1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00

Remove some code unused in the current network architecture

No functional change.
This commit is contained in:
Dariusz Orzechowski 2020-07-30 01:47:01 +02:00
parent 21d43e9500
commit ffae13edff
5 changed files with 97 additions and 266 deletions

View file

@ -21,48 +21,6 @@ namespace Eval::NNUE::Features {
kValues = {{First, Remaining...}};
};
template <typename T, T First, T... Remaining>
constexpr std::array<T, sizeof...(Remaining) + 1>
CompileTimeList<T, First, Remaining...>::kValues;
template <typename T>
struct CompileTimeList<T> {
static constexpr bool Contains(T /*value*/) {
return false;
}
static constexpr std::array<T, 0> kValues = {{}};
};
// Class template that adds to the beginning of the list
template <typename T, typename ListType, T Value>
struct AppendToList;
template <typename T, T... Values, T AnotherValue>
struct AppendToList<T, CompileTimeList<T, Values...>, AnotherValue> {
using Result = CompileTimeList<T, AnotherValue, Values...>;
};
// Class template for adding to a sorted, unique list
template <typename T, typename ListType, T Value>
struct InsertToSet;
template <typename T, T First, T... Remaining, T AnotherValue>
struct InsertToSet<T, CompileTimeList<T, First, Remaining...>, AnotherValue> {
using Result = std::conditional_t<
CompileTimeList<T, First, Remaining...>::Contains(AnotherValue),
CompileTimeList<T, First, Remaining...>,
std::conditional_t<(AnotherValue <First),
CompileTimeList<T, AnotherValue, First, Remaining...>,
typename AppendToList<T, typename InsertToSet<
T, CompileTimeList<T, Remaining...>, AnotherValue>::Result,
First>::Result>>;
};
template <typename T, T Value>
struct InsertToSet<T, CompileTimeList<T>, Value> {
using Result = CompileTimeList<T, Value>;
};
// Base class of feature set
template <typename Derived>
class FeatureSetBase {
@ -91,22 +49,10 @@ namespace Eval::NNUE::Features {
for (Color perspective : { WHITE, BLACK }) {
reset[perspective] = false;
switch (trigger) {
case TriggerEvent::kNone:
break;
case TriggerEvent::kFriendKingMoved:
reset[perspective] =
dp.pieceId[0] == PIECE_ID_KING + perspective;
break;
case TriggerEvent::kEnemyKingMoved:
reset[perspective] =
dp.pieceId[0] == PIECE_ID_KING + ~perspective;
break;
case TriggerEvent::kAnyKingMoved:
reset[perspective] = dp.pieceId[0] >= PIECE_ID_KING;
break;
case TriggerEvent::kAnyPieceMoved:
reset[perspective] = true;
break;
default:
assert(false);
break;
@ -123,80 +69,6 @@ namespace Eval::NNUE::Features {
}
};
// Class template that represents the feature set
// do internal processing in reverse order of template arguments in order to linearize the amount of calculation at runtime
template <typename FirstFeatureType, typename... RemainingFeatureTypes>
class FeatureSet<FirstFeatureType, RemainingFeatureTypes...> :
public FeatureSetBase<
FeatureSet<FirstFeatureType, RemainingFeatureTypes...>> {
private:
using Head = FirstFeatureType;
using Tail = FeatureSet<RemainingFeatureTypes...>;
public:
// Hash value embedded in the evaluation function file
static constexpr std::uint32_t kHashValue =
Head::kHashValue ^ (Tail::kHashValue << 1) ^ (Tail::kHashValue >> 31);
// number of feature dimensions
static constexpr IndexType kDimensions =
Head::kDimensions + Tail::kDimensions;
// The maximum value of the number of indexes whose value is 1 at the same time among the feature values
static constexpr IndexType kMaxActiveDimensions =
Head::kMaxActiveDimensions + Tail::kMaxActiveDimensions;
// List of timings to perform all calculations instead of difference calculation
using SortedTriggerSet = typename InsertToSet<TriggerEvent,
typename Tail::SortedTriggerSet, Head::kRefreshTrigger>::Result;
static constexpr auto kRefreshTriggers = SortedTriggerSet::kValues;
// Get the feature quantity name
static std::string GetName() {
return std::string(Head::kName) + "+" + Tail::GetName();
}
private:
// Get a list of indices with a value of 1 among the features
template <typename IndexListType>
static void CollectActiveIndices(
const Position& pos, const TriggerEvent trigger, const Color perspective,
IndexListType* const active) {
Tail::CollectActiveIndices(pos, trigger, perspective, active);
if (Head::kRefreshTrigger == trigger) {
const auto start = active->size();
Head::AppendActiveIndices(pos, perspective, active);
for (auto i = start; i < active->size(); ++i) {
(*active)[i] += Tail::kDimensions;
}
}
}
// Get a list of indices whose values have changed from the previous one in the feature quantity
template <typename IndexListType>
static void CollectChangedIndices(
const Position& pos, const TriggerEvent trigger, const Color perspective,
IndexListType* const removed, IndexListType* const added) {
Tail::CollectChangedIndices(pos, trigger, perspective, removed, added);
if (Head::kRefreshTrigger == trigger) {
const auto start_removed = removed->size();
const auto start_added = added->size();
Head::AppendChangedIndices(pos, perspective, removed, added);
for (auto i = start_removed; i < removed->size(); ++i) {
(*removed)[i] += Tail::kDimensions;
}
for (auto i = start_added; i < added->size(); ++i) {
(*added)[i] += Tail::kDimensions;
}
}
}
// Make the base class and the class template that recursively uses itself a friend
friend class FeatureSetBase<FeatureSet>;
template <typename... FeatureTypes>
friend class FeatureSet;
};
// Class template that represents the feature set
// Specialization with one template argument
template <typename FeatureType>

