
||||
|
||||
inline Value futility_margin(Depth d, int mn) {
|
||||
|
||||
return d < 7 * ONE_PLY ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)]
|
||||
: 2 * VALUE_INFINITE;
|
||||
return d < 7 * ONE_PLY ? FutilityMargins[Max(d, 1)][Min(mn, 63)]
|
||||
: 2 * VALUE_INFINITE;
|
||||
}
|
||||
|
||||
inline int futility_move_count(Depth d) {
|
||||
|
||||
return d < 16 * ONE_PLY ? FutilityMoveCountArray[d] : MAX_MOVES;
|
||||
return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES;
|
||||
}
|
||||
|
||||
// Step 14. Reduced search
|
||||
|
||||
// Reduction lookup tables (initialized at startup) and their access function
|
||||
int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber]
|
||||
int8_t Reductions[2][64][64]; // [pv][depth][moveNumber]
|
||||
|
||||
template <NodeType PV>
|
||||
inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / ONE_PLY, 63)][Min(mn, 63)]; }
|
||||
template <NodeType PV> inline Depth reduction(Depth d, int mn) {
|
||||
|
||||
return (Depth) Reductions[PV][Min(d / ONE_PLY, 63)][Min(mn, 63)];
|
||||
}
|
||||
|
||||
// Easy move margin. An easy move candidate must be at least this much
|
||||
// better than the second best move.
|
||||
|
@ -254,9 +217,6 @@ namespace {
|
|||
bool SkillLevelEnabled;
|
||||
RKISS RK;
|
||||
|
||||
// Multi-threads manager
|
||||
ThreadsManager ThreadsMgr;
|
||||
|
||||
// Node counters, used only by thread[0] but try to keep in different cache
|
||||
// lines (64 bytes each) from the heavy multi-thread read accessed variables.
|
||||
bool SendSearchedNodes;
|
||||
|
@ -304,12 +264,6 @@ namespace {
|
|||
void poll(const Position& pos);
|
||||
void wait_for_stop_or_ponderhit();
|
||||
|
||||
#if !defined(_MSC_VER)
|
||||
void* init_thread(void* threadID);
|
||||
#else
|
||||
DWORD WINAPI init_thread(LPVOID threadID);
|
||||
#endif
|
||||
|
||||
|
||||
// MovePickerExt is an extended MovePicker class used to choose at compile time
|
||||
// the proper move source according to the type of node.
|
||||
|
@ -378,10 +332,9 @@ namespace {
|
|||
} // namespace
|
||||
|
||||
|
||||
/// init_threads() is called during startup. It initializes various lookup tables
|
||||
/// and creates and launches search threads.
|
||||
/// init_search() is called during startup to initialize various lookup tables
|
||||
|
||||
void init_threads() {
|
||||
void init_search() {
|
||||
|
||||
int d; // depth (ONE_PLY == 2)
|
||||
int hd; // half depth (ONE_PLY == 1)
|
||||
|
@ -392,27 +345,20 @@ void init_threads() {
|
|||
{
|
||||
double pvRed = log(double(hd)) * log(double(mc)) / 3.0;
|
||||
double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
|
||||
ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
|
||||
ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
|
||||
Reductions[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
|
||||
Reductions[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
|
||||
}
|
||||
|
||||
// Init futility margins array
|
||||
for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
|
||||
FutilityMarginsMatrix[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
|
||||
FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
|
||||
|
||||
// Init futility move count array
|
||||
for (d = 0; d < 32; d++)
|
||||
FutilityMoveCountArray[d] = int(3.001 + 0.25 * pow(d, 2.0));
|
||||
|
||||
// Create and startup threads
|
||||
ThreadsMgr.init_threads();
|
||||
FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0));
|
||||
}
|
||||
|
||||
|
||||
/// exit_threads() is a trampoline to access ThreadsMgr from outside of current file
|
||||
void exit_threads() { ThreadsMgr.exit_threads(); }
|
||||
|
||||
|
||||
/// perft() is our utility to verify move generation. All the legal moves up to
|
||||
/// given depth are generated and counted and the sum returned.
|
||||
|
||||
|
@ -489,6 +435,7 @@ bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]) {
|
|||
UCIMultiPV = Options["MultiPV"].value<int>();
|
||||
SkillLevel = Options["Skill level"].value<int>();
|
||||
|
||||
ThreadsMgr.read_uci_options();
|
||||
read_evaluation_uci_options(pos.side_to_move());
|
||||
|
||||
if (Options["Clear Hash"].value<bool>())
|
||||
|
@ -503,10 +450,6 @@ bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]) {
|
|||
SkillLevelEnabled = (SkillLevel < 20);
|
||||
MultiPV = (SkillLevelEnabled ? Max(UCIMultiPV, 4) : UCIMultiPV);
|
||||
|
||||
// Set the number of active threads
|
||||
ThreadsMgr.read_uci_options();
|
||||
init_eval(ThreadsMgr.active_threads());
|
||||
|
||||
// Wake up needed threads and reset maxPly counter
|
||||
for (int i = 0; i < ThreadsMgr.active_threads(); i++)
|
||||
{
|
||||
|
@ -1972,417 +1915,48 @@ split_point_start: // At split points actual search starts from here
|
|||
}
|
||||
|
||||
|
||||
// init_thread() is the function which is called when a new thread is
|
||||
// launched. It simply calls the idle_loop() function with the supplied
|
||||
// threadID. There are two versions of this function; one for POSIX
|
||||
// threads and one for Windows threads.
