1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 16:53:09 +00:00
Commit graph

162 commits

Author SHA1 Message Date
Linmiao Xu
70ba9de85c Update NNUE architecture to SFNNv8: L1-2560 nn-ac1dbea57aa3.nnue
Creating this net involved:
- a 6-stage training process from scratch. The datasets used in stages 1-5 were fully minimized.
- permuting L1 weights with https://github.com/official-stockfish/nnue-pytorch/pull/254

A strong epoch after each training stage was chosen for the next. The 6 stages were:

```
1. 400 epochs, lambda 1.0, default LR and gamma
   UHOx2-wIsRight-multinet-dfrc-n5000 (135G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack

2. 800 epochs, end-lambda 0.75, LR 4.375e-4, gamma 0.995, skip 12
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack

3. 800 epochs, end-lambda 0.725, LR 4.375e-4, gamma 0.995, skip 20
   leela93-v1-dfrc99-v2-T78juntosepT80jan-v6dd-T78janfebT79aprT80aprmay.min.binpack
     leela93-filt-v1.min.binpack
     dfrc99-16tb7p-filt-v2.min.binpack
     test78-juntosep2022-16tb7p-filter-v6-dd.min-mar2023.binpack
     test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.binpack
     test78-janfeb2022-16tb7p.min.binpack
     test79-apr2022-16tb7p.min.binpack
     test80-apr2022-16tb7p.min.binpack
     test80-may2022-16tb7p.min.binpack

4. 800 epochs, end-lambda 0.7, LR 4.375e-4, gamma 0.995, skip 24
   leela96-dfrc99-v2-T78juntosepT79mayT80junsepnovjan-v6dd-T80mar23-v6-T60novdecT77decT78aprmayT79aprT80may23.min.binpack
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-filt-v2.min.binpack
     test78-juntosep2022-16tb7p-filter-v6-dd.min-mar2023.binpack
     test79-may2022-16tb7p.filter-v6-dd.min.binpack
     test80-jun2022-16tb7p.filter-v6-dd.min.binpack
     test80-sep2022-16tb7p.filter-v6-dd.min.binpack
     test80-nov2022-16tb7p.filter-v6-dd.min.binpack
     test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.binpack
     test80-mar2023-2tb7p.v6-sk16.min.binpack
     test60-novdec2021-16tb7p.min.binpack
     test77-dec2021-16tb7p.min.binpack
     test78-aprmay2022-16tb7p.min.binpack
     test79-apr2022-16tb7p.min.binpack
     test80-may2023-2tb7p.min.binpack

5. 960 epochs, end-lambda 0.7, LR 4.375e-4, gamma 0.995, skip 28
   Increased max-epoch to 960 near the end of the first 800 epochs
   5af11540bbfe dataset: https://github.com/official-stockfish/Stockfish/pull/4635

6. 1000 epochs, end-lambda 0.7, LR 4.375e-4, gamma 0.995, skip 28
   Increased max-epoch to 1000 near the end of the first 800 epochs
   1ee1aba5ed dataset: https://github.com/official-stockfish/Stockfish/pull/4782
```

L1 weights permuted with:
```bash
python3 serialize.py $nnue $nnue_permuted \
  --features=HalfKAv2_hm \
  --ft_optimize \
  --ft_optimize_data=/data/fishpack32.binpack \
  --ft_optimize_count=10000
```