View file

@ -17,19 +17,12 @@ namespace Eval::NNUE::Features {
// Type of timing to perform all calculations instead of difference calculation
enum class TriggerEvent {
kNone, // Calculate the difference whenever possible
kFriendKingMoved, // calculate all when own king moves
kEnemyKingMoved, // do all calculations when enemy king moves
kAnyKingMoved, // do all calculations if either king moves
kAnyPieceMoved, // always do all calculations
kFriendKingMoved // calculate all when own king moves
};
// turn side or other side
enum class Side {
kFriend, // turn side
kEnemy, // opponent
kFriend // turn side
};
} // namespace Eval::NNUE::Features

View file

@ -70,6 +70,5 @@ namespace Eval::NNUE::Features {
}
template class HalfKP<Side::kFriend>;
template class HalfKP<Side::kEnemy>;
} // namespace Eval::NNUE::Features

View file

@ -26,9 +26,7 @@ namespace Eval::NNUE::Features {
// The maximum value of the number of indexes whose value is 1 at the same time among the feature values
static constexpr IndexType kMaxActiveDimensions = PIECE_ID_KING;
// Timing of full calculation instead of difference calculation
static constexpr TriggerEvent kRefreshTrigger =
(AssociatedKing == Side::kFriend) ?
TriggerEvent::kFriendKingMoved : TriggerEvent::kEnemyKingMoved;
static constexpr TriggerEvent kRefreshTrigger = TriggerEvent::kFriendKingMoved;
// Get a list of indices with a value of 1 among the features
static void AppendActiveIndices(const Position& pos, Color perspective,