|
||||
// When playing with strength handicap choose best move among the MultiPV set
|
||||
// using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
|
||||
void do_skill_level(Move* best, Move* ponder) {
|
||||
|
||||
#if !defined(_MSC_VER)
|
||||
assert(MultiPV > 1);
|
||||
|
||||
void* init_thread(void* threadID) {
|
||||
// Rml list is already sorted by pv_score in descending order
|
||||
int s;
|
||||
int max_s = -VALUE_INFINITE;
|
||||
int size = Min(MultiPV, (int)Rml.size());
|
||||
int max = Rml[0].pv_score;
|
||||
int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame);
|
||||
int wk = 120 - 2 * SkillLevel;
|
||||
|
||||
ThreadsMgr.idle_loop(*(int*)threadID, NULL);
|
||||
return NULL;
|
||||
}
|
||||
// PRNG sequence should be non deterministic
|
||||
for (int i = abs(get_system_time() % 50); i > 0; i--)
|
||||
RK.rand<unsigned>();
|
||||
|
||||
#else
|
||||
|
||||
DWORD WINAPI init_thread(LPVOID threadID) {
|
||||
|
||||
ThreadsMgr.idle_loop(*(int*)threadID, NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/// The ThreadsManager class
|
||||
|
||||
|
||||
// read_uci_options() updates number of active threads and other internal
|
||||
// parameters according to the UCI options values. It is called before
|
||||
// to start a new search.
|
||||
|
||||
void ThreadsManager::read_uci_options() {
|
||||
|
||||
maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value<int>();
|
||||
minimumSplitDepth = Options["Minimum Split Depth"].value<int>() * ONE_PLY;
|
||||
useSleepingThreads = Options["Use Sleeping Threads"].value<bool>();
|
||||
activeThreads = Options["Threads"].value<int>();
|
||||
}
|
||||
|
||||
|
||||
// idle_loop() is where the threads are parked when they have no work to do.
|
||||
// The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint
|
||||
// object for which the current thread is the master.
|
||||
|
||||
void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) {
|
||||
|
||||
assert(threadID >= 0 && threadID < MAX_THREADS);
|
||||
|
||||
int i;
|
||||
bool allFinished;
|
||||
|
||||
while (true)
|
||||
// Choose best move. For each move's score we add two terms both dependent
|
||||
// on wk, one deterministic and bigger for weaker moves, and one random,
|
||||
// then we choose the move with the resulting highest score.
|
||||
for (int i = 0; i < size; i++)
|
||||
{
|
||||
// Slave threads can exit as soon as AllThreadsShouldExit raises,
|
||||
// master should exit as last one.
|
||||
if (allThreadsShouldExit)
|
||||
s = Rml[i].pv_score;
|
||||
|
||||
// Don't allow crazy blunders even at very low skills
|
||||
if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin)
|
||||
break;
|
||||
|
||||
// This is our magical formula
|
||||
s += ((max - s) * wk + var * (RK.rand<unsigned>() % wk)) / 128;
|
||||
|
||||
if (s > max_s)
|
||||
{
|
||||
assert(!sp);
|
||||
threads[threadID].state = THREAD_TERMINATED;
|
||||
return;
|
||||
}
|
||||
|
||||
// If we are not thinking, wait for a condition to be signaled
|
||||
// instead of wasting CPU time polling for work.
|
||||
while ( threadID >= activeThreads
|
||||
|| threads[threadID].state == THREAD_INITIALIZING
|
||||
|| (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE))
|
||||
{
|
||||
assert(!sp || useSleepingThreads);
|
||||
assert(threadID != 0 || useSleepingThreads);
|
||||
|
||||
if (threads[threadID].state == THREAD_INITIALIZING)
|
||||
threads[threadID].state = THREAD_AVAILABLE;
|
||||
|
||||
// Grab the lock to avoid races with Thread::wake_up()
|
||||
lock_grab(&threads[threadID].sleepLock);
|
||||
|
||||
// If we are master and all slaves have finished do not go to sleep
|
||||
for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {}
|
||||
allFinished = (i == activeThreads);
|
||||
|
||||
if (allFinished || allThreadsShouldExit)
|
||||
{
|
||||
lock_release(&threads[threadID].sleepLock);
|
||||
break;
|
||||
}
|
||||
|
||||
// Do sleep here after retesting sleep conditions
|
||||
if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE)
|
||||
cond_wait(&threads[threadID].sleepCond, &threads[threadID].sleepLock);
|
||||
|
||||
lock_release(&threads[threadID].sleepLock);
|
||||
}
|
||||
|
||||
// If this thread has been assigned work, launch a search
|
||||
if (threads[threadID].state == THREAD_WORKISWAITING)
|
||||
{
|
||||
assert(!allThreadsShouldExit);
|
||||
|
||||
threads[threadID].state = THREAD_SEARCHING;
|
||||
|
||||
// Copy split point position and search stack and call search()
|
||||
// with SplitPoint template parameter set to true.
|
||||
SearchStack ss[PLY_MAX_PLUS_2];
|
||||
SplitPoint* tsp = threads[threadID].splitPoint;
|
||||
Position pos(*tsp->pos, threadID);
|
||||
|
||||
memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack));
|
||||
(ss+1)->sp = tsp;
|
||||
|
||||
if (tsp->pvNode)
|
||||
search<PV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth);
|
||||
else
|
||||
search<NonPV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth);
|
||||
|
||||
assert(threads[threadID].state == THREAD_SEARCHING);
|
||||
|
||||
threads[threadID].state = THREAD_AVAILABLE;
|
||||
|
||||
// Wake up master thread so to allow it to return from the idle loop in
|
||||
// case we are the last slave of the split point.
|
||||
if ( useSleepingThreads
|
||||
&& threadID != tsp->master
|
||||
&& threads[tsp->master].state == THREAD_AVAILABLE)
|
||||
threads[tsp->master].wake_up();
|
||||
}
|
||||
|
||||
// If this thread is the master of a split point and all slaves have
|
||||
// finished their work at this split point, return from the idle loop.