Speed measurements from 100 bench runs at depth 13 with profile-build x86-64-avx2:
```
sf_base =  1329051 +/-   2224 (95%)
sf_test =  1163344 +/-   2992 (95%)
diff    =  -165706 +/-   4913 (95%)
speedup = -12.46807% +/- 0.370% (95%)
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move (vs. L1-2048 nn-1ee1aba5ed4c.nnue)
ep959 : 16.2 +/- 2.3

Failed 10+0.1 STC:
https://tests.stockfishchess.org/tests/view/6501beee2cd016da89abab21
LLR: -2.92 (-2.94,2.94) <0.00,2.00>
Total: 13184 W: 3285 L: 3535 D: 6364
Ptnml(0-2): 85, 1662, 3334, 1440, 71

Failed 180+1.8 VLTC:
https://tests.stockfishchess.org/tests/view/6505cf9a72620bc881ea908e
LLR: -2.94 (-2.94,2.94) <0.00,2.00>
Total: 64248 W: 16224 L: 16374 D: 31650
Ptnml(0-2): 26, 6788, 18640, 6650, 20

Passed 60+0.6 th 8 VLTC SMP (STC bounds):
https://tests.stockfishchess.org/tests/view/65084a4618698b74c2e541dc
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 90630 W: 23372 L: 23033 D: 44225
Ptnml(0-2): 13, 8490, 27968, 8833, 11

Passed 60+0.6 th 8 VLTC SMP:
https://tests.stockfishchess.org/tests/view/6501d45d2cd016da89abacdb
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 137804 W: 35764 L: 35276 D: 66764
Ptnml(0-2): 31, 13006, 42326, 13522, 17

closes https://github.com/official-stockfish/Stockfish/pull/4795

bench 1246812
2023-09-22 19:26:16 +02:00
Sebastian Buchwald
952740b36c Let CI check C++ includes
The commit adds a CI workflow that uses the included-what-you-use (IWYU)
tool to check for missing or superfluous includes in .cpp files and
their corresponding .h files. This means that some .h files (especially
in the nnue folder) are not checked yet.

The CI setup looks like this:
- We build IWYU from source to include some yet unreleased fixes.
  This IWYU version targets LLVM 17. Thus, we get the latest release
  candidate of LLVM 17 from LLVM's nightly packages.
- The Makefile now has an analyze target that just build the object
  files (without linking)
- The CI uses the analyze target with the IWYU tool as compiler to
  analyze the compiled .cpp file and its corresponding .h file.
- If IWYU suggests a change the build fails (-Xiwyu --error).
- To avoid false positives we use LLVM's libc++ as standard library
- We have a custom mappings file that adds some mappings that are
  missing in IWYU's default mappings

We also had to add one IWYU pragma to prevent a false positive in
movegen.h.

https://github.com/official-stockfish/Stockfish/pull/4783

No functional change
2023-09-22 19:12:53 +02:00
Linmiao Xu
3d1b067d85 Update default net to nn-1ee1aba5ed4c.nnue
Created by retraining the master net on a dataset composed by:
- adding Leela data from T60 jul-dec 2020, T77 nov 2021, T80 jun-jul 2023
- deduplicating and unminimizing parts of the dataset before interleaving

Trained initially with max epoch 800, then increased near the end of training
twice. First to 960, then 1200. After training, post-processing involved:
- greedy permuting L1 weights with https://github.com/official-stockfish/Stockfish/pull/4620
- greedy 2- and 3- cycle permuting with https://github.com/official-stockfish/Stockfish/pull/4640

  python3 easy_train.py \
    --experiment-name 2048-retrain-S6-sk28 \
    --training-dataset /data/S6.binpack \
    --early-fen-skipping 28 \
    --start-from-engine-test-net True \
    --max_epoch 1200 \
    --lr 4.375e-4 \
    --gamma 0.995 \
    --start-lambda 1.0 \
    --end-lambda 0.7 \
    --tui False \
    --seed $RANDOM \
    --gpus 0

In the list of datasets below, periods in the filename represent the sequence of
steps applied to arrive at the particular binpack. For example:

test77-dec2021-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
1. test77 dec2021 data rescored with 16 TB of syzygy tablebases during data conversion
2. filtered with csv_filter_v6_dd.py - v6 filtering and deduplication in one step
3. minimized with the original mar2023 implementation of `minimize_binpack` in
   the tools branch
4. unminimized by removing all positions with score == 32002 (`VALUE_NONE`)

Binpacks were:
- filtered with: https://github.com/linrock/nnue-data
- unminimized with: https://github.com/linrock/Stockfish/tree/tools-unminify
- deduplicated with: https://github.com/linrock/Stockfish/tree/tools-dd

  DATASETS=(
    leela96-filt-v2.min.unminimized.binpack
    dfrc99-16tb7p-eval-filt-v2.min.unminimized.binpack

    # most of the 0dd1cebea57 v6-dd dataset (without test80-jul2022)
    # https://github.com/official-stockfish/Stockfish/pull/4606
    test60-novdec2021-12tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test77-dec2021-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test78-jantomay2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test78-juntosep2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test79-apr2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test79-may2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-jun2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-aug2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-sep2022-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-oct2022-16tb7p.filter-v6-dd.min.binpack
    test80-nov2022-16tb7p.filter-v6-dd.min.binpack
    test80-jan2023-3of3-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack
    test80-feb2023-16tb7p.filter-v6-dd.min-mar2023.unminimized.binpack

    # older Leela data, recently converted
    test60-octnovdec2020-2tb7p.min.unminimized.binpack
    test60-julaugsep2020-2tb7p.min.binpack
    test77-nov2021-2tb7p.min.dd.binpack

    # newer Leela data
    test80-mar2023-2tb7p.min.unminimized.binpack
    test80-apr2023-2tb7p.filter-v6-sk16.min.unminimized.binpack
    test80-may2023-2tb7p.min.dd.binpack
    test80-jun2023-2tb7p.min.binpack
    test80-jul2023-2tb7p.binpack
  )
  python3 interleave_binpacks.py ${DATASETS[@]} /data/S6.binpack

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch1059 : 2.7 +/- 1.6

Passed STC:
https://tests.stockfishchess.org/tests/view/64fc8d705dab775b5359db42
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 168352 W: 43216 L: 42704 D: 82432
Ptnml(0-2): 599, 19672, 43134, 20160, 611

Passed LTC:
https://tests.stockfishchess.org/tests/view/64fd44a75dab775b5359f065
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 154194 W: 39436 L: 38881 D: 75877
Ptnml(0-2): 78, 16577, 43238, 17120, 84

closes https://github.com/official-stockfish/Stockfish/pull/4782

Bench: 1603079
2023-09-11 22:37:39 +02:00
Stéphane Nicolet
b25d68f6ee Introduce simple_eval() for lazy evaluations
This patch implements the pure materialistic evaluation called simple_eval()
to gain a speed-up during Stockfish search.

We use the so-called lazy evaluation trick: replace the accurate but slow
NNUE network evaluation by the super-fast simple_eval() if the position
seems to be already won (high material advantage). To guard against some
of the most obvious blunders introduced by this idea, this patch uses the
following features which will raise the lazy evaluation threshold in some
situations:

- avoid lazy evals on shuffling branches in the search tree
- avoid lazy evals if the position at root already has a material imbalance
- avoid lazy evals if the search value at root is already winning/losing.

Moreover, we add a small random noise to the simple_eval() term. This idea
(stochastic mobility in the minimax tree) was worth about 200 Elo in the pure
simple_eval() player on Lichess.

Overall, the current implementation in this patch evaluates about 2% of the
leaves in the search tree lazily.

--------------------------------------------

STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 60352 W: 15585 L: 15234 D: 29533
Ptnml(0-2): 216, 6906, 15578, 7263, 213
https://tests.stockfishchess.org/tests/view/64f1d9bcbd9967ffae366209

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 35106 W: 8990 L: 8678 D: 17438
Ptnml(0-2): 14, 3668, 9887, 3960, 24
https://tests.stockfishchess.org/tests/view/64f25204f5b0c54e3f04c0e7

verification run at VLTC:
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 74362 W: 19088 L: 18716 D: 36558
Ptnml(0-2): 6, 7226, 22348, 7592, 9
https://tests.stockfishchess.org/tests/view/64f2ecdbf5b0c54e3f04d3ae

All three tests above were run with adjudication off, we also verified that
there was no regression on matetracker (thanks Disservin!).

----------------------------------------------

closes https://github.com/official-stockfish/Stockfish/pull/4771

Bench: 1393714
2023-09-03 09:28:16 +02:00
Disservin
3c0e86a91e Cleanup includes
Reorder a few includes, include "position.h" where it was previously missing
and apply include-what-you-use suggestions. Also make the order of the includes
consistent, in the following way:

1. Related header (for .cpp files)
2. A blank line
3. C/C++ headers
4. A blank line
5. All other header files

closes https://github.com/official-stockfish/Stockfish/pull/4763
fixes https://github.com/official-stockfish/Stockfish/issues/4707

No functional change
2023-09-03 08:24:51 +02:00
Sebastian Buchwald
f972947492 Cleanup code after removal of classical evaluation
This includes the following changes:
- Remove declaration of removed global variable
- Adapt string that mentions removed UCI option

closes https://github.com/official-stockfish/Stockfish/pull/4675

No functional change
2023-07-13 08:19:37 +02:00
Linmiao Xu
e699fee513 Update default net to nn-c38c3d8d3920.nnue
This was a later epoch from the same experiment that led to the
previous master net. After training, it was prepared the same way:

1. greedy permuting L1 weights with https://github.com/official-stockfish/Stockfish/pull/4620
2. leb128 compression with https://github.com/glinscott/nnue-pytorch/pull/251
3. greedy 2- and 3- cycle permuting with https://github.com/official-stockfish/Stockfish/pull/4640

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch739.nnue : 20.2 +/- 1.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64a050b33ee09aa549c4e4c8
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 195552 W: 49977 L: 49430 D: 96145
Ptnml(0-2): 556, 22775, 50607, 23242, 596

Passed LTC:
https://tests.stockfishchess.org/tests/view/64a127bd3ee09aa549c4f60c
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 235452 W: 60327 L: 59609 D: 115516
Ptnml(0-2): 119, 25173, 66426, 25887, 121

closes https://github.com/official-stockfish/Stockfish/pull/4666

bench 2427629
2023-07-06 23:03:58 +02:00
Linmiao Xu
915532181f Update NNUE architecture to SFNNv7 with larger L1 size of 2048
Creating this net involved:
- a 5-step training process from scratch
- greedy permuting L1 weights with https://github.com/official-stockfish/Stockfish/pull/4620
- leb128 compression with https://github.com/glinscott/nnue-pytorch/pull/251
- greedy 2- and 3- cycle permuting with https://github.com/official-stockfish/Stockfish/pull/4640

The 5 training steps were:

1. 400 epochs, lambda 1.0, lr 9.75e-4
   UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9.binpack (178G)
     nodes5000pv2_UHO.binpack
     data_pv-2_diff-100_nodes-5000.binpack
     wrongIsRight_nodes5000pv2.binpack
     multinet_pv-2_diff-100_nodes-5000.binpack
     dfrc_n5000.binpack
     large_gensfen_multipvdiff_100_d9.binpack
   ep399 chosen as start model for step2

2. 800 epochs, end-lambda 0.75, skip 16
   LeelaFarseer-T78juntoaugT79marT80dec.binpack (141G)
     T60T70wIsRightFarseerT60T74T75T76.binpack
     test78-junjulaug2022-16tb7p.no-db.min.binpack
     test79-mar2022-16tb7p.no-db.min.binpack
     test80-dec2022-16tb7p.no-db.min.binpack
   ep559 chosen as start model for step3

3. 800 epochs, end-lambda 0.725, skip 20
   leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr.binpack (223G)
     leela96-filt-v2.min.binpack
     dfrc99-16tb7p-eval-filt-v2.min.binpack
     test80-dec2022-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-jan2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-feb2023-16tb7p-filter-v6-sk20.min-mar2023.binpack
     test80-mar2023-2tb7p-filter-v6.min.binpack
     test77-dec2021-16tb7p.no-db.min.binpack
     test78-janfeb2022-16tb7p.no-db.min.binpack
     test79-apr2022-16tb7p.no-db.min.binpack
   ep499 chosen as start model for step4

4. 800 epochs, end-lambda 0.7, skip 24
   0dd1cebea57 dataset https://github.com/official-stockfish/Stockfish/pull/4606
   ep599 chosen as start model for step5

5. 800 epochs, end-lambda 0.7, skip 28
   same dataset as step4
   ep619 became nn-1b951f8b449d.nnue

For the final step5 training:

python3 easy_train.py \
  --experiment-name L1-2048-S5-sameData-sk28-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --early-fen-skipping 28 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-2048 \
  --engine-test-branch linrock/Stockfish/L1-2048 \
  --start-from-engine-test-net False \
  --start-from-model /data/experiments/experiment_L1-2048-S4-0dd1cebea57-shuffled-S3-leela96-dfrc99-v2-T80dectofeb-sk20-mar-v6-T77decT78janfebT79apr-sk20-S2-LeelaFarseerT78T79T80-ep399-S1-UHOx2-wIsRight-multinet-dfrc-n5000-largeGensfen-d9/training/run_0/nn-epoch599.nnue
  --max_epoch 800 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

SF training data components for the step1 dataset:
https://drive.google.com/drive/folders/1yLCEmioC3Xx9KQr4T7uB6GnLm5icAYGU

Leela training data for steps 2-5 can be found at:
https://robotmoon.com/nnue-training-data/

Due to larger L1 size and slower inference, the speed penalty loses elo
at STC. Measurements from 100 bench runs at depth 13 with x86-64-modern
on Intel Core i5-1038NG7 2.00GHz:

sf_base =  1240730  +/-   3443 (95%)
sf_test =  1153341  +/-   2832 (95%)
diff    =   -87388  +/-   1616 (95%)
speedup = -7.04330% +/- 0.130% (95%)

Local elo at 25k nodes per move (vs. L1-1536 nn-fdc1d0fe6455.nnue):
nn-epoch619.nnue : 21.1 +/- 3.2

Failed STC:
https://tests.stockfishchess.org/tests/view/6498ee93dc7002ce609cf979
LLR: -2.95 (-2.94,2.94) <0.00,2.00>
Total: 11680 W: 3058 L: 3299 D: 5323
Ptnml(0-2): 44, 1422, 3149, 1181, 44

LTC:
https://tests.stockfishchess.org/tests/view/649b32f5dc7002ce609d20cf
Elo: 0.68 ± 1.5 (95%) LOS: 80.5%
Total: 40000 W: 10887 L: 10809 D: 18304
Ptnml(0-2): 36, 3938, 11958, 4048, 20
nElo: 1.50 ± 3.4 (95%) PairsRatio: 1.02

Passed VLTC 180+1.8:
https://tests.stockfishchess.org/tests/view/64992b43dc7002ce609cfd20
LLR: 3.06 (-2.94,2.94) <0.00,2.00>
Total: 38086 W: 10612 L: 10338 D: 17136
Ptnml(0-2): 9, 3316, 12115, 3598, 5

Passed VLTC SMP 60+0.6 th 8:
https://tests.stockfishchess.org/tests/view/649a21fedc7002ce609d0c7d
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 38936 W: 11091 L: 10820 D: 17025
Ptnml(0-2): 1, 2948, 13305, 3207, 7

closes https://github.com/official-stockfish/Stockfish/pull/4646

Bench: 2505168
2023-07-01 13:34:30 +02:00
Daniel Monroe
ef94f77f8c Update default net to nn-a3d1bfca1672.nnue
faster permutation of master net weights

Activation data taken from https://drive.google.com/drive/folders/1Ec9YuuRx4N03GPnVPoQOW70eucOKngQe?usp=sharing
Permutation found using 836387a0e5/ftperm.py
See also https://github.com/glinscott/nnue-pytorch/pull/254

The algorithm greedily selects 2- and 3-cycles that can be permuted to increase the number of runs of zeroes. The percent of zero runs from the master net increased from 68.46 to 70.11 from 2-cycles and only increased to 70.32 when considering 3-cycles. Interestingly, allowing both halves of L1 to intermix when creating zero runs can give another 0.5% zero-run density increase with this method.

Measured speedup:

```
CPU: 16 x AMD Ryzen 9 3950X 16-Core Processor
Result of 50 runs

base (./stockfish.master ) = 1561556 +/- 5439
test (./stockfish.patch ) = 1575788 +/- 5427
diff = +14231 +/- 2636

speedup = +0.0091
P(speedup > 0) = 1.0000
```

closes https://github.com/official-stockfish/Stockfish/pull/4640

No functional change
2023-07-01 12:59:28 +02:00
Linmiao Xu
a49b3ba7ed Update default net to nn-5af11540bbfe.nnue
Created by retraining the sparsified master net (nn-cd2ff4716c34.nnue) on
a 100% minified dataset including Leela transformers data from T80 may2023.

Weights permuted with the exact methods and code in:
https://github.com/official-stockfish/Stockfish/pull/4620

LEB128 compression done with the new serialize.py param in:
https://github.com/glinscott/nnue-pytorch/pull/251

Initially trained with max epoch 800. Around epoch 780, training was paused
and max epoch raised to 960.

python3 easy_train.py \
  --experiment-name L1-1536-sparse-master-retrain \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack \
  --early-fen-skipping 27 \
  --start-from-engine-test-net True \
  --max_epoch 960 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --tui False \
  --seed $RANDOM \
  --gpus 0

For preparing the training dataset (interleaved size 328G):

python3 interleave_binpacks.py \
  leela96-filt-v2.min.binpack \
  dfrc99-16tb7p-eval-filt-v2.min.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test77-dec2021-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test78-juntosep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-apr2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test79-may2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jul2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-oct2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-nov2022-16tb7p-filter-v6-dd.min.binpack \
  filt-v6-dd-min/test80-jan2023-16tb7p-filter-v6-dd.min.binpack \
  test80-2023/test80-feb2023-16tb7p-no-db.min.binpack \
  test80-2023/test80-mar2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-apr2023-2tb7p-no-db.min.binpack \
  test80-2023/test80-may2023-2tb7p-no-db.min.binpack \
  /data/leela96-dfrc99-v2-T60novdecT77decT78jantosepT79aprmayT80juntonovjan-v6dd-T80febtomay2023.min.binpack

Minified binpacks and Leela T80 training data from 2023 available at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch879.nnue : 3.9 +/- 5.7

Passed STC:
https://tests.stockfishchess.org/tests/view/64928c1bdc7002ce609c7690
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 72000 W: 19242 L: 18889 D: 33869
Ptnml(0-2): 182, 7787, 19716, 8126, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/64930a37dc7002ce609c82e3
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 54552 W: 14978 L: 14647 D: 24927
Ptnml(0-2): 23, 5123, 16650, 5460, 20

closes https://github.com/official-stockfish/Stockfish/pull/4635

bench 2593605
2023-06-22 10:33:19 +02:00
maxim
a46087ee30 Compressed network parameters
Implemented LEB128 (de)compression for the feature transformer.
Reduces embedded network size from 70 MiB to 39 Mib.

The new nn-78bacfcee510.nnue corresponds to the master net compressed.

closes https://github.com/official-stockfish/Stockfish/pull/4617

No functional change
2023-06-19 21:37:23 +02:00
AndrovT
32d3284df5 Permute master net weights to increase sparsity
Activation data collection using ac468039ab run as

bench 16 1 13 varied_1000.epd depth NNUE log.bin

on FENs from https://gist.github.com/AndrovT/7eae6918eb50764227e2bafe7938953c.

Permutation found using https://gist.github.com/AndrovT/359c831b7223c637e9156b01eb96949e.
Uses a greedy algorithm that goes sequentially through the output positions and
chooses a neuron for that position such that the number of nonzero quartets is the smallest.

Net weights permuted using https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.

Benchmark:

Result of 100 runs of 'bench 16 1 13 default depth NNUE'
========================================================
base (...kfish-master) =     885869  +/- 7395
test (./stockfish    ) =     895885  +/- 7368
diff                   =     +10016  +/- 2984

speedup        = +0.0113
P(speedup > 0) =  1.0000

Passed STC:
https://tests.stockfishchess.org/tests/view/648866c4713491385c804728
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 126784 W: 34003 L: 33586 D: 59195
Ptnml(0-2): 283, 13001, 36437, 13358, 313

closes https://github.com/official-stockfish/Stockfish/pull/4620

No functional change.
2023-06-14 18:36:39 +02:00
AndrovT
38e61663d8 Use block sparse input for the first layer.
Use block sparse input for the first fully connected layer on architectures with at least SSSE3.

Depending on the CPU architecture, this yields a speedup of up to 10%, e.g.

