mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 08:43:09 +00:00
Remove some code unused in the current network architecture
No functional change.
This commit is contained in:
parent
21d43e9500
commit
ffae13edff
5 changed files with 97 additions and 266 deletions
|
@ -21,48 +21,6 @@ namespace Eval::NNUE::Features {
|
|||
kValues = {{First, Remaining...}};
|
||||
};
|
||||
|
||||
template <typename T, T First, T... Remaining>
|
||||
constexpr std::array<T, sizeof...(Remaining) + 1>
|
||||
CompileTimeList<T, First, Remaining...>::kValues;
|
||||
|
||||
template <typename T>
|
||||
struct CompileTimeList<T> {
|
||||
static constexpr bool Contains(T /*value*/) {
|
||||
return false;
|
||||
}
|
||||
static constexpr std::array<T, 0> kValues = {{}};
|
||||
};
|
||||
|
||||
// Class template that adds to the beginning of the list
|
||||
template <typename T, typename ListType, T Value>
|
||||
struct AppendToList;
|
||||
|
||||
template <typename T, T... Values, T AnotherValue>
|
||||
struct AppendToList<T, CompileTimeList<T, Values...>, AnotherValue> {
|
||||
using Result = CompileTimeList<T, AnotherValue, Values...>;
|
||||
};
|
||||
|
||||
// Class template for adding to a sorted, unique list
|
||||
template <typename T, typename ListType, T Value>
|
||||
struct InsertToSet;
|
||||
|
||||
template <typename T, T First, T... Remaining, T AnotherValue>
|
||||
struct InsertToSet<T, CompileTimeList<T, First, Remaining...>, AnotherValue> {
|
||||
using Result = std::conditional_t<
|
||||
CompileTimeList<T, First, Remaining...>::Contains(AnotherValue),
|
||||
CompileTimeList<T, First, Remaining...>,
|
||||
std::conditional_t<(AnotherValue <First),
|
||||
CompileTimeList<T, AnotherValue, First, Remaining...>,
|
||||
typename AppendToList<T, typename InsertToSet<
|
||||
T, CompileTimeList<T, Remaining...>, AnotherValue>::Result,
|
||||
First>::Result>>;
|
||||
};
|
||||
|
||||
template <typename T, T Value>
|
||||
struct InsertToSet<T, CompileTimeList<T>, Value> {
|
||||
using Result = CompileTimeList<T, Value>;
|
||||
};
|
||||
|
||||
// Base class of feature set
|
||||
template <typename Derived>
|
||||
class FeatureSetBase {
|
||||
|
@ -91,22 +49,10 @@ namespace Eval::NNUE::Features {
|
|||
for (Color perspective : { WHITE, BLACK }) {
|
||||
reset[perspective] = false;
|
||||
switch (trigger) {
|
||||
case TriggerEvent::kNone:
|
||||
break;
|
||||
case TriggerEvent::kFriendKingMoved:
|
||||
reset[perspective] =
|
||||
dp.pieceId[0] == PIECE_ID_KING + perspective;
|
||||
break;
|
||||
case TriggerEvent::kEnemyKingMoved:
|
||||
reset[perspective] =
|
||||
dp.pieceId[0] == PIECE_ID_KING + ~perspective;
|
||||
break;
|
||||
case TriggerEvent::kAnyKingMoved:
|
||||
reset[perspective] = dp.pieceId[0] >= PIECE_ID_KING;
|
||||
break;
|
||||
case TriggerEvent::kAnyPieceMoved:
|
||||
reset[perspective] = true;
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
break;
|
||||
|
@ -123,80 +69,6 @@ namespace Eval::NNUE::Features {
|
|||
}
|
||||
};
|
||||
|
||||
// Class template that represents the feature set
|
||||
// do internal processing in reverse order of template arguments in order to linearize the amount of calculation at runtime
|
||||
template <typename FirstFeatureType, typename... RemainingFeatureTypes>
|
||||
class FeatureSet<FirstFeatureType, RemainingFeatureTypes...> :
|
||||
public FeatureSetBase<
|
||||
FeatureSet<FirstFeatureType, RemainingFeatureTypes...>> {
|
||||
|
||||
private:
|
||||
using Head = FirstFeatureType;
|
||||
using Tail = FeatureSet<RemainingFeatureTypes...>;
|
||||
|
||||
public:
|
||||
// Hash value embedded in the evaluation function file
|
||||
static constexpr std::uint32_t kHashValue =
|
||||
Head::kHashValue ^ (Tail::kHashValue << 1) ^ (Tail::kHashValue >> 31);
|
||||
// number of feature dimensions
|
||||
static constexpr IndexType kDimensions =
|
||||
Head::kDimensions + Tail::kDimensions;
|
||||
// The maximum value of the number of indexes whose value is 1 at the same time among the feature values