|
||||
for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {}
|
||||
allFinished = (i == activeThreads);
|
||||
|
||||
if (allFinished)
|
||||
{
|
||||
// Because sp->slaves[] is reset under lock protection,
|
||||
// be sure sp->lock has been released before to return.
|
||||
lock_grab(&(sp->lock));
|
||||
lock_release(&(sp->lock));
|
||||
|
||||
// In helpful master concept a master can help only a sub-tree, and
|
||||
// because here is all finished is not possible master is booked.
|
||||
assert(threads[threadID].state == THREAD_AVAILABLE);
|
||||
|
||||
threads[threadID].state = THREAD_SEARCHING;
|
||||
return;
|
||||
max_s = s;
|
||||
*best = Rml[i].pv[0];
|
||||
*ponder = Rml[i].pv[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// init_threads() is called during startup. Initializes locks and condition
|
||||
// variables and launches all threads sending them immediately to sleep.
|
||||
|
||||
void ThreadsManager::init_threads() {
|
||||
|
||||
int i, arg[MAX_THREADS];
|
||||
bool ok;
|
||||
|
||||
// This flag is needed to properly end the threads when program exits
|
||||
allThreadsShouldExit = false;
|
||||
|
||||
// Threads will sent to sleep as soon as created, only main thread is kept alive
|
||||
activeThreads = 1;
|
||||
|
||||
lock_init(&mpLock);
|
||||
|
||||
for (i = 0; i < MAX_THREADS; i++)
|
||||
{
|
||||
// Initialize thread and split point locks
|
||||
lock_init(&threads[i].sleepLock);
|
||||
cond_init(&threads[i].sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
|
||||
lock_init(&(threads[i].splitPoints[j].lock));
|
||||
|
||||
// All threads but first should be set to THREAD_INITIALIZING
|
||||
threads[i].state = (i == 0 ? THREAD_SEARCHING : THREAD_INITIALIZING);
|
||||
}
|
||||
|
||||
// Create and startup the threads
|
||||
for (i = 1; i < MAX_THREADS; i++)
|
||||
{
|
||||
arg[i] = i;
|
||||
|
||||
#if !defined(_MSC_VER)
|
||||
pthread_t pthread[1];
|
||||
ok = (pthread_create(pthread, NULL, init_thread, (void*)(&arg[i])) == 0);
|
||||
pthread_detach(pthread[0]);
|
||||
#else
|
||||
ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&arg[i]), 0, NULL) != NULL);
|
||||
#endif
|
||||
if (!ok)
|
||||
{
|
||||
cout << "Failed to create thread number " << i << endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Wait until the thread has finished launching and is gone to sleep
|
||||
while (threads[i].state == THREAD_INITIALIZING) {}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// exit_threads() is called when the program exits. It makes all the
|
||||
// helper threads exit cleanly.
|
||||
|
||||
void ThreadsManager::exit_threads() {
|
||||
|
||||
// Force the woken up threads to exit idle_loop() and hence terminate
|
||||
allThreadsShouldExit = true;
|
||||
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
{
|
||||
// Wake up all the threads and waits for termination
|
||||
if (i != 0)
|
||||
{
|
||||
threads[i].wake_up();
|
||||
while (threads[i].state != THREAD_TERMINATED) {}
|
||||
}
|
||||
|
||||
// Now we can safely destroy the locks and wait conditions
|
||||
lock_destroy(&threads[i].sleepLock);
|
||||
cond_destroy(&threads[i].sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
|
||||
lock_destroy(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
lock_destroy(&mpLock);
|
||||
}
|
||||
|
||||
|
||||
// cutoff_at_splitpoint() checks whether a beta cutoff has occurred in
|
||||
// the thread's currently active split point, or in some ancestor of
|
||||
// the current split point.
|
||||
|
||||
bool ThreadsManager::cutoff_at_splitpoint(int threadID) const {
|
||||
|
||||
assert(threadID >= 0 && threadID < activeThreads);
|
||||
|
||||
SplitPoint* sp = threads[threadID].splitPoint;
|
||||
|
||||
for ( ; sp && !sp->betaCutoff; sp = sp->parent) {}
|
||||
return sp != NULL;
|
||||
}
|
||||
|
||||
|
||||
// thread_is_available() checks whether the thread with threadID "slave" is
|
||||
// available to help the thread with threadID "master" at a split point. An
|
||||
// obvious requirement is that "slave" must be idle. With more than two
|
||||
// threads, this is not by itself sufficient: If "slave" is the master of
|
||||
// some active split point, it is only available as a slave to the other
|
||||
// threads which are busy searching the split point at the top of "slave"'s
|
||||
// split point stack (the "helpful master concept" in YBWC terminology).
|
||||
|
||||
bool ThreadsManager::thread_is_available(int slave, int master) const {
|
||||
|
||||
assert(slave >= 0 && slave < activeThreads);
|
||||
assert(master >= 0 && master < activeThreads);
|
||||
assert(activeThreads > 1);
|
||||
|
||||
if (threads[slave].state != THREAD_AVAILABLE || slave == master)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure doesn't change under our feet
|
||||
int localActiveSplitPoints = threads[slave].activeSplitPoints;
|
||||
|
||||
// No active split points means that the thread is available as
|
||||
// a slave for any other thread.
|
||||
if (localActiveSplitPoints == 0 || activeThreads == 2)
|
||||
return true;
|
||||
|
||||
// Apply the "helpful master" concept if possible. Use localActiveSplitPoints
|
||||
// that is known to be > 0, instead of threads[slave].activeSplitPoints that
|
||||
// could have been set to 0 by another thread leading to an out of bound access.
|
||||
if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master])
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// available_thread_exists() tries to find an idle thread which is available as
|
||||
// a slave for the thread with threadID "master".