View file

@ -121,12 +121,6 @@ namespace Eval::NNUE {
(&reinterpret_cast<const __m256i*>(
accumulation[perspectives[p]][0])[j * 2 + 1]);
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum0 = _mm256_add_epi16(sum0, reinterpret_cast<const __m256i*>(
accumulation[perspectives[p]][i])[j * 2 + 0]);
sum1 = _mm256_add_epi16(sum1, reinterpret_cast<const __m256i*>(
accumulation[perspectives[p]][i])[j * 2 + 1]);
}
#if defined(__MINGW32__) || defined(__MINGW64__)
_mm256_storeu_si256
@ -145,12 +139,6 @@ namespace Eval::NNUE {
accumulation[perspectives[p]][0])[j * 2 + 0]);
__m128i sum1 = _mm_load_si128(&reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][0])[j * 2 + 1]);
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum0 = _mm_add_epi16(sum0, reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][i])[j * 2 + 0]);
sum1 = _mm_add_epi16(sum1, reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][i])[j * 2 + 1]);
}
const __m128i packedbytes = _mm_packs_epi16(sum0, sum1);
_mm_store_si128(&out[j],
@ -169,19 +157,12 @@ namespace Eval::NNUE {
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t sum = reinterpret_cast<const int16x8_t*>(
accumulation[perspectives[p]][0])[j];
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum = vaddq_s16(sum, reinterpret_cast<const int16x8_t*>(
accumulation[perspectives[p]][i])[j]);
}
out[j] = vmax_s8(vqmovn_s16(sum), kZero);
}
#else
for (IndexType j = 0; j < kHalfDimensions; ++j) {
BiasType sum = accumulation[static_cast<int>(perspectives[p])][0][j];
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum += accumulation[static_cast<int>(perspectives[p])][i][j];
}
output[offset + j] = static_cast<OutputType>(
std::max<int>(0, std::min<int>(127, sum)));
}
@ -194,18 +175,13 @@ namespace Eval::NNUE {
// Calculate cumulative value without using difference calculation
void RefreshAccumulator(const Position& pos) const {
auto& accumulator = pos.state()->accumulator;
for (IndexType i = 0; i < kRefreshTriggers.size(); ++i) {
IndexType i = 0;
Features::IndexList active_indices[2];
RawFeatures::AppendActiveIndices(pos, kRefreshTriggers[i],
active_indices);
for (Color perspective : { WHITE, BLACK }) {
if (i == 0) {
std::memcpy(accumulator.accumulation[perspective][i], biases_,
kHalfDimensions * sizeof(BiasType));
} else {
std::memset(accumulator.accumulation[perspective][i], 0,
kHalfDimensions * sizeof(BiasType));
}
for (const auto index : active_indices[perspective]) {
const IndexType offset = kHalfDimensions * index;
@ -248,7 +224,6 @@ namespace Eval::NNUE {
}
}
}
accumulator.computed_accumulation = true;
accumulator.computed_score = false;
@ -258,7 +233,7 @@ namespace Eval::NNUE {
void UpdateAccumulator(const Position& pos) const {
const auto prev_accumulator = pos.state()->previous->accumulator;
auto& accumulator = pos.state()->accumulator;
for (IndexType i = 0; i < kRefreshTriggers.size(); ++i) {
IndexType i = 0;
Features::IndexList removed_indices[2], added_indices[2];
bool reset[2];
RawFeatures::AppendChangedIndices(pos, kRefreshTriggers[i],
@ -282,13 +257,8 @@ namespace Eval::NNUE {
#endif
if (reset[perspective]) {
if (i == 0) {
std::memcpy(accumulator.accumulation[perspective][i], biases_,
kHalfDimensions * sizeof(BiasType));
} else {
std::memset(accumulator.accumulation[perspective][i], 0,
kHalfDimensions * sizeof(BiasType));
}
} else {// Difference calculation for the feature amount changed from 1 to 0
std::memcpy(accumulator.accumulation[perspective][i],
prev_accumulator.accumulation[perspective][i],
@ -355,7 +325,6 @@ namespace Eval::NNUE {
}
}
}
}
accumulator.computed_accumulation = true;
accumulator.computed_score = false;