```
Result of 100 runs of 'bench 16 1 13 default depth NNUE'

base (...ockfish-base) =     959345  +/- 7477
test (...ckfish-patch) =    1054340  +/- 9640
diff                   =     +94995  +/- 3999

speedup        = +0.0990
P(speedup > 0) =  1.0000

CPU: 8 x AMD Ryzen 7 5700U with Radeon Graphics
Hyperthreading: on
```

Passed STC:
https://tests.stockfishchess.org/tests/view/6485aa0965ffe077ca12409c
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 8864 W: 2479 L: 2223 D: 4162
Ptnml(0-2): 13, 829, 2504, 1061, 25

This commit includes a net with reordered weights, to increase the likelihood of block sparse inputs,
but otherwise equivalent to the previous master net (nn-ea57bea57e32.nnue).

Activation data collected with https://github.com/AndrovT/Stockfish/tree/log-activations, running bench 16 1 13 varied_1000.epd depth NNUE on this data. Net parameters permuted with https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.

closes https://github.com/official-stockfish/Stockfish/pull/4612

No functional change
2023-06-12 20:41:27 +02:00
Linmiao Xu
932f5a2d65 Update default net to nn-ea57bea57e32.nnue
Created by retraining an earlier epoch (ep659) of the experiment that led to the first SFNNv6 net:
- First retrained on the nn-0dd1cebea573 dataset
- Then retrained with skip 20 on a smaller dataset containing unfiltered Leela data
- And then retrained again with skip 27 on the nn-0dd1cebea573 dataset

The equivalent 7-step training sequence from scratch that led here was:

1. max-epoch 400, lambda 1.0, constant LR 9.75e-4, T79T77-filter-v6-dd.min.binpack
   ep379 chosen for retraining in step2

2. max-epoch 800, end-lambda 0.75, T60T70wIsRightFarseerT60T74T75T76.binpack
   ep679 chosen for retraining in step3

3. max-epoch 800, end-lambda 0.75, skip 28, nn-e1fb1ade4432 dataset
   ep799 chosen for retraining in step4

4. max-epoch 800, end-lambda 0.7, skip 28, nn-e1fb1ade4432 dataset
   ep759 became nn-8d69132723e2.nnue (first SFNNv6 net)
   ep659 chosen for retraining in step5

5. max-epoch 800, end-lambda 0.7, skip 28, nn-0dd1cebea573 dataset
   ep759 chosen for retraining in step6

6. max-epoch 800, end-lambda 0.7, skip 20, leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack
   ep639 chosen for retraining in step7

7. max-epoch 800, end-lambda 0.7, skip 27, nn-0dd1cebea573 dataset
   ep619 became nn-ea57bea57e32.nnue

For the last retraining (step7):

python3 easy_train.py
  --experiment-name L1-1536-Re6-masterShuffled-ep639-sk27-Re5-leela-dfrc-v2-T77toT80small-Re4-masterShuffled-ep659-Re3-sameAs-Re2-leela96-dfrc99-16t-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-Re1-LeelaFarseer-new-T77T79 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --early-fen-skipping 27 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 800 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-Re5-leela-dfrc-v2-T77toT80small-epoch639.nnue \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --seed $RANDOM \
  --gpus "0,"

For preparing the step6 leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack dataset:

python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-16tb7p-eval-filt-v2.binpack \
  test77-dec2021-16tb7p.no-db.min-mar2023.binpack \
  test78-janfeb2022-16tb7p.no-db.min-mar2023.binpack \
  test79-apr2022-16tb7p-filter-v6-dd.binpack \
  test80-apr2022-16tb7p.no-db.min-mar2023.binpack \
  /data/leela-dfrc-v2-T77decT78janfebT79aprT80apr.binpack

The unfiltered Leela data used for the step6 dataset can be found at:
https://robotmoon.com/nnue-training-data

Local elo at 25k nodes per move:
nn-epoch619.nnue : 2.3 +/- 1.9

Passed STC:
https://tests.stockfishchess.org/tests/view/6480d43c6e6ce8d9fc6d7cc8
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 40992 W: 11017 L: 10706 D: 19269
Ptnml(0-2): 113, 4400, 11170, 4689, 124

Passed LTC:
https://tests.stockfishchess.org/tests/view/648119ac6e6ce8d9fc6d8208
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 129174 W: 35059 L: 34579 D: 59536
Ptnml(0-2): 66, 12548, 38868, 13050, 55

closes https://github.com/official-stockfish/Stockfish/pull/4611

bench: 2370027
2023-06-11 15:23:52 +02:00
Linmiao Xu
373359b44d Update default net to nn-0dd1cebea573.nnue
Created by retraining an earlier epoch of the experiment leading to the first SFNNv6 net
on a more-randomized version of the nn-e1fb1ade4432.nnue dataset mixed with unfiltered
T80 apr2023 data. Trained using early-fen-skipping 28 and max-epoch 960.

The trainer settings and epochs used in the 5-step training sequence leading here were:
1. train from scratch for 400 epochs, lambda 1.0, constant LR 9.75e-4, T79T77-filter-v6-dd.min.binpack
2. retrain ep379, max-epoch 800, end-lambda 0.75, T60T70wIsRightFarseerT60T74T75T76.binpack
3. retrain ep679, max-epoch 800, end-lambda 0.75, skip 28, nn-e1fb1ade4432 dataset
4. retrain ep799, max-epoch 800, end-lambda 0.7, skip 28, nn-e1fb1ade4432 dataset
5. retrain ep439, max-epoch 960, end-lambda 0.7, skip 28, shuffled nn-e1fb1ade4432 + T80 apr2023

This net was epoch 559 of the final (step 5) retraining:

```bash
python3 easy_train.py \
  --experiment-name L1-1536-Re4-leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr-shuffled-sk28 \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --early-fen-skipping 28 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 960 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-Re3-nn-epoch439.nnue \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --seed $RANDOM \
  --gpus "0,"
```

During data preparation, most binpacks were unminimized by removing positions with
score 32002 (`VALUE_NONE`). This makes the tradeoff of increasing dataset filesize
on disk to increase the randomness of positions in interleaved datasets.
The code used for unminimizing is at:
https://github.com/linrock/Stockfish/tree/tools-unminify

For preparing the dataset used in this experiment:

```bash
python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-16tb7p-eval-filt-v2.binpack \
  filt-v6-dd-min/test60-novdec2021-12tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-aug2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-sep2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd-min/test80-jan2023-3of3-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd-min/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd-min/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.unmin.binpack \
  filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
  test80-apr2023-2tb7p.binpack \
  /data/leela96-dfrc99-T60novdec-v2-T80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd-T80apr.binpack
```

T80 apr2023 data was converted using lc0-rescorer with ~2tb of tablebases and can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move vs. nn-e1fb1ade4432.nnue (L1 size 1024):
nn-epoch559.nnue : 25.7 +/- 1.6

Passed STC:
https://tests.stockfishchess.org/tests/view/647cd3b87cf638f0f53f9cbb
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 59200 W: 16000 L: 15660 D: 27540
Ptnml(0-2): 159, 6488, 15996, 6768, 189

Passed LTC:
https://tests.stockfishchess.org/tests/view/647d58de726f6b400e4085d8
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 58800 W: 16002 L: 15657 D: 27141
Ptnml(0-2): 44, 5607, 17748, 5962, 39

closes https://github.com/official-stockfish/Stockfish/pull/4606

bench 2141197
2023-06-06 21:17:36 +02:00
Linmiao Xu
c1fff71650 Update NNUE architecture to SFNNv6 with larger L1 size of 1536
Created by training a new net from scratch with L1 size increased from 1024 to 1536.
Thanks to Vizvezdenec for the idea of exploring larger net sizes after recent
training data improvements.

A new net was first trained with lambda 1.0 and constant LR 8.75e-4. Then a strong net
from a later epoch in the training run was chosen for retraining with start-lambda 1.0
and initial LR 4.375e-4 decaying with gamma 0.995. Retraining was performed a total of
3 times, for this 4-step process:

1. 400 epochs, lambda 1.0 on filtered T77+T79 v6 deduplicated data
2. 800 epochs, end-lambda 0.75 on T60T70wIsRightFarseerT60T74T75T76.binpack
3. 800 epochs, end-lambda 0.75 and early-fen-skipping 28 on the master dataset
4. 800 epochs, end-lambda 0.7 and early-fen-skipping 28 on the master dataset

In the training sequence that reached the new nn-8d69132723e2.nnue net,
the epochs used for the 3x retraining runs were:

1. epoch 379 trained on T77T79-filter-v6-dd.min.binpack
2. epoch 679 trained on T60T70wIsRightFarseerT60T74T75T76.binpack
3. epoch 799 trained on the master dataset

For training from scratch:

python3 easy_train.py \
  --experiment-name new-L1-1536-T77T79-filter-v6dd \
  --training-dataset /data/T77T79-filter-v6-dd.min.binpack \
  --max_epoch 400 \
  --lambda 1.0 \
  --start-from-engine-test-net False \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --nnue-pytorch-branch linrock/Stockfish/misc-fixes-L1-1536 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM

Retraining commands were similar to each other. For the 3rd retraining run:

python3 easy_train.py \
  --experiment-name L1-1536-T77T79-v6dd-Re1-LeelaFarseer-Re2-masterDataset-Re3-sameData \
  --training-dataset /data/leela96-dfrc99-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack \
  --early-fen-skipping 28 \
  --max_epoch 800 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --start-from-engine-test-net False \
  --start-from-model /data/L1-1536-T77T79-v6dd-Re1-LeelaFarseer-Re2-masterDataset-nn-epoch799.nnue \
  --engine-test-branch linrock/Stockfish/L1-1536 \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM

The T77+T79 data used is a subset of the master dataset available at:
https://robotmoon.com/nnue-training-data/

T60T70wIsRightFarseerT60T74T75T76.binpack is available at:
https://drive.google.com/drive/folders/1S9-ZiQa_3ApmjBtl2e8SyHxj4zG4V8gG

Local elo at 25k nodes per move vs. nn-e1fb1ade4432.nnue (L1 size 1024):
nn-epoch759.nnue : 26.9 +/- 1.6

Failed STC
https://tests.stockfishchess.org/tests/view/64742485d29264e4cfa75f97
LLR: -2.94 (-2.94,2.94) <0.00,2.00>
Total: 13728 W: 3588 L: 3829 D: 6311
Ptnml(0-2): 71, 1661, 3610, 1482, 40

Failing LTC
https://tests.stockfishchess.org/tests/view/64752d7c4a36543c4c9f3618
LLR: -1.91 (-2.94,2.94) <0.50,2.50>
Total: 35424 W: 9522 L: 9603 D: 16299
Ptnml(0-2): 24, 3579, 10585, 3502, 22

Passed VLTC 180+1.8
https://tests.stockfishchess.org/tests/view/64752df04a36543c4c9f3638
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 47616 W: 13174 L: 12863 D: 21579
Ptnml(0-2): 13, 4261, 14952, 4566, 16

Passed VLTC SMP 60+0.6 th 8
https://tests.stockfishchess.org/tests/view/647446ced29264e4cfa761e5
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 19942 W: 5694 L: 5451 D: 8797
Ptnml(0-2): 6, 1504, 6707, 1749, 5

closes https://github.com/official-stockfish/Stockfish/pull/4593

bench 2222567
2023-05-31 08:51:22 +02:00
Linmiao Xu
41f50b2c83 Update default net to nn-e1fb1ade4432.nnue
Created by retraining nn-dabb1ed23026.nnue with a dataset composed of:

* The previous best dataset (nn-1ceb1a57d117.nnue dataset)
* Adding de-duplicated T80 data from feb2023 and the last 10 days of jan2023, filtered with v6-dd

Initially trained with the same options as the recent master net (nn-1ceb1a57d117.nnue).
Around epoch 890, training was manually stopped and max epoch increased to 1000.