|
||||
|
||||
bool ThreadsManager::available_thread_exists(int master) const {
|
||||
|
||||
assert(master >= 0 && master < activeThreads);
|
||||
assert(activeThreads > 1);
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (thread_is_available(i, master))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// split() does the actual work of distributing the work at a node between
|
||||
// several available threads. If it does not succeed in splitting the
|
||||
// node (because no idle threads are available, or because we have no unused
|
||||
// split point objects), the function immediately returns. If splitting is
|
||||
// possible, a SplitPoint object is initialized with all the data that must be
|
||||
// copied to the helper threads and we tell our helper threads that they have
|
||||
// been assigned work. This will cause them to instantly leave their idle loops and
|
||||
// call search().When all threads have returned from search() then split() returns.
|
||||
|
||||
template <bool Fake>
|
||||
void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const Value beta,
|
||||
Value* bestValue, Depth depth, Move threatMove,
|
||||
int moveCount, MovePicker* mp, bool pvNode) {
|
||||
assert(pos.is_ok());
|
||||
assert(*bestValue >= -VALUE_INFINITE);
|
||||
assert(*bestValue <= *alpha);
|
||||
assert(*alpha < beta);
|
||||
assert(beta <= VALUE_INFINITE);
|
||||
assert(depth > DEPTH_ZERO);
|
||||
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
|
||||
assert(activeThreads > 1);
|
||||
|
||||
int i, master = pos.thread();
|
||||
Thread& masterThread = threads[master];
|
||||
|
||||
lock_grab(&mpLock);
|
||||
|
||||
// If no other thread is available to help us, or if we have too many
|
||||
// active split points, don't split.
|
||||
if ( !available_thread_exists(master)
|
||||
|| masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||
{
|
||||
lock_release(&mpLock);
|
||||
return;
|
||||
}
|
||||
|
||||
// Pick the next available split point object from the split point stack
|
||||
SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++];
|
||||
|
||||
// Initialize the split point object
|
||||
splitPoint.parent = masterThread.splitPoint;
|
||||
splitPoint.master = master;
|
||||
splitPoint.betaCutoff = false;
|
||||
splitPoint.depth = depth;
|
||||
splitPoint.threatMove = threatMove;
|
||||
splitPoint.alpha = *alpha;
|
||||
splitPoint.beta = beta;
|
||||
splitPoint.pvNode = pvNode;
|
||||
splitPoint.bestValue = *bestValue;
|
||||
splitPoint.mp = mp;
|
||||
splitPoint.moveCount = moveCount;
|
||||
splitPoint.pos = &pos;
|
||||
splitPoint.nodes = 0;
|
||||
splitPoint.ss = ss;
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
splitPoint.slaves[i] = 0;
|
||||
|
||||
masterThread.splitPoint = &splitPoint;
|
||||
|
||||
// If we are here it means we are not available
|
||||
assert(masterThread.state != THREAD_AVAILABLE);
|
||||
|
||||
int workersCnt = 1; // At least the master is included
|
||||
|
||||
// Allocate available threads setting state to THREAD_BOOKED
|
||||
for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++)
|
||||
if (thread_is_available(i, master))
|
||||
{
|
||||
threads[i].state = THREAD_BOOKED;
|
||||
threads[i].splitPoint = &splitPoint;
|
||||
splitPoint.slaves[i] = 1;
|
||||
workersCnt++;
|
||||
}
|
||||
|
||||
assert(Fake || workersCnt > 1);
|
||||
|
||||
// We can release the lock because slave threads are already booked and master is not available
|
||||
lock_release(&mpLock);
|
||||
|
||||
// Tell the threads that they have work to do. This will make them leave
|
||||
// their idle loop.
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
if (i == master || splitPoint.slaves[i])
|
||||
{
|
||||
assert(i == master || threads[i].state == THREAD_BOOKED);
|
||||
|
||||
threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
|
||||
|
||||
if (useSleepingThreads && i != master)
|
||||
threads[i].wake_up();
|
||||
}
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from
|
||||
// which it will instantly launch a search, because its state is
|
||||
// THREAD_WORKISWAITING. We send the split point as a second parameter to the
|
||||
// idle loop, which means that the main thread will return from the idle
|
||||
// loop when all threads have finished their work at this split point.
|
||||
idle_loop(master, &splitPoint);
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Update alpha and bestValue, and return.
|
||||
lock_grab(&mpLock);
|
||||
|
||||
*alpha = splitPoint.alpha;
|
||||
*bestValue = splitPoint.bestValue;
|
||||
masterThread.activeSplitPoints--;
|
||||
masterThread.splitPoint = splitPoint.parent;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes);
|
||||
|
||||
lock_release(&mpLock);
|
||||
}
|
||||
|
||||
|
||||
/// RootMove and RootMoveList method's definitions
|
||||
|
||||
RootMove::RootMove() {
|
||||
|
@ -2406,6 +1980,33 @@ split_point_start: // At split points actual search starts from here
|
|||
return *this;
|
||||
}
|
||||
|
||||
void RootMoveList::init(Position& pos, Move searchMoves[]) {
|
||||
|
||||
MoveStack mlist[MAX_MOVES];
|
||||
Move* sm;
|
||||
|
||||
clear();
|
||||
bestMoveChanges = 0;
|
||||
|
||||
// Generate all legal moves and add them to RootMoveList
|
||||
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
|
||||
for (MoveStack* cur = mlist; cur != last; cur++)
|
||||
{
|
||||
// If we have a searchMoves[] list then verify cur->move
|
||||
// is in the list before to add it.