|
||||
static constexpr IndexType kMaxActiveDimensions =
|
||||
Head::kMaxActiveDimensions + Tail::kMaxActiveDimensions;
|
||||
// List of timings to perform all calculations instead of difference calculation
|
||||
using SortedTriggerSet = typename InsertToSet<TriggerEvent,
|
||||
typename Tail::SortedTriggerSet, Head::kRefreshTrigger>::Result;
|
||||
static constexpr auto kRefreshTriggers = SortedTriggerSet::kValues;
|
||||
|
||||
// Get the feature quantity name
|
||||
static std::string GetName() {
|
||||
return std::string(Head::kName) + "+" + Tail::GetName();
|
||||
}
|
||||
|
||||
private:
|
||||
// Get a list of indices with a value of 1 among the features
|
||||
template <typename IndexListType>
|
||||
static void CollectActiveIndices(
|
||||
const Position& pos, const TriggerEvent trigger, const Color perspective,
|
||||
IndexListType* const active) {
|
||||
|
||||
Tail::CollectActiveIndices(pos, trigger, perspective, active);
|
||||
if (Head::kRefreshTrigger == trigger) {
|
||||
const auto start = active->size();
|
||||
Head::AppendActiveIndices(pos, perspective, active);
|
||||
for (auto i = start; i < active->size(); ++i) {
|
||||
(*active)[i] += Tail::kDimensions;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Get a list of indices whose values have changed from the previous one in the feature quantity
|
||||
template <typename IndexListType>
|
||||
static void CollectChangedIndices(
|
||||
const Position& pos, const TriggerEvent trigger, const Color perspective,
|
||||
IndexListType* const removed, IndexListType* const added) {
|
||||
|
||||
Tail::CollectChangedIndices(pos, trigger, perspective, removed, added);
|
||||
if (Head::kRefreshTrigger == trigger) {
|
||||
const auto start_removed = removed->size();
|
||||
const auto start_added = added->size();
|
||||
Head::AppendChangedIndices(pos, perspective, removed, added);
|
||||
for (auto i = start_removed; i < removed->size(); ++i) {
|
||||
(*removed)[i] += Tail::kDimensions;
|
||||
}
|
||||
for (auto i = start_added; i < added->size(); ++i) {
|
||||
(*added)[i] += Tail::kDimensions;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Make the base class and the class template that recursively uses itself a friend
|
||||
friend class FeatureSetBase<FeatureSet>;
|
||||
template <typename... FeatureTypes>
|
||||
friend class FeatureSet;
|
||||
};
|
||||
|
||||
// Class template that represents the feature set
|
||||
// Specialization with one template argument
|
||||
template <typename FeatureType>
|
||||
|
|
|
@ -17,19 +17,12 @@ namespace Eval::NNUE::Features {
|
|||
|
||||
// Type of timing to perform all calculations instead of difference calculation
|
||||
enum class TriggerEvent {
|
||||
|
||||
kNone, // Calculate the difference whenever possible
|
||||
kFriendKingMoved, // calculate all when own king moves
|
||||
kEnemyKingMoved, // do all calculations when enemy king moves
|
||||
kAnyKingMoved, // do all calculations if either king moves
|
||||
kAnyPieceMoved, // always do all calculations
|
||||
kFriendKingMoved // calculate all when own king moves
|
||||
};
|
||||
|
||||
// turn side or other side
|
||||
enum class Side {
|
||||
|
||||
kFriend, // turn side
|
||||
kEnemy, // opponent
|
||||
kFriend // turn side
|
||||
};
|
||||
|
||||
} // namespace Eval::NNUE::Features
|
||||
|
|
|
@ -70,6 +70,5 @@ namespace Eval::NNUE::Features {
|
|||
}
|
||||
|
||||
template class HalfKP<Side::kFriend>;
|
||||
template class HalfKP<Side::kEnemy>;
|
||||
|
||||
} // namespace Eval::NNUE::Features
|
||||
|
|
|
@ -26,9 +26,7 @@ namespace Eval::NNUE::Features {
|
|||
// The maximum value of the number of indexes whose value is 1 at the same time among the feature values
|
||||
static constexpr IndexType kMaxActiveDimensions = PIECE_ID_KING;
|
||||
// Timing of full calculation instead of difference calculation
|
||||
static constexpr TriggerEvent kRefreshTrigger =
|
||||
(AssociatedKing == Side::kFriend) ?