```
python3 easy_train.py \
  --experiment-name leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes \
  --start-from-engine-test-net True \
  --early-fen-skipping 30 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 900 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM
```

The same v6-dd filtering and binpack minimizer was used for preparing the recent nn-1ceb1a57d117.nnue dataset.

```
python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-filt-v2.binpack \
  T60-nov2021-12tb7p-eval-filt-v2.binpack \
  T60-dec2021-12tb7p-eval-filt-v2.binpack \
  filt-v6/test80-aug2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6/test80-sep2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6-dd/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-jan2022-3of3-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test80-feb2023-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
  /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack
```

Links for downloading the training data components can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch919.nnue : 2.6 +/- 2.8

Passed STC vs. nn-dabb1ed23026.nnue
https://tests.stockfishchess.org/tests/view/644420df94ff3db5625f2af5
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 125960 W: 33898 L: 33464 D: 58598
Ptnml(0-2): 351, 13920, 34021, 14320, 368

Passed LTC vs. nn-1ceb1a57d117.nnue
https://tests.stockfishchess.org/tests/view/64469f128d30316529b3dc46
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 24544 W: 6817 L: 6542 D: 11185
Ptnml(0-2): 8, 2252, 7488, 2505, 19

closes https://github.com/official-stockfish/Stockfish/pull/4546

bench 3714847
2023-04-25 08:19:00 +02:00
Linmiao Xu
c3ce220408 Created by retraining the master net with these changes to the dataset:
* Extending v6 filtering to data from T77 dec2021, T79 may2022, and T80 nov2022
* Reducing the number of duplicate positions, prioritizing position scores seen later in time
* Using a binpack minimizer to reduce the overall data size

Trained the same way as the previous master net, aside from the dataset changes:

```
python3 easy_train.py \
  --experiment-name leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes \
  --start-from-engine-test-net True \
  --early-fen-skipping 30 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 900 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM
```

The new v6-dd filtering reduces duplicate positions by iterating over hourly data files within leela test runs, starting with the most recent, then keeping positions the first time they're seen and ignoring positions that are seen again. This ordering was done with the assumption that position scores seen later in time are generally more accurate than scores seen earlier in the test run. Positions are de-duplicated based on piece orientations, the first token in fen strings.

The binpack minimizer was run with default settings after first merging monthly data into single binpacks.

```
python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-filt-v2.binpack \
  T60-nov2021-12tb7p-eval-filt-v2.binpack \
  T60-dec2021-12tb7p-eval-filt-v2.binpack \
  filt-v6/test80-aug2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6/test80-sep2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6-dd/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
  /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd.binpack
```

The code for v6-dd filtering is available along with training data preparation scripts at:
https://github.com/linrock/nnue-data

Links for downloading the training data components:
https://robotmoon.com/nnue-training-data/

The binpack minimizer is from: #4447

Local elo at 25k nodes per move:
nn-epoch859.nnue : 1.2 +/- 2.6

Passed STC:
https://tests.stockfishchess.org/tests/view/643aad7db08900ff1bc5a832
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 565040 W: 150225 L: 149162 D: 265653
Ptnml(0-2): 1875, 62137, 153229, 63608, 1671

Passed LTC:
https://tests.stockfishchess.org/tests/view/643ecf2fa43cf30e719d2042
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 1014840 W: 274645 L: 272456 D: 467739
Ptnml(0-2): 515, 98565, 306970, 100956, 414

closes https://github.com/official-stockfish/Stockfish/pull/4545

bench 3476305
2023-04-25 08:17:22 +02:00
Muzhen Gaming
c90dd38903 Simplify away complexity in evaluation
Simplification STC: https://tests.stockfishchess.org/tests/view/64394bc0605991a801b4f6f0
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 72360 W: 19313 L: 19138 D: 33909
Ptnml(0-2): 206, 7883, 19800, 8112, 179

Simplification LTC: https://tests.stockfishchess.org/tests/view/6439e788c233ce943b6bdac1
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 224992 W: 60665 L: 60654 D: 103673
Ptnml(0-2): 96, 21875, 68526, 21920, 79

closes https://github.com/official-stockfish/Stockfish/pull/4530

Bench: 3709369
2023-04-22 10:43:29 +02:00
Linmiao Xu
37160c4b16 Update default net to nn-dabb1ed23026.nnue
Created by retraining the master net with these modifications:

* New filtering methods for existing data from T80 sep+oct2022, T79 apr2022, T78 jun+jul+aug+sep2022, T77 dec2021
* Adding new filtered data from T80 aug2022 and T78 apr+may2022
* Increasing early-fen-skipping from 28 to 30

```
python3 easy_train.py \
  --experiment-name leela96-dfrc99-T80novT79mayT60novdec-v2-T80augsepoctT79aprT78aprtosep-v6-T77dec-v3-sk30 \
  --training-dataset /data/leela96-dfrc99-T80novT79mayT60novdec-v2-T80augsepoctT79aprT78aprtosep-v6-T77dec-v3.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes \
  --start-from-engine-test-net True \
  --early-fen-skipping 30 \
  --max_epoch 900 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM
```

The v3 filtering used for data from T77dec 2021 differs from v2 filtering in that:

* To improve binpack compression, positions after ply 28 were skipped during training by setting position scores to VALUE_NONE (32002) instead of removing them entirely
* All early-game positions with ply <= 28 were removed to maximize binpack compression
* Only bestmove captures at d6pv2 search were skipped, not 2nd bestmove captures
* Binpack compression was repaired for the remaining positions by effectively replacing bestmoves with "played moves" to maintain contiguous sequences of positions in the training game data

After improving binpack compression, The T77 dec2021 data size was reduced from 95G to 19G.

The v6 filtering used for data from T80augsepoctT79aprT78aprtosep 2022 differs from v2 in that:

* All positions with only one legal move were removed
* Tighter score differences at d6pv2 search were used to remove more positions with only one good move than before
* d6pv2 search was not used to remove positions where the best 2 moves were captures

```
python3 interleave_binpacks.py \
  nn-547-dataset/leela96-eval-filt-v2.binpack \
  nn-547-dataset/dfrc99-eval-filt-v2.binpack \
  nn-547-dataset/test80-nov2022-12tb7p-eval-filt-v2-d6.binpack \
  nn-547-dataset/T79-may2022-12tb7p-eval-filt-v2.binpack \
  nn-547-dataset/T60-nov2021-12tb7p-eval-filt-v2.binpack \
  nn-547-dataset/T60-dec2021-12tb7p-eval-filt-v2.binpack \
  filt-v6/test80-aug2022-16tb7p-filter-v6.binpack \
  filt-v6/test80-sep2022-16tb7p-filter-v6.binpack \
  filt-v6/test80-oct2022-16tb7p-filter-v6.binpack \
  filt-v6/test79-apr2022-16tb7p-filter-v6.binpack \
  filt-v6/test78-aprmay2022-16tb7p-filter-v6.binpack \
  filt-v6/test78-junjulaug2022-16tb7p-filter-v6.binpack \
  filt-v6/test78-sep2022-16tb7p-filter-v6.binpack \
  filt-v3/test77-dec2021-16tb7p-filt-v3.binpack \
  /data/leela96-dfrc99-T80novT79mayT60novdec-v2-T80augsepoctT79aprT78aprtosep-v6-T77dec-v3.binpack
```

The code for the new data filtering methods is available at:
https://github.com/linrock/Stockfish/tree/nnue-data-v3/nnue-data

The code for giving hexword names to .nnue files is at:
https://github.com/linrock/nnue-namer

Links for downloading the training data components can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch779.nnue : 0.6 +/- 3.1

Passed STC:
https://tests.stockfishchess.org/tests/view/64212412db43ab2ba6f8efb0
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 82256 W: 22185 L: 21809 D: 38262
Ptnml(0-2): 286, 9065, 22067, 9407, 303

Passed LTC:
https://tests.stockfishchess.org/tests/view/64223726db43ab2ba6f91d6c
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 30840 W: 8437 L: 8149 D: 14254
Ptnml(0-2): 14, 2891, 9323, 3177, 15

closes https://github.com/official-stockfish/Stockfish/pull/4465

bench 5101970
2023-03-29 21:37:52 +02:00
disservin
af4b62a593 NNUE namespace cleanup
This patch moves the nnue namespace in the appropiate header that correspondes with the definition.
It also makes navigation a bit easier.

closes https://github.com/official-stockfish/Stockfish/pull/4445

No functional change
2023-03-19 11:27:15 +01:00
Linmiao Xu
876906965b Update default net to nn-52471d67216a.nnue
Created by retraining the master net with modifications to the previous best dataset:

* Improving T80 oct+nov 2022 endgame lambda accuracy by rescoring with 12-16tb of syzygy 7p tablebases
* Filtering T78 jun+jul+aug 2022 with d6pv2 search to remove positions with bestmove captures or one good move
* Adding T80 sep 2022 data, rescored with 16tb of 7p tablebases, unfiltered

Trained with max-epoch 900, end-lambda 0.7, and early-fen-skipping 28.