|
||||
for (sm = searchMoves; *sm && *sm != cur->move; sm++) {}
|
||||
|
||||
if (searchMoves[0] && *sm != cur->move)
|
||||
continue;
|
||||
|
||||
RootMove rm;
|
||||
rm.pv[0] = cur->move;
|
||||
rm.pv[1] = MOVE_NONE;
|
||||
rm.pv_score = -VALUE_INFINITE;
|
||||
push_back(rm);
|
||||
}
|
||||
}
|
||||
|
||||
// extract_pv_from_tt() builds a PV by adding moves from the transposition table.
|
||||
// We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This
|
||||
// allow to always have a ponder move even when we fail high at root and also a
|
||||
|
@ -2487,74 +2088,114 @@ split_point_start: // At split points actual search starts from here
|
|||
return s.str();
|
||||
}
|
||||
|
||||
|
||||
void RootMoveList::init(Position& pos, Move searchMoves[]) {
|
||||
|
||||
MoveStack mlist[MAX_MOVES];
|
||||
Move* sm;
|
||||
|
||||
clear();
|
||||
bestMoveChanges = 0;
|
||||
|
||||
// Generate all legal moves and add them to RootMoveList
|
||||
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
|
||||
for (MoveStack* cur = mlist; cur != last; cur++)
|
||||
{
|
||||
// If we have a searchMoves[] list then verify cur->move
|
||||
// is in the list before to add it.
|
||||
for (sm = searchMoves; *sm && *sm != cur->move; sm++) {}
|
||||
|
||||
if (searchMoves[0] && *sm != cur->move)
|
||||
continue;
|
||||
|
||||
RootMove rm;
|
||||
rm.pv[0] = cur->move;
|
||||
rm.pv[1] = MOVE_NONE;
|
||||
rm.pv_score = -VALUE_INFINITE;
|
||||
push_back(rm);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// When playing with strength handicap choose best move among the MultiPV set
|
||||
// using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
|
||||
void do_skill_level(Move* best, Move* ponder) {
|
||||
|
||||
assert(MultiPV > 1);
|
||||
|
||||
// Rml list is already sorted by pv_score in descending order
|
||||
int s;
|
||||
int max_s = -VALUE_INFINITE;
|
||||
int size = Min(MultiPV, (int)Rml.size());
|
||||
int max = Rml[0].pv_score;
|
||||
int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame);
|
||||
int wk = 120 - 2 * SkillLevel;
|
||||
|
||||
// PRNG sequence should be non deterministic
|
||||
for (int i = abs(get_system_time() % 50); i > 0; i--)
|
||||
RK.rand<unsigned>();
|
||||
|
||||
// Choose best move. For each move's score we add two terms both dependent
|
||||
// on wk, one deterministic and bigger for weaker moves, and one random,
|
||||
// then we choose the move with the resulting highest score.
|
||||
for (int i = 0; i < size; i++)
|
||||
{
|
||||
s = Rml[i].pv_score;
|
||||
|
||||
// Don't allow crazy blunders even at very low skills
|
||||
if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin)
|
||||
break;
|
||||
|
||||
// This is our magical formula
|
||||
s += ((max - s) * wk + var * (RK.rand<unsigned>() % wk)) / 128;
|
||||
|
||||
if (s > max_s)
|
||||
{
|
||||
max_s = s;
|
||||
*best = Rml[i].pv[0];
|
||||
*ponder = Rml[i].pv[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
// ThreadsManager::idle_loop() is where the threads are parked when they have no work
|
||||
// to do. The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint
|
||||
// object for which the current thread is the master.
|
||||
|
||||
void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) {
|
||||
|
||||
assert(threadID >= 0 && threadID < MAX_THREADS);
|
||||
|
||||
int i;
|
||||
bool allFinished;
|
||||
|
||||
while (true)
|
||||
{
|
||||
// Slave threads can exit as soon as AllThreadsShouldExit raises,
|
||||
// master should exit as last one.
|
||||
if (allThreadsShouldExit)
|
||||
{
|
||||
assert(!sp);
|
||||
threads[threadID].state = THREAD_TERMINATED;
|
||||
return;
|
||||
}
|
||||
|
||||
// If we are not thinking, wait for a condition to be signaled
|
||||
// instead of wasting CPU time polling for work.
|
||||
while ( threadID >= activeThreads
|
||||
|| threads[threadID].state == THREAD_INITIALIZING
|
||||
|| (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE))
|
||||
{
|
||||
assert(!sp || useSleepingThreads);
|
||||
assert(threadID != 0 || useSleepingThreads);
|
||||
|
||||
if (threads[threadID].state == THREAD_INITIALIZING)
|
||||
threads[threadID].state = THREAD_AVAILABLE;
|
||||
|
||||
// Grab the lock to avoid races with Thread::wake_up()
|
||||
lock_grab(&threads[threadID].sleepLock);
|
||||
|
||||
// If we are master and all slaves have finished do not go to sleep
|
||||
for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {}
|
||||
allFinished = (i == activeThreads);
|
||||
|
||||
if (allFinished || allThreadsShouldExit)
|
||||
{
|
||||
lock_release(&threads[threadID].sleepLock);
|
||||
break;
|
||||
}
|
||||
|
||||
// Do sleep here after retesting sleep conditions
|
||||
if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE)
|
||||
cond_wait(&threads[threadID].sleepCond, &threads[threadID].sleepLock);
|
||||
|
||||
lock_release(&threads[threadID].sleepLock);
|
||||
}
|
||||
|
||||
// If this thread has been assigned work, launch a search
|
||||
if (threads[threadID].state == THREAD_WORKISWAITING)
|
||||
{
|
||||
assert(!allThreadsShouldExit);
|
||||
|
||||
threads[threadID].state = THREAD_SEARCHING;
|
||||
|
||||
// Copy split point position and search stack and call search()
|
||||
// with SplitPoint template parameter set to true.