|
||||
TriggerEvent::kFriendKingMoved : TriggerEvent::kEnemyKingMoved;
|
||||
static constexpr TriggerEvent kRefreshTrigger = TriggerEvent::kFriendKingMoved;
|
||||
|
||||
// Get a list of indices with a value of 1 among the features
|
||||
static void AppendActiveIndices(const Position& pos, Color perspective,
|
||||
|
|
|
@ -121,12 +121,6 @@ namespace Eval::NNUE {
|
|||
|
||||
(&reinterpret_cast<const __m256i*>(
|
||||
accumulation[perspectives[p]][0])[j * 2 + 1]);
|
||||
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
|
||||
sum0 = _mm256_add_epi16(sum0, reinterpret_cast<const __m256i*>(
|
||||
accumulation[perspectives[p]][i])[j * 2 + 0]);
|
||||
sum1 = _mm256_add_epi16(sum1, reinterpret_cast<const __m256i*>(
|
||||
accumulation[perspectives[p]][i])[j * 2 + 1]);
|
||||
}
|
||||
|
||||
#if defined(__MINGW32__) || defined(__MINGW64__)
|
||||
_mm256_storeu_si256
|
||||
|
@ -145,12 +139,6 @@ namespace Eval::NNUE {
|
|||
accumulation[perspectives[p]][0])[j * 2 + 0]);
|
||||
__m128i sum1 = _mm_load_si128(&reinterpret_cast<const __m128i*>(
|
||||
accumulation[perspectives[p]][0])[j * 2 + 1]);
|
||||
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
|
||||
sum0 = _mm_add_epi16(sum0, reinterpret_cast<const __m128i*>(
|
||||
accumulation[perspectives[p]][i])[j * 2 + 0]);
|
||||
sum1 = _mm_add_epi16(sum1, reinterpret_cast<const __m128i*>(
|
||||
accumulation[perspectives[p]][i])[j * 2 + 1]);
|
||||
}
|
||||
const __m128i packedbytes = _mm_packs_epi16(sum0, sum1);
|
||||
|
||||
_mm_store_si128(&out[j],
|
||||
|
@ -169,19 +157,12 @@ namespace Eval::NNUE {
|
|||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
int16x8_t sum = reinterpret_cast<const int16x8_t*>(
|
||||
accumulation[perspectives[p]][0])[j];
|
||||
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
|
||||
sum = vaddq_s16(sum, reinterpret_cast<const int16x8_t*>(
|
||||
accumulation[perspectives[p]][i])[j]);
|
||||
}
|
||||
out[j] = vmax_s8(vqmovn_s16(sum), kZero);
|
||||
}
|
||||
|
||||
#else
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j) {
|
||||
BiasType sum = accumulation[static_cast<int>(perspectives[p])][0][j];
|
||||
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
|
||||
sum += accumulation[static_cast<int>(perspectives[p])][i][j];
|
||||
}
|
||||
output[offset + j] = static_cast<OutputType>(
|
||||
std::max<int>(0, std::min<int>(127, sum)));
|
||||
}
|
||||
|
@ -194,18 +175,13 @@ namespace Eval::NNUE {
|
|||
// Calculate cumulative value without using difference calculation
|
||||
void RefreshAccumulator(const Position& pos) const {
|
||||
auto& accumulator = pos.state()->accumulator;
|
||||
for (IndexType i = 0; i < kRefreshTriggers.size(); ++i) {
|
||||
IndexType i = 0;
|
||||
Features::IndexList active_indices[2];
|
||||
RawFeatures::AppendActiveIndices(pos, kRefreshTriggers[i],
|
||||
active_indices);
|
||||
for (Color perspective : { WHITE, BLACK }) {
|
||||
if (i == 0) {
|
||||
std::memcpy(accumulator.accumulation[perspective][i], biases_,
|
||||
kHalfDimensions * sizeof(BiasType));
|
||||
} else {
|
||||
std::memset(accumulator.accumulation[perspective][i], 0,
|
||||
kHalfDimensions * sizeof(BiasType));
|
||||
}
|
||||
for (const auto index : active_indices[perspective]) {
|
||||
const IndexType offset = kHalfDimensions * index;
|
||||
|
||||
|
@ -248,7 +224,6 @@ namespace Eval::NNUE {
|
|||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
accumulator.computed_accumulation = true;
|
||||
accumulator.computed_score = false;
|
||||
|
@ -258,7 +233,7 @@ namespace Eval::NNUE {
|
|||
void UpdateAccumulator(const Position& pos) const {
|
||||
const auto prev_accumulator = pos.state()->previous->accumulator;
|
||||
auto& accumulator = pos.state()->accumulator;
|
||||
for (IndexType i = 0; i < kRefreshTriggers.size(); ++i) {
|
||||
IndexType i = 0;
|
||||
Features::IndexList removed_indices[2], added_indices[2];
|
||||
bool reset[2];
|
||||
RawFeatures::AppendChangedIndices(pos, kRefreshTriggers[i],
|
||||
|
@ -282,13 +257,8 @@ namespace Eval::NNUE {
|
|||
#endif
|
||||
|
||||
if (reset[perspective]) {
|
||||
if (i == 0) {
|
||||
std::memcpy(accumulator.accumulation[perspective][i], biases_,
|
||||
kHalfDimensions * sizeof(BiasType));
|
||||
} else {
|
||||
std::memset(accumulator.accumulation[perspective][i], 0,
|
||||
kHalfDimensions * sizeof(BiasType));
|
||||
}
|
||||
} else {// Difference calculation for the feature amount changed from 1 to 0
|
||||
std::memcpy(accumulator.accumulation[perspective][i],
|
||||
prev_accumulator.accumulation[perspective][i],
|
||||
|
@ -355,7 +325,6 @@ namespace Eval::NNUE {
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
accumulator.computed_accumulation = true;
|
||||
accumulator.computed_score = false;
|
||||
|
|
Loading…
Add table
Reference in a new issue