```
python3 easy_train.py \
  --experiment-name leela96-dfrc99-T80octnovT79aprmayT78junjulaugT60novdec-filt-v2-T78sep12tb7p-T77decT80sep16tb7p-lambda7-sk28 \
  --training-dataset /data/leela96-dfrc99-T80octnovT79aprmayT78junjulaugT60novdec-filt-v2-T78sep12tb7p-T77decT80sep16tb7p.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/easy-train-early-fen-skipping \
  --early-fen-skipping 28 \
  --start-from-engine-test-net True \
  --gpus "0," \
  --max_epoch 900 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --gamma 0.995 \
  --lr 4.375e-4 \
  --tui False \
  --seed $RANDOM
```

Training data was rescored and d6pv2 filtered in the same way as recent best datasets.
For preparing the merged training dataset:

```
python3 interleave_binpacks.py \
  leela96-eval-filt-v2.binpack \
  dfrc99-eval-filt-v2.binpack \
  test80-oct2022-16tb7p-eval-filt-v2-d6.binpack \
  test80-nov2022-12tb7p-eval-filt-v2-d6.binpack \
  T79-apr2022-12tb7p-eval-filt-v2.binpack \
  T79-may2022-12tb7p-eval-filt-v2.binpack \
  test78-junjulaug2022-16tb7p-eval-filt-v2-d6.binpack \
  T60-nov2021-12tb7p-eval-filt-v2.binpack \
  T60-dec2021-12tb7p-eval-filt-v2.binpack \
  T78-sep2022-12tb7p.binpack \
  test77-dec2021-16gb7p.binpack \
  test80-sep2022-16tb7p.binpack \
  /data/leela96-dfrc99-T80octnovT79aprmayT78junjulaugT60novdec-filt-v2-T78sep12tb7p-T77decT80sep16tb7p.binpack
```

Links for downloading the training data components can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch839.nnue : 0.6 +/- 1.4

Passed STC:
https://tests.stockfishchess.org/tests/view/63f9ab4be74a12625bcdf02e
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 84656 W: 22681 L: 22302 D: 39673
Ptnml(0-2): 271, 9343, 22734, 9696, 284

Passed LTC:
https://tests.stockfishchess.org/tests/view/63fa3833e74a12625bce0c0e
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 184664 W: 49933 L: 49344 D: 85387
Ptnml(0-2): 111, 17977, 55561, 18578, 105

closes https://github.com/official-stockfish/Stockfish/pull/4416

bench: 4814343
2023-02-27 22:07:52 +01:00
Joost VandeVondele
08385527dd Introduce a function to compute NNUE accumulator
This patch introduces `hint_common_parent_position()` to signal that potentially several child nodes will require an NNUE eval. By populating explicitly the accumulator, these subsequent evaluations can be performed more efficiently.

This was based on the observation that calculating the evaluation in an excluded move position yielded a significant Elo gain, even though the evaluation itself was already available (work by pb00067).

Sopel wrote the code to perform just the accumulator update. This PR is based on cleaned up code that

passed STC:
https://tests.stockfishchess.org/tests/view/63f62f9be74a12625bcd4aa0
 LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 110368 W: 29607 L: 29167 D: 51594
Ptnml(0-2): 41, 10551, 33572, 10967, 53

and in an the earlier (equivalent) version

passed STC:
https://tests.stockfishchess.org/tests/view/63f3c3fee74a12625bcce2a6
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 47552 W: 12786 L: 12467 D: 22299
Ptnml(0-2): 120, 5107, 12997, 5438, 114

passed LTC:
https://tests.stockfishchess.org/tests/view/63f45cc2e74a12625bccfa63
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 110368 W: 29607 L: 29167 D: 51594
Ptnml(0-2): 41, 10551, 33572, 10967, 53

closes https://github.com/official-stockfish/Stockfish/pull/4402

Bench: 3726250
2023-02-23 13:25:35 +01:00
Linmiao Xu
05dea2ca46 Update default net to nn-1337b1adec5b.nnue
Created by retraining the master net on a dataset composed of:

* Most of the previous best dataset filtered to remove positions likely having only one good move
* Adding training data from Leela T77 dec2021 rescored with 16tb of 7-piece tablebases

Trained with end lambda 0.7 and max epoch 900. Positions with ply <= 28 were removed from most of the previous best dataset before training began. A new nnue-pytorch trainer param for skipping early plies was used to skip plies <= 24 in the unfiltered and additional Leela T77 parts of the dataset.

```
python easy_train.py \
  --experiment-name leela96-dfrc99-T80octnovT79aprmayT60novdec-eval-filt-v2-T78augsep-12tb-T77dec-16tb-lambda7-sk24 \
  --training-dataset /data/leela96-dfrc99-T80octnovT79aprmayT60novdec-eval-filt-v2-T78augsep-12tb-T77dec-16tb.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/easy-train-early-fen-skipping \
  --early-fen-skipping 24 \
  --gpus "0," \
  --start-from-engine-test-net True \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --gamma 0.995 \
  --lr 4.375e-4 \
  --tui False \
  --seed $RANDOM \
  --max_epoch 900
```

The depth6 multipv2 search filtering method is the same as the one used for filtering recent best datasets, with a lower eval difference threshold to remove slightly more positions than before. These parts of the dataset were filtered:

* 96% of T60T70wIsRightFarseerT60T74T75T76.binpack
* 99% of dfrc_n5000.binpack
* T80 oct + nov 2022 data, no positions with castling flags, rescored with ~600gb 7p tablebases
* T79 apr + may 2022 data, rescored with 12tb 7p tablebases
* T60 nov + dec 2021 data, rescored with 12tb 7p tablebases

These parts of the dataset were not filtered. Positions with ply <= 24 were skipped during training:

* T78 aug + sep 2022 data, rescored with 12tb 7p tablebases
* 84% of T77 dec 2021 data, rescored with 16tb 7p tablebases

The code and exact evaluation thresholds used for data filtering can be found at:
https://github.com/linrock/Stockfish/tree/tools-filter-multipv2-eval-diff-t2/src/filter

The exact training data used can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch859.nnue : 3.5 +/ 1.2

Passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
https://tests.stockfishchess.org/tests/view/63dfeefc73223e7f52ad769f
Total: 219744 W: 58572 L: 58002 D: 103170
Ptnml(0-2): 609, 24446, 59284, 24832, 701

Passed LTC:
https://tests.stockfishchess.org/tests/view/63e268fc73223e7f52ade7b6
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 91256 W: 24528 L: 24121 D: 42607
Ptnml(0-2): 48, 8863, 27390, 9288, 39

closes https://github.com/official-stockfish/Stockfish/pull/4387

bench 3841998
2023-02-09 07:50:27 +01:00
Linmiao Xu
596a528c6a Update default net to nn-bc24c101ada0.nnue
Created by retraining the master net with Leela T78 data from Aug+Sep 2022 added to the previous best dataset. Trained with end lambda 0.7 and started with max epoch 800. All positions with ply <= 28 were skipped:

```
python easy_train.py \
  --experiment-name leela95-dfrc96-filt-only-T80octnov-T60novdecT78augsepT79aprmay-12tb7p-sk28-lambda7 \
  --training-dataset /data/leela95-dfrc96-filt-only-T80octnov-T60novdecT78augsepT79aprmay-12tb7p.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-skip-ply-lteq-28 \
  --start-from-engine-test-net True \
  --gpus "0," \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --gamma 0.995 \
  --lr 4.375e-4 \
  --tui False \
  --seed $RANDOM \
  --max_epoch 800
```

Around epoch 750, training was manually paused and max epoch increased to 950 before resuming. The additional Leela training data from T78 was prepared in the same way as the previous best dataset.

The exact training data used can be found at:
https://robotmoon.com/nnue-training-data/

While the local elo ratings during this experiment were much lower than in recent master nets, several later epochs had a consistent elo above zero, and this was hypothesized to represent potential strength at slower time controls.

Local elo at 25k nodes per move
leela95-dfrc96-filt-only-T80octnov-T60novdecT78augsepT79aprmay-12tb7p-sk28-lambda7
nn-epoch819.nnue : 0.4 +/- 1.1 (nn-bc24c101ada0.nnue)
nn-epoch799.nnue : 0.3 +/- 1.2
nn-epoch759.nnue : 0.3 +/- 1.1
nn-epoch839.nnue : 0.2 +/- 1.4

Passed STC
https://tests.stockfishchess.org/tests/view/63cabf6f0eefe8694a0c6013
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 41608 W: 11161 L: 10848 D: 19599
Ptnml(0-2): 116, 4496, 11281, 4781, 130

Passed LTC
https://tests.stockfishchess.org/tests/view/63cb1856344bb01c191af263
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 76760 W: 20517 L: 20137 D: 36106
Ptnml(0-2): 34, 7435, 23070, 7799, 42

closes https://github.com/official-stockfish/Stockfish/pull/4351

bench 3941848
2023-01-23 07:01:32 +01:00
Linmiao Xu
3d2381d76d Update default net to nn-1e7ca356472e.nnue
Created by retraining the master net on a dataset composed of:

* The Leela-dfrc_n5000.binpack dataset filtered with depth6 multipv2 search to remove positions with only one good move, in addition to removing positions where either of the two best moves are captures
* The same Leela T80 oct+nov 2022 training data used in recent best datasets
* Additional Leela training data from T60 nov+dec 2021 and T79 apr+may 2022

Trained with end lambda 0.7 and started with max epoch 800. All positions with ply <= 28 were skipped:

```
python easy_train.py \
  --experiment-name leela95-dfrc96-mpv-eval-fonly-T80octnov-T79aprmayT60novdec-12tb7p-sk28-lambda7 \
  --training-dataset /data/leela95-dfrc96-mpv-eval-fonly-T80octnov-T79aprmayT60novdec-12tb7p.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-skip-ply-lteq-28 \
  --start-from-engine-test-net True \
  --gpus "0," \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --gamma 0.995 \
  --lr 4.375e-4 \
  --tui False \
  --seed $RANDOM \
  --max_epoch 800
```

Around epoch 780, training was manually paused and max epoch increased to 920 before resuming.

During depth6 multipv2 data filtering, positions were considered to have only one good move if the score of the best move was significantly better than the 2nd best move in a way that changes the outcome of the game:

* the best move leads to a significant advantage while the 2nd best move equalizes or loses
* the best move is about equal while the 2nd best move loses

The modified stockfish branch and exact score thresholds used for filtering are at:
https://github.com/linrock/Stockfish/tree/tools-filter-multipv2-eval-diff/src/filter

About 95% of the Leela portion and 96% of the DFRC portion of the Leela-dfrc_n5000.binpack dataset was filtered. Unfiltered parts of the dataset were left out.

The additional Leela training data from T60 nov+dec 2021 and T79 apr+may 2022 was WDL-rescored with about 12TB of syzygy 7-piece tablebases where the material difference is less than around 6 pawns. Best moves were exported to .plain data files during data conversion with the lc0 rescorer.

The exact training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move
experiment_leela95-dfrc96-mpv-eval-fonly-T80octnov-T79aprmayT60novdec-12tb7p-sk28-lambda7
run_0/nn-epoch899.nnue : 3.8 +/- 1.6

Passed STC
https://tests.stockfishchess.org/tests/view/63bed1f540aa064159b9c89b
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 103344 W: 27392 L: 26991 D: 48961
Ptnml(0-2): 333, 11223, 28099, 11744, 273

Passed LTC
https://tests.stockfishchess.org/tests/view/63c010415705810de2deb3ec
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 21712 W: 5891 L: 5619 D: 10202
Ptnml(0-2): 12, 2022, 6511, 2304, 7

closes https://github.com/official-stockfish/Stockfish/pull/4338

bench 4106793
2023-01-14 08:12:11 +01:00
Linmiao Xu
a6fa683418 Update default net to nn-a3dc078bafc7.nnue
This is a later epoch (epoch 859) from the same experiment run that trained yesterday's master net nn-60fa44e376d9.nnue (epoch 779). The experiment was manually paused around epoch 790 and unpaused with max epoch increased to 900 mainly to get more local elo data without letting the GPU idle.

nn-60fa44e376d9.nnue is from #4314
nn-335a9b2d8a80.nnue is from #4295

Local elo vs. nn-335a9b2d8a80.nnue at 25k nodes per move:
experiment_leela93-dfrc99-filt-only-T80-oct-nov-skip28
run_0/nn-epoch779.nnue (nn-60fa44e376d9.nnue) : 5.0 +/- 1.2
run_0/nn-epoch859.nnue (nn-a3dc078bafc7.nnue) : 5.6 +/- 1.6

Passed STC vs. nn-335a9b2d8a80.nnue
https://tests.stockfishchess.org/tests/view/63ae10495bd1e5f27f13d94f
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 37536 W: 10088 L: 9781 D: 17667
Ptnml(0-2): 110, 4006, 10223, 4325, 104

An LTC test vs. nn-335a9b2d8a80.nnue was paused due to nn-60fa44e376d9.nnue passing LTC first:
https://tests.stockfishchess.org/tests/view/63ae5d34331d5fca5113703b

Passed LTC vs. nn-60fa44e376d9.nnue
https://tests.stockfishchess.org/tests/view/63af1e41465d2b022dbce4e7
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 148704 W: 39672 L: 39155 D: 69877
Ptnml(0-2): 59, 14443, 44843, 14936, 71

closes https://github.com/official-stockfish/Stockfish/pull/4319

bench 3984365
2023-01-02 19:10:14 +01:00
Sebastian Buchwald
b60f9cc451 Update copyright years
Happy New Year!

closes https://github.com/official-stockfish/Stockfish/pull/4315

No functional change
2023-01-02 19:07:38 +01:00
Linmiao Xu
be9bc420af Update default net to nn-60fa44e376d9.nnue
Created by retraining the master net on the previous best dataset with additional filtering. No new data was added.

More of the Leela-dfrc_n5000.binpack part of the dataset was pre-filtered with depth6 multipv2 search to remove bestmove captures. About 93% of the previous Leela/SF data and 99% of the SF dfrc data was filtered. Unfiltered parts of the dataset were left out. The new Leela T80 oct+nov data is the same as before. All early game positions with ply count <= 28 were skipped during training by modifying the training data loader in nnue-pytorch.

Trained in a similar way as recent master nets, with a different nnue-pytorch branch for early ply skipping:

python3 easy_train.py \
  --experiment-name=leela93-dfrc99-filt-only-T80-oct-nov-skip28 \
  --training-dataset=/data/leela93-dfrc99-filt-only-T80-oct-nov.binpack \
  --start-from-engine-test-net True \
  --nnue-pytorch-branch=linrock/nnue-pytorch/misc-fixes-skip-ply-lteq-28 \
  --gpus="0," \
  --start-lambda=1.0 \
  --end-lambda=0.75 \
  --gamma=0.995 \
  --lr=4.375e-4 \
  --tui=False \
  --seed=$RANDOM \
  --max_epoch=800 \
  --network-testing-threads 20 \
  --num-workers 6

For the exact training data used: https://robotmoon.com/nnue-training-data/
Details about the previous best dataset: #4295

Local testing at a fixed 25k nodes:
experiment_leela93-dfrc99-filt-only-T80-oct-nov-skip28
Local Elo: run_0/nn-epoch779.nnue : 5.1 +/- 1.5

Passed STC
https://tests.stockfishchess.org/tests/view/63adb3acae97a464904fd4e8
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 36504 W: 9847 L: 9538 D: 17119
Ptnml(0-2): 108, 3981, 9784, 4252, 127

Passed LTC
https://tests.stockfishchess.org/tests/view/63ae0ae25bd1e5f27f13d884
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 36592 W: 10017 L: 9717 D: 16858
Ptnml(0-2): 17, 3461, 11037, 3767, 14

closes https://github.com/official-stockfish/Stockfish/pull/4314

bench 4015511
2023-01-01 12:28:51 +01:00
Linmiao Xu
c620886181 Update default net to nn-335a9b2d8a80.nnue
Created by retraining the master net with a combination of:

    the previous best dataset (Leela-dfrc_n5000.binpack), with about half the dataset filtered using depth6 multipv2 search to throw away positions where either of the 2 best moves are captures
    Leela T80 Oct and Nov training data rescored with best moves, adding ~9.5 billion positions

Trained effectively the same way as the previous master net:

python3 easy_train.py \
  --experiment-name=leela-dfrc-filtered-T80-oct-nov \
  --training-dataset=/data/leela-dfrc-filtered-T80-oct-nov.binpack \
  --start-from-engine-test-net True \
  --gpus="0," \
  --start-lambda=1.0 \
  --end-lambda=0.75 \
  --gamma=0.995 \
  --lr=4.375e-4 \
  --tui=False \
  --seed=$RANDOM \
  --max_epoch=800 \
  --auto-exit-timeout-on-training-finished=900 \
  --network-testing-threads 20 \
  --num-workers 6

Local testing at a fixed 25k nodes:
experiments/experiment_leela-dfrc-filtered-T80-oct-nov/training/run_0/nn-epoch779.nnue
localElo: run_0/nn-epoch779.nnue : 4.7 +/- 3.1

The new Leela T80 part of the dataset was prepared by downloading test80 training data from all of Oct 2022 and Nov 2022, rescoring with syzygy 6-piece tablebases and ~600 GB of 7-piece tablebases, saving best moves to exported .plain files, removing all positions with castling flags, then converting to binpacks and using interleave_binpacks.py to merge them together. Scripts used in this data conversion process are available at:
https://github.com/linrock/lc0-data-converter

Filtering binpack data using depth6 multipv2 search was done by modifying transform.cpp in the tools branch:
https://github.com/linrock/Stockfish/tree/tools-filter-multipv2-no-rescore

Links for downloading the training data (total size: 338 GB) are available at:
https://robotmoon.com/nnue-training-data/

Passed STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 30544 W: 8244 L: 7947 D: 14353
Ptnml(0-2): 93, 3243, 8302, 3542, 92
https://tests.stockfishchess.org/tests/view/63a0d377264a0cf18f86f82b

Passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 32464 W: 8866 L: 8573 D: 15025
Ptnml(0-2): 19, 3054, 9794, 3345, 20
https://tests.stockfishchess.org/tests/view/63a10bc9fb452d3c44b1e016

closes https://github.com/official-stockfish/Stockfish/pull/4295

Bench 3554904
2022-12-21 07:14:58 +01:00
Joost VandeVondele
4b4b7d1209 Update default net to nn-ad9b42354671.nnue
using trainer branch https://github.com/glinscott/nnue-pytorch/pull/208 with a slightly
tweaked loss function (power 2.5 instead of 2.6), otherwise same training as in
the previous net update https://github.com/official-stockfish/Stockfish/pull/4100

passed STC:
LLR: 2.97 (-2.94,2.94) <0.00,2.50>
Total: 367536 W: 99465 L: 98573 D: 169498
Ptnml(0-2): 1820, 40994, 97117, 42148, 1689
https://tests.stockfishchess.org/tests/view/62cc43fe50dcbecf5fc1c5b8

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 25032 W: 6802 L: 6553 D: 11677
Ptnml(0-2): 40, 2424, 7341, 2669, 42
https://tests.stockfishchess.org/tests/view/62ce5f421dacb46e4d5fd277

closes https://github.com/official-stockfish/Stockfish/pull/4107

Bench: 5905619
2022-07-13 18:01:20 +02:00
Joost VandeVondele
85f8ee6199 Update default net to nn-3c0054ea9860.nnu
First things first...

this PR is being made from court. Today, Tord and Stéphane, with broad support
of the developer community are defending their complaint, filed in Munich, against ChessBase.
With their products Houdini 6 and Fat Fritz 2, both Stockfish derivatives,
ChessBase violated repeatedly the Stockfish GPLv3 license. Tord and Stéphane have terminated
their license with ChessBase permanently. Today we have the opportunity to present
our evidence to the judge and enforce that termination. To read up, have a look at our blog post
https://stockfishchess.org/blog/2022/public-court-hearing-soon/ and
https://stockfishchess.org/blog/2021/our-lawsuit-against-chessbase/

This PR introduces a net trained with an enhanced data set and a modified loss function in the trainer.
A slight adjustment for the scaling was needed to get a pass on standard chess.

passed STC:
https://tests.stockfishchess.org/tests/view/62c0527a49b62510394bd610
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 135008 W: 36614 L: 36152 D: 62242
Ptnml(0-2): 640, 15184, 35407, 15620, 653

passed LTC:
https://tests.stockfishchess.org/tests/view/62c17e459e7d9997a12d458e
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 28864 W: 8007 L: 7749 D: 13108
Ptnml(0-2): 47, 2810, 8466, 3056, 53

Local testing at a fixed 25k nodes resulted in
Test run1026/easy_train_data/experiments/experiment_2/training/run_0/nn-epoch799.nnue
localElo: 4.2  +-      1.6

The real strength of the net is in FRC and DFRC chess where it gains significantly.

Tested at STC with slightly different scaling:
FRC:
https://tests.stockfishchess.org/tests/view/62c13a4002ba5d0a774d20d4
Elo: 29.78 +-3.4 (95%) LOS: 100.0%
Total: 10000 W: 2007 L: 1152 D: 6841
Ptnml(0-2): 31, 686, 2804, 1355, 124
nElo: 59.24 +-6.9 (95%) PairsRatio: 2.06

DFRC:
https://tests.stockfishchess.org/tests/view/62c13a5702ba5d0a774d20d9
Elo: 55.25 +-3.9 (95%) LOS: 100.0%
Total: 10000 W: 2984 L: 1407 D: 5609
Ptnml(0-2): 51, 636, 2266, 1779, 268
nElo: 96.95 +-7.2 (95%) PairsRatio: 2.98

Tested at LTC with identical scaling:
FRC:
https://tests.stockfishchess.org/tests/view/62c26a3c9e7d9997a12d6caf
Elo: 16.20 +-2.5 (95%) LOS: 100.0%
Total: 10000 W: 1192 L: 726 D: 8082
Ptnml(0-2): 10, 403, 3727, 831, 29
nElo: 44.12 +-6.7 (95%) PairsRatio: 2.08

DFRC:
https://tests.stockfishchess.org/tests/view/62c26a539e7d9997a12d6cb2
Elo: 40.94 +-3.0 (95%) LOS: 100.0%
Total: 10000 W: 2215 L: 1042 D: 6743
Ptnml(0-2): 10, 410, 3053, 1451, 76
nElo: 92.77 +-6.9 (95%) PairsRatio: 3.64

This is due to the mixing in a significant fraction of DFRC training data in the final training round. The net is
trained using the easy_train.py script in the following way:

```
python easy_train.py \
     --training-dataset=../Leela-dfrc_n5000.binpack \
     --experiment-name=2 \
     --nnue-pytorch-branch=vondele/nnue-pytorch/lossScan4 \
     --additional-training-arg=--param-index=2 \
     --start-lambda=1.0 \
     --end-lambda=0.75 \
     --gamma=0.995 \
     --lr=4.375e-4 \
     --start-from-engine-test-net True \
     --tui=False \
     --seed=$RANDOM \
     --max_epoch=800 \
     --auto-exit-timeout-on-training-finished=900 \
     --network-testing-threads 8  \
     --num-workers 12
```

where the data set used (Leela-dfrc_n5000.binpack) is a combination of our previous best data set (mix of Leela and some SF data) and DFRC data, interleaved to form:
The data is available in https://drive.google.com/drive/folders/1S9-ZiQa_3ApmjBtl2e8SyHxj4zG4V8gG?usp=sharing
Leela mix: https://drive.google.com/file/d/1JUkMhHSfgIYCjfDNKZUMYZt6L5I7Ra6G/view?usp=sharing
DFRC: https://drive.google.com/file/d/17vDaff9LAsVo_1OfsgWAIYqJtqR8aHlm/view?usp=sharing

The training branch used is
https://github.com/vondele/nnue-pytorch/commits/lossScan4
A PR to the main trainer repo will be made later. This contains a revised loss function, now computing the loss from the score based on the win rate model, which is a more accurate representation than what we had before. Scaling constants are tweaked there as well.

closes https://github.com/official-stockfish/Stockfish/pull/4100

Bench: 5186781
2022-07-04 15:42:34 +02:00
Dubslow
442c40b43d Use NNUE complexity in search, retune related parameters
This builds on ideas of xoto10 and mstembera to use more output from NNUE in the search algorithm.

passed STC:
https://tests.stockfishchess.org/tests/view/62ae454fe7ee5525ef88a957
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 89208 W: 24127 L: 23753 D: 41328
Ptnml(0-2): 400, 9886, 23642, 10292, 384

passed LTC:
https://tests.stockfishchess.org/tests/view/62acc6ddd89eb6cf1e0750a1
LLR: 2.93 (-2.94,2.94) <0.50,3.00>
Total: 56352 W: 15430 L: 15115 D: 25807
Ptnml(0-2): 44, 5501, 16782, 5794, 55

closes https://github.com/official-stockfish/Stockfish/pull/4088

bench 5332964
2022-06-20 08:30:57 +02:00
xoto10
7f1333ccf8 Blend nnue complexity with classical.
Following mstembera's test of the complexity value derived from nnue values,
this change blends that idea with the old complexity calculation.

STC 10+0.1:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 42320 W: 11436 L: 11148 D: 19736
Ptnml(0-2): 209, 4585, 11263, 4915, 188
https://tests.stockfishchess.org/tests/live_elo/6295c9239c8c2fcb2bad7fd9

LTC 60+0.6:
LLR: 2.98 (-2.94,2.94) <0.50,3.00>
Total: 34600 W: 9393 L: 9125 D: 16082
Ptnml(0-2): 32, 3323, 10319, 3597, 29
https://tests.stockfishchess.org/tests/view/6295fd5d9c8c2fcb2bad88cf

closes https://github.com/official-stockfish/Stockfish/pull/4046

Bench 6078140
2022-06-02 07:47:23 +02:00
Tomasz Sobczyk
c079acc26f Update NNUE architecture to SFNNv5. Update network to nn-3c0aa92af1da.nnue.
Architecture changes:

    Duplicated activation after the 1024->15 layer with squared crelu (so 15->15*2). As proposed by vondele.

Trainer changes:

    Added bias to L1 factorization, which was previously missing (no measurable improvement but at least neutral in principle)
    For retraining linearly reduce lambda parameter from 1.0 at epoch 0 to 0.75 at epoch 800.
    reduce max_skipping_rate from 15 to 10 (compared to vondele's outstanding PR)

Note: This network was trained with a ~0.8% error in quantization regarding the newly added activation function.
      This will be fixed in the released trainer version. Expect a trainer PR tomorrow.

Note: The inference implementation cuts a corner to merge results from two activation functions.
       This could possibly be resolved nicer in the future. AVX2 implementation likely not necessary, but NEON is missing.

First training session invocation:

python3 train.py \
    ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
    ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
    --gpus "$3," \
    --threads 4 \
    --num-workers 8 \
    --batch-size 16384 \
    --progress_bar_refresh_rate 20 \
    --random-fen-skipping 3 \
    --features=HalfKAv2_hm^ \
    --lambda=1.0 \
    --max_epochs=400 \
    --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2

Second training session invocation:

python3 train.py \
    ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
    ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
    --gpus "$3," \
    --threads 4 \
    --num-workers 8 \
    --batch-size 16384 \
    --progress_bar_refresh_rate 20 \
    --random-fen-skipping 3 \
    --features=HalfKAv2_hm^ \
    --start-lambda=1.0 \
    --end-lambda=0.75 \
    --gamma=0.995 \
    --lr=4.375e-4 \
    --max_epochs=800 \
    --resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp367/nn-exp367-run3-epoch399.pt \
    --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2

Passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 27288 W: 7445 L: 7178 D: 12665
Ptnml(0-2): 159, 3002, 7054, 3271, 158
https://tests.stockfishchess.org/tests/view/627e8c001919125939623644

Passed LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.00>
Total: 21792 W: 5969 L: 5727 D: 10096
Ptnml(0-2): 25, 2152, 6294, 2406, 19
https://tests.stockfishchess.org/tests/view/627f2a855734b18b2e2ece47

closes https://github.com/official-stockfish/Stockfish/pull/4020

Bench: 6481017
2022-05-14 12:47:22 +02:00
Joost VandeVondele
6e0680efa0 Update default net to nn-d0b74ce1e5eb.nnue
train a net using training data with a
heavier weight on positions having 16 pieces on the board. More specifically,
with a relative weight of `i * (32-i)/(16 * 16)+1` (where i is the number of pieces on the board).

This is done with the trainer branch https://github.com/glinscott/nnue-pytorch/pull/173

The command used is:
```
python train.py $datafile $datafile $restarttype $restartfile --gpus 1 --threads 4 --num-workers 12 --random-fen-skipping=3 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --features=HalfKAv2_hm^   --lambda=1.00  --max_epochs=$epochs --seed $RANDOM --default_root_dir exp/run_$i
```
The datafile is T60T70wIsRightFarseerT60T74T75T76.binpack, the restart is from the master net.

passed STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 22728 W: 6197 L: 5945 D: 10586
Ptnml(0-2): 105, 2453, 6001, 2695, 110
https://tests.stockfishchess.org/tests/view/625cf944ff677a888877cd90

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 35664 W: 9535 L: 9264 D: 16865
Ptnml(0-2): 30, 3524, 10455, 3791, 32
https://tests.stockfishchess.org/tests/view/625d3c32ff677a888877d7ca

closes https://github.com/official-stockfish/Stockfish/pull/3989

Bench: 7269563
2022-04-19 19:59:04 +02:00
Tomasz Sobczyk
cb9c2594fc Update architecture to "SFNNv4". Update network to nn-6877cd24400e.nnue.
Architecture:

The diagram of the "SFNNv4" architecture:
https://user-images.githubusercontent.com/8037982/153455685-cbe3a038-e158-4481-844d-9d5fccf5c33a.png

The most important architectural changes are the following:

* 1024x2 [activated] neurons are pairwise, elementwise multiplied (not quite pairwise due to implementation details, see diagram), which introduces a non-linearity that exhibits similar benefits to previously tested sigmoid activation (quantmoid4), while being slightly faster.
* The following layer has therefore 2x less inputs, which we compensate by having 2 more outputs. It is possible that reducing the number of outputs might be beneficial (as we had it as low as 8 before). The layer is now 1024->16.
* The 16 outputs are split into 15 and 1. The 1-wide output is added to the network output (after some necessary scaling due to quantization differences). The 15-wide is activated and follows the usual path through a set of linear layers. The additional 1-wide output is at least neutral, but has shown a slightly positive trend in training compared to networks without it (all 16 outputs through the usual path), and allows possibly an additional stage of lazy evaluation to be introduced in the future.

Additionally, the inference code was rewritten and no longer uses a recursive implementation. This was necessitated by the splitting of the 16-wide intermediate result into two, which was impossible to do with the old implementation with ugly hacks. This is hopefully overall for the better.

First session:

The first session was training a network from scratch (random initialization). The exact trainer used was slightly different (older) from the one used in the second session, but it should not have a measurable effect. The purpose of this session is to establish a strong network base for the second session. Small deviations in strength do not harm the learnability in the second session.

The training was done using the following command:

python3 train.py \
    /home/sopel/nnue/nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
    /home/sopel/nnue/nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
    --gpus "$3," \
    --threads 4 \
    --num-workers 4 \
    --batch-size 16384 \
    --progress_bar_refresh_rate 20 \
    --random-fen-skipping 3 \
    --features=HalfKAv2_hm^ \
    --lambda=1.0 \
    --gamma=0.992 \
    --lr=8.75e-4 \
    --max_epochs=400 \
    --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2

Every 20th net was saved and its playing strength measured against some baseline at 25k nodes per move with pure NNUE evaluation (modified binary). The exact setup is not important as long as it's consistent. The purpose is to sift good candidates from bad ones.

The dataset can be found https://drive.google.com/file/d/1UQdZN_LWQ265spwTBwDKo0t1WjSJKvWY/view

Second session:

The second training session was done starting from the best network (as determined by strength testing) from the first session. It is important that it's resumed from a .pt model and NOT a .ckpt model. The conversion can be performed directly using serialize.py

The LR schedule was modified to use gamma=0.995 instead of gamma=0.992 and LR=4.375e-4 instead of LR=8.75e-4 to flatten the LR curve and allow for longer training. The training was then running for 800 epochs instead of 400 (though it's possibly mostly noise after around epoch 600).

The training was done using the following command:

The training was done using the following command:

python3 train.py \