|
||||
SearchStack ss[PLY_MAX_PLUS_2];
|
||||
SplitPoint* tsp = threads[threadID].splitPoint;
|
||||
Position pos(*tsp->pos, threadID);
|
||||
|
||||
memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack));
|
||||
(ss+1)->sp = tsp;
|
||||
|
||||
if (tsp->pvNode)
|
||||
search<PV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth);
|
||||
else
|
||||
search<NonPV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth);
|
||||
|
||||
assert(threads[threadID].state == THREAD_SEARCHING);
|
||||
|
||||
threads[threadID].state = THREAD_AVAILABLE;
|
||||
|
||||
// Wake up master thread so to allow it to return from the idle loop in
|
||||
// case we are the last slave of the split point.
|
||||
if ( useSleepingThreads
|
||||
&& threadID != tsp->master
|
||||
&& threads[tsp->master].state == THREAD_AVAILABLE)
|
||||
threads[tsp->master].wake_up();
|
||||
}
|
||||
|
||||
// If this thread is the master of a split point and all slaves have
|
||||
// finished their work at this split point, return from the idle loop.
|
||||
for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {}
|
||||
allFinished = (i == activeThreads);
|
||||
|
||||
if (allFinished)
|
||||
{
|
||||
// Because sp->slaves[] is reset under lock protection,
|
||||
// be sure sp->lock has been released before to return.
|
||||
lock_grab(&(sp->lock));
|
||||
lock_release(&(sp->lock));
|
||||
|
||||
// In helpful master concept a master can help only a sub-tree, and
|
||||
// because here is all finished is not possible master is booked.
|
||||
assert(threads[threadID].state == THREAD_AVAILABLE);
|
||||
|
||||
threads[threadID].state = THREAD_SEARCHING;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -63,8 +63,7 @@ struct SearchLimits {
|
|||
bool infinite, ponder;
|
||||
};
|
||||
|
||||
extern void init_threads();
|
||||
extern void exit_threads();
|
||||
extern void init_search();
|
||||
extern int64_t perft(Position& pos, Depth depth);
|
||||
extern bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]);
|
||||
|
||||
|
|
333
src/thread.cpp
Normal file
333
src/thread.cpp
Normal file
|
@ -0,0 +1,333 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Stockfish is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "thread.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
ThreadsManager ThreadsMgr; // Global object definition
|
||||
|
||||
namespace {
|
||||
|
||||
// init_thread() is the function which is called when a new thread is
|
||||
// launched. It simply calls the idle_loop() function with the supplied
|
||||
// threadID. There are two versions of this function; one for POSIX
|
||||
// threads and one for Windows threads.
|
||||
|
||||
#if !defined(_MSC_VER)
|
||||
|
||||
void* init_thread(void* threadID) {
|
||||
|
||||
ThreadsMgr.idle_loop(*(int*)threadID, NULL);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
DWORD WINAPI init_thread(LPVOID threadID) {
|
||||
|
||||
ThreadsMgr.idle_loop(*(int*)threadID, NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
// read_uci_options() updates number of active threads and other internal
|
||||
// parameters according to the UCI options values. It is called before
|
||||
// to start a new search.
|
||||
|
||||
void ThreadsManager::read_uci_options() {
|
||||
|
||||
maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value<int>();
|
||||
minimumSplitDepth = Options["Minimum Split Depth"].value<int>() * ONE_PLY;
|
||||
useSleepingThreads = Options["Use Sleeping Threads"].value<bool>();
|
||||
activeThreads = Options["Threads"].value<int>();
|
||||
}
|
||||
|
||||
// init_threads() is called during startup. Initializes locks and condition
|
||||
// variables and launches all threads sending them immediately to sleep.
|
||||
|
||||
void ThreadsManager::init_threads() {
|
||||
|
||||
int i, arg[MAX_THREADS];
|
||||
bool ok;
|
||||
|
||||
// This flag is needed to properly end the threads when program exits
|
||||
allThreadsShouldExit = false;
|
||||
|
||||
// Threads will sent to sleep as soon as created, only main thread is kept alive
|
||||
activeThreads = 1;
|
||||
|
||||
lock_init(&mpLock);
|
||||
|
||||
for (i = 0; i < MAX_THREADS; i++)
|
||||
{
|
||||
// Initialize thread and split point locks
|
||||
lock_init(&threads[i].sleepLock);
|
||||
cond_init(&threads[i].sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
|
||||
lock_init(&(threads[i].splitPoints[j].lock));
|
||||
|
||||
// All threads but first should be set to THREAD_INITIALIZING
|
||||
threads[i].state = (i == 0 ? THREAD_SEARCHING : THREAD_INITIALIZING);
|
||||
|
||||
// Not in Threads c'tor to avoid global initialization order issues
|
||||
threads[i].pawnTable.init();
|
||||
threads[i].materialTable.init();
|
||||
}
|
||||
|
||||
// Create and startup the threads
|
||||
for (i = 1; i < MAX_THREADS; i++)
|
||||
{
|
||||
arg[i] = i;
|
||||
|
||||
#if !defined(_MSC_VER)
|
||||
pthread_t pthread[1];
|
||||
ok = (pthread_create(pthread, NULL, init_thread, (void*)(&arg[i])) == 0);
|
||||
pthread_detach(pthread[0]);
|
||||
#else
|
||||
ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&arg[i]), 0, NULL) != NULL);
|
||||
#endif
|
||||
if (!ok)
|
||||
{
|
||||
std::cout << "Failed to create thread number " << i << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Wait until the thread has finished launching and is gone to sleep
|
||||
while (threads[i].state == THREAD_INITIALIZING) {}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// exit_threads() is called when the program exits. It makes all the
|
||||
// helper threads exit cleanly.
|
||||
|
||||
void ThreadsManager::exit_threads() {
|
||||
|
||||
// Force the woken up threads to exit idle_loop() and hence terminate
|
||||
allThreadsShouldExit = true;
|
||||
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
{
|
||||
// Wake up all the threads and waits for termination
|
||||
if (i != 0)
|
||||
{
|
||||
threads[i].wake_up();
|
||||
while (threads[i].state != THREAD_TERMINATED) {}
|
||||
}
|
||||
|
||||
// Now we can safely destroy the locks and wait conditions
|
||||
lock_destroy(&threads[i].sleepLock);
|
||||
cond_destroy(&threads[i].sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
|
||||
lock_destroy(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
lock_destroy(&mpLock);
|
||||
}
|
||||
|
||||
|
||||
// cutoff_at_splitpoint() checks whether a beta cutoff has occurred in
|
||||
// the thread's currently active split point, or in some ancestor of
|
||||
// the current split point.
|
||||
|
||||
bool ThreadsManager::cutoff_at_splitpoint(int threadID) const {
|
||||
|
||||
assert(threadID >= 0 && threadID < activeThreads);
|
||||
|
||||
SplitPoint* sp = threads[threadID].splitPoint;
|
||||
|
||||
for ( ; sp && !sp->betaCutoff; sp = sp->parent) {}
|
||||
return sp != NULL;
|
||||
}
|
||||
|
||||
|
||||
// thread_is_available() checks whether the thread with threadID "slave" is
|
||||
// available to help the thread with threadID "master" at a split point. An
|
||||
// obvious requirement is that "slave" must be idle. With more than two
|
||||
// threads, this is not by itself sufficient: If "slave" is the master of
|
||||
// some active split point, it is only available as a slave to the other
|
||||
// threads which are busy searching the split point at the top of "slave"'s
|
||||
// split point stack (the "helpful master concept" in YBWC terminology).
|
||||
|
||||
bool ThreadsManager::thread_is_available(int slave, int master) const {
|
||||
|
||||
assert(slave >= 0 && slave < activeThreads);
|
||||
assert(master >= 0 && master < activeThreads);
|
||||
assert(activeThreads > 1);
|
||||
|
||||
if (threads[slave].state != THREAD_AVAILABLE || slave == master)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure doesn't change under our feet
|
||||
int localActiveSplitPoints = threads[slave].activeSplitPoints;
|
||||
|
||||
// No active split points means that the thread is available as
|
||||
// a slave for any other thread.
|
||||
if (localActiveSplitPoints == 0 || activeThreads == 2)
|
||||
return true;
|
||||
|
||||
// Apply the "helpful master" concept if possible. Use localActiveSplitPoints
|
||||
// that is known to be > 0, instead of threads[slave].activeSplitPoints that
|
||||
// could have been set to 0 by another thread leading to an out of bound access.
|
||||
if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master])
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// available_thread_exists() tries to find an idle thread which is available as
|
||||
// a slave for the thread with threadID "master".
|
||||
|
||||
bool ThreadsManager::available_thread_exists(int master) const {
|
||||
|
||||
assert(master >= 0 && master < activeThreads);
|
||||
assert(activeThreads > 1);
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (thread_is_available(i, master))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// split() does the actual work of distributing the work at a node between
|
||||
// several available threads. If it does not succeed in splitting the
|
||||
// node (because no idle threads are available, or because we have no unused
|
||||
// split point objects), the function immediately returns. If splitting is
|
||||
// possible, a SplitPoint object is initialized with all the data that must be
|
||||
// copied to the helper threads and we tell our helper threads that they have
|
||||
// been assigned work. This will cause them to instantly leave their idle loops and
|
||||
// call search().When all threads have returned from search() then split() returns.
|
||||
|
||||
template <bool Fake>
|
||||
void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const Value beta,
|
||||
Value* bestValue, Depth depth, Move threatMove,
|
||||
int moveCount, MovePicker* mp, bool pvNode) {
|
||||
assert(pos.is_ok());
|
||||
assert(*bestValue >= -VALUE_INFINITE);
|
||||
assert(*bestValue <= *alpha);
|
||||
assert(*alpha < beta);
|
||||
assert(beta <= VALUE_INFINITE);
|
||||
assert(depth > DEPTH_ZERO);
|
||||
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
|
||||
assert(activeThreads > 1);
|
||||
|
||||
int i, master = pos.thread();
|
||||
Thread& masterThread = threads[master];
|
||||
|
||||
lock_grab(&mpLock);
|
||||
|
||||
// If no other thread is available to help us, or if we have too many
|
||||
// active split points, don't split.
|
||||
if ( !available_thread_exists(master)
|
||||
|| masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||
{
|
||||
lock_release(&mpLock);
|
||||
return;
|
||||
}
|
||||
|
||||
// Pick the next available split point object from the split point stack
|
||||
SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++];
|
||||
|
||||
// Initialize the split point object
|
||||
splitPoint.parent = masterThread.splitPoint;
|
||||
splitPoint.master = master;
|
||||
splitPoint.betaCutoff = false;
|
||||
splitPoint.depth = depth;
|
||||
splitPoint.threatMove = threatMove;
|
||||
splitPoint.alpha = *alpha;
|
||||
splitPoint.beta = beta;
|
||||
splitPoint.pvNode = pvNode;
|
||||
splitPoint.bestValue = *bestValue;
|
||||
splitPoint.mp = mp;
|
||||
splitPoint.moveCount = moveCount;
|
||||
splitPoint.pos = &pos;
|
||||
splitPoint.nodes = 0;
|
||||
splitPoint.ss = ss;
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
splitPoint.slaves[i] = 0;
|
||||
|
||||
masterThread.splitPoint = &splitPoint;
|
||||
|
||||
// If we are here it means we are not available
|
||||
assert(masterThread.state != THREAD_AVAILABLE);
|
||||
|
||||
int workersCnt = 1; // At least the master is included
|
||||
|
||||
// Allocate available threads setting state to THREAD_BOOKED
|
||||
for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++)
|
||||
if (thread_is_available(i, master))
|
||||
{
|
||||
threads[i].state = THREAD_BOOKED;
|
||||
threads[i].splitPoint = &splitPoint;
|
||||
splitPoint.slaves[i] = 1;
|
||||
workersCnt++;
|
||||
}
|
||||
|
||||
assert(Fake || workersCnt > 1);
|
||||
|
||||
// We can release the lock because slave threads are already booked and master is not available
|
||||
lock_release(&mpLock);
|
||||
|
||||
// Tell the threads that they have work to do. This will make them leave
|
||||
// their idle loop.