        /data/sopel/nnue/nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
        /data/sopel/nnue/nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
        --gpus "$3," \
        --threads 4 \
        --num-workers 4 \
        --batch-size 16384 \
        --progress_bar_refresh_rate 20 \
        --random-fen-skipping 3 \
        --features=HalfKAv2_hm^ \
        --lambda=1.0 \
        --gamma=0.995 \
        --lr=4.375e-4 \
        --max_epochs=800 \
        --resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp295/nn-epoch399.pt \
        --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$run_id

In particular note that we now use lambda=1.0 instead of lambda=0.8 (previous nets), because tests show that WDL-skipping introduced by vondele performs better with lambda=1.0. Nets were being saved every 20th epoch. In total 16 runs were made with these settings and the best nets chosen according to playing strength at 25k nodes per move with pure NNUE evaluation - these are the 4 nets that have been put on fishtest.

The dataset can be found either at ftp://ftp.chessdb.cn/pub/sopel/data_sf/T60T70wIsRightFarseerT60T74T75T76.binpack in its entirety (download might be painfully slow because hosted in China) or can be assembled in the following way:

Get the 5640ad48ae/script/interleave_binpacks.py script.
Download T60T70wIsRightFarseer.binpack https://drive.google.com/file/d/1_sQoWBl31WAxNXma2v45004CIVltytP8/view
Download farseerT74.binpack http://trainingdata.farseer.org/T74-May13-End.7z
Download farseerT75.binpack http://trainingdata.farseer.org/T75-June3rd-End.7z
Download farseerT76.binpack http://trainingdata.farseer.org/T76-Nov10th-End.7z
Run python3 interleave_binpacks.py T60T70wIsRightFarseer.binpack farseerT74.binpack farseerT75.binpack farseerT76.binpack T60T70wIsRightFarseerT60T74T75T76.binpack

Tests:

STC: https://tests.stockfishchess.org/tests/view/6203fb85d71106ed12a407b7
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 16952 W: 4775 L: 4521 D: 7656
Ptnml(0-2): 133, 1818, 4318, 2076, 131

LTC: https://tests.stockfishchess.org/tests/view/62041e68d71106ed12a40e85
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 14944 W: 4138 L: 3907 D: 6899
Ptnml(0-2): 21, 1499, 4202, 1728, 22

closes https://github.com/official-stockfish/Stockfish/pull/3927

Bench: 4919707
2022-02-10 19:54:31 +01:00
Brad Knox
ad926d34c0 Update copyright years
Happy New Year!

closes https://github.com/official-stockfish/Stockfish/pull/3881

No functional change
2022-01-06 15:45:45 +01:00
Joost VandeVondele
7d82f0d1f4 Update default net to nn-ac07bd334b62.nnue
Trained with essentially the same data as provided and used by Farseer (mbabigian)
for the previous master net.

T60T70wIsRightFarseerT60T74T75T76.binpack (99GB):
['T60T70wIsRightFarseer.binpack', 'farseerT74.binpack', 'farseerT75.binpack', 'farseerT76.binpack']
using the trainer branch tweakLR1PR (https://github.com/glinscott/nnue-pytorch/pull/158) and
`--gpus 1 --threads 4 --num-workers 4 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 12 --features=HalfKAv2_hm^   --lambda=1.00` options

passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 108280 W: 28042 L: 27636 D: 52602
Ptnml(0-2): 328, 12382, 28401, 12614, 415
https://tests.stockfishchess.org/tests/view/61bcd8c257a0d0f327c34fbd

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 259296 W: 66974 L: 66175 D: 126147
Ptnml(0-2): 146, 27096, 74452, 27721, 233
https://tests.stockfishchess.org/tests/view/61bda70957a0d0f327c37817

closes https://github.com/official-stockfish/Stockfish/pull/3870

Bench: 4633875
2021-12-22 11:02:34 +01:00
farseer
3bea736a2a Update default net to nn-4401e826ebcc.nnue
Using data T60 12/1/20 to 11/2/2021, T74 4/22/21 to 7/27/21, T75 6/3/21 to 10/16/21, T76
(half of the randomly interleaved dataset due to a mistake merging) 11/10/21 to 11/21/21,
wrongIsRight_nodes5000pv2.binpack, and WrongIsRight-Reloaded.binpack combined and shuffled
position by position.

Trained with LR=4.375e-4 and WDL filtering enabled:

python train.py --smart-fen-skipping --random-fen-skipping 0 --features=HalfKAv2_hm^
--lambda=1.0 --max_epochs=800 --seed 910688689 --batch-size 16384
--progress_bar_refresh_rate 30 --threads 4 --num-workers 4 --gpus 1
--resume-from-model C:\msys64\home\Mike\nnue-pytorch\9b3d.pt
E:\trainingdata\T60-T74-T75-T76-WiR-WiRR-PbyP.binpack
E:\trainingdata\T60-T74-T75-T76-WiR-WiRR-PbyP.binpack

Passed STC
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 41848 W: 10962 L: 10676 D: 20210 Elo +2.16
Ptnml(0-2): 142, 4699, 11016, 4865, 202
https://tests.stockfishchess.org/tests/view/61ba886857a0d0f327c2cfd6

Passed LTC
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 27776 W: 7208 L: 6953 D: 13615 Elo + 3.00
Ptnml(0-2): 14, 2808, 8007, 3027, 32
https://tests.stockfishchess.org/tests/view/61baae4d57a0d0f327c2d96f

closes https://github.com/official-stockfish/Stockfish/pull/3856

Bench: 4667591
2021-12-17 18:12:47 +01:00
Joost VandeVondele
ea1ddb6aef Update default net to nn-d93927199b3d.nnue
Using the same dataset as before but slightly reduced initial LR as in
https://github.com/vondele/nnue-pytorch/tree/tweakLR1

passed STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 51368 W: 13492 L: 13191 D: 24685
Ptnml(0-2): 168, 5767, 13526, 6042, 181
https://tests.stockfishchess.org/tests/view/61b61f43dffbe89a3580b529

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 45128 W: 11763 L: 11469 D: 21896
Ptnml(0-2): 24, 4583, 13063, 4863, 31
https://tests.stockfishchess.org/tests/view/61b6612edffbe89a3580c447

closes https://github.com/official-stockfish/Stockfish/pull/3848

Bench: 5121336
2021-12-13 07:17:25 +01:00
Joost VandeVondele
b82d93ece4 Update default net to nn-63376713ba63.nnue.
same data set as previous trained nets, tuned the wdl model slightly for training.
https://github.com/vondele/nnue-pytorch/tree/wdlTweak1

passed STC:
https://tests.stockfishchess.org/tests/view/61abe9e456fcf33bce7d2834
LLR: 2.93 (-2.94,2.94) <0.00,2.50>
Total: 31720 W: 8385 L: 8119 D: 15216
Ptnml(0-2): 117, 3534, 8273, 3838, 98

passed LTC:
https://tests.stockfishchess.org/tests/view/61ac293756fcf33bce7d36cf
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 136136 W: 35255 L: 34741 D: 66140
Ptnml(0-2): 114, 14217, 38894, 14727, 116

closes https://github.com/official-stockfish/Stockfish/pull/3836

Bench: 4667742
2021-12-07 12:40:48 +01:00
Joost VandeVondele
327060232a Update default net to nn-cdf1785602d6.nnue
Same process as in e4a0c6c759
with the training started from the current master net.

passed STC:
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 38224 W: 10023 L: 9742 D: 18459
Ptnml(0-2): 133, 4328, 9940, 4547, 164
https://tests.stockfishchess.org/tests/view/61a8611e4ed77d629d4e836e

passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 115176 W: 29783 L: 29321 D: 56072
Ptnml(0-2): 68, 12039, 32936, 12453, 92
https://tests.stockfishchess.org/tests/view/61a8963e4ed77d629d4e8d9b

closes https://github.com/official-stockfish/Stockfish/pull/3830

Bench: 4829419
2021-12-04 10:31:22 +01:00
Joost VandeVondele
e4a0c6c759 Update default net to nn-4f56ecfca5b7.nnue
New net trained with nnue-pytorch, started from a master net on a data set of Leela
(T60.binpack+T74.binpck) Stockfish data (wrongIsRight_nodes5000pv2.binpack), and
Michael Babigian's conversion of T60 Leela data (including TB7 rescoring) (farseer.binpack)
available as a single interleaved binpack:

https://drive.google.com/file/d/1_sQoWBl31WAxNXma2v45004CIVltytP8/view?usp=sharing

The nnue-pytorch branch used is https://github.com/vondele/nnue-pytorch/tree/wdl

passed STC:
https://tests.stockfishchess.org/tests/view/61a3cc729f0c43dae1c71f1b
LLR: 2.95 (-2.94,2.94) <0.00,2.50>
Total: 49152 W: 12842 L: 12544 D: 23766
Ptnml(0-2): 154, 5542, 12904, 5804, 172

passed LTC:
https://tests.stockfishchess.org/tests/view/61a43c6260afd064f2d724f1
LLR: 2.96 (-2.94,2.94) <0.50,3.00>
Total: 25528 W: 6676 L: 6425 D: 12427
Ptnml(0-2): 9, 2593, 7315, 2832, 15

closes https://github.com/official-stockfish/Stockfish/pull/3816

Bench: 6885242
2021-11-29 12:56:01 +01:00
Joost VandeVondele
9ee58dc7a7 Update default net to nn-3678835b1d3d.nnue
New net trained with nnue-pytorch, started from the master net on a data set of Leela
(T60.binpack+T74.binpck) and Stockfish data (wrongIsRight_nodes5000pv2.binpack),
available as a single interleaved binpack:

https://drive.google.com/file/d/12uWZIA3F2cNbraAzQNb1jgf3tq_6HkTr/view?usp=sharing

The nnue-pytorch branch used is https://github.com/vondele/nnue-pytorch/tree/wdl, which
has the new feature to filter positions based on the likelihood of the current evaluation
leading to the game outcome. It should make it less likely to try to learn from
misevaluated positions. Standard options have been used, starting from the master net:

   --gpus 1 --threads 4 --num-workers 4 --batch-size 16384 --progress_bar_refresh_rate 300
   --smart-fen-skipping --random-fen-skipping 12 --features=HalfKAv2_hm^   --lambda=1.0

Testing with games shows neutral Elo at STC, and good performance at LTC:

STC:
https://tests.stockfishchess.org/tests/view/619eb597c0a4ea18ba95a4dc
ELO: -0.44 +-1.8 (95%) LOS: 31.2%
Total: 40000 W: 10447 L: 10498 D: 19055
Ptnml(0-2): 254, 4576, 10260, 4787, 123

LTC:
https://tests.stockfishchess.org/tests/view/619f6e87c0a4ea18ba95a53f
ELO: 3.30 +-1.8 (95%) LOS: 100.0%
Total: 33062 W: 8560 L: 8246 D: 16256
Ptnml(0-2): 54, 3358, 9352, 3754, 13

passed LTC SPRT:
https://tests.stockfishchess.org/tests/view/61a0864e8967bbf894416e65
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 29376 W: 7663 L: 7396 D: 14317
Ptnml(0-2): 67, 3017, 8205, 3380, 19

closes https://github.com/official-stockfish/Stockfish/pull/3808

Bench: 7011501
2021-11-26 18:16:04 +01:00
xoto10
f21a66f70d Small clean-up, Sept 2021
Closes https://github.com/official-stockfish/Stockfish/pull/3485

No functional change
2021-10-07 09:41:57 +02:00
SFisGOD
723f48dec0 Update default net to nn-13406b1dcbe0.nnue
SPSA 1: https://tests.stockfishchess.org/tests/view/6134abc425b9b35584838572
Parameters: A total of 64 net biases were tuned (hidden layer 1)
Base net: nn-6762d36ad265.nnue
New net: nn-c9fdeea14cb2.nnue

SPSA 2: https://tests.stockfishchess.org/tests/view/61355b7e25b9b3558483860e
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-c9fdeea14cb2.nnue
New net: nn-0ddc28184