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
if (i == master || splitPoint.slaves[i])
|
||||
{
|
||||
assert(i == master || threads[i].state == THREAD_BOOKED);
|
||||
|
||||
threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
|
||||
|
||||
if (useSleepingThreads && i != master)
|
||||
threads[i].wake_up();
|
||||
}
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from
|
||||
// which it will instantly launch a search, because its state is
|
||||
// THREAD_WORKISWAITING. We send the split point as a second parameter to the
|
||||
// idle loop, which means that the main thread will return from the idle
|
||||
// loop when all threads have finished their work at this split point.
|
||||
idle_loop(master, &splitPoint);
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Update alpha and bestValue, and return.
|
||||
lock_grab(&mpLock);
|
||||
|
||||
*alpha = splitPoint.alpha;
|
||||
*bestValue = splitPoint.bestValue;
|
||||
masterThread.activeSplitPoints--;
|
||||
masterThread.splitPoint = splitPoint.parent;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes);
|
||||
|
||||
lock_release(&mpLock);
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template void ThreadsManager::split<0>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool);
|
||||
template void ThreadsManager::split<1>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool);
|
50
src/thread.h
50
src/thread.h
|
@ -23,9 +23,10 @@
|
|||
#include <cstring>
|
||||
|
||||
#include "lock.h"
|
||||
#include "material.h"
|
||||
#include "movepick.h"
|
||||
#include "pawns.h"
|
||||
#include "position.h"
|
||||
#include "search.h"
|
||||
|
||||
const int MAX_THREADS = 32;
|
||||
const int MAX_ACTIVE_SPLIT_POINTS = 8;
|
||||
|
@ -67,7 +68,14 @@ enum ThreadState
|
|||
THREAD_TERMINATED // we are quitting and thread is terminated
|
||||
};
|
||||
|
||||
|
||||
// We use per-thread Pawn and material hash tables so that once we get a
|
||||
// pointer to an entry its life time is unlimited and we don't have to
|
||||
// care about someone changing the entry under our feet.
|
||||
|
||||
struct Thread {
|
||||
MaterialInfoTable materialTable;
|
||||
PawnInfoTable pawnTable;
|
||||
int maxPly;
|
||||
Lock sleepLock;
|
||||
WaitCondition sleepCond;
|
||||
|
@ -83,4 +91,44 @@ struct Thread {
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
// ThreadsManager class is used to handle all the threads related stuff like init,
|
||||
// starting, parking and, the most important, launching a slave thread at a split
|
||||
// point. All the access to shared thread data is done through this class.
|
||||
|
||||
class ThreadsManager {
|
||||
/* As long as the single ThreadsManager object is defined as a global we don't
|
||||
need to explicitly initialize to zero its data members because variables with
|
||||
static storage duration are automatically set to zero before enter main()
|
||||
*/
|
||||
public:
|
||||
Thread& operator[](int threadID) { return threads[threadID]; }
|
||||
void init_threads();
|
||||
void exit_threads();
|
||||
|
||||
int min_split_depth() const { return minimumSplitDepth; }
|
||||
int active_threads() const { return activeThreads; }
|
||||
void set_active_threads(int cnt) { activeThreads = cnt; }
|
||||
|
||||
void read_uci_options();
|
||||
bool available_thread_exists(int master) const;
|
||||
bool thread_is_available(int slave, int master) const;
|
||||
bool cutoff_at_splitpoint(int threadID) const;
|
||||
void idle_loop(int threadID, SplitPoint* sp);
|
||||
|
||||
template <bool Fake>
|
||||
void split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue,
|
||||
Depth depth, Move threatMove, int moveCount, MovePicker* mp, bool pvNode);
|
||||
private:
|
||||
Lock mpLock;
|
||||
Depth minimumSplitDepth;
|
||||
int maxThreadsPerSplitPoint;
|
||||
bool useSleepingThreads;
|
||||
int activeThreads;
|
||||
volatile bool allThreadsShouldExit;
|
||||
Thread threads[MAX_THREADS];
|
||||
};
|
||||
|
||||
extern ThreadsManager ThreadsMgr;
|
||||
|
||||
#endif // !defined(THREAD_H_INCLUDED)
|
||||
|
|
8
src/tt.h
8
src/tt.h
|
@ -142,13 +142,11 @@ inline void TranspositionTable::refresh(const TTEntry* tte) const {
|
|||
/// Without cluster concept or overwrite policy.
|
||||
|
||||
template<class Entry, int HashSize>
|
||||
class SimpleHash {
|
||||
struct SimpleHash {
|
||||
|
||||
SimpleHash(const SimpleHash&);
|
||||
SimpleHash& operator=(const SimpleHash&);
|
||||
typedef SimpleHash<Entry, HashSize> Base;
|
||||
|
||||
public:
|
||||
SimpleHash() {
|
||||
void init() {
|
||||
|
||||
entries = new (std::nothrow) Entry[HashSize];
|
||||
if (!entries)
|
||||
|
|
Loading…
Add table
Reference in a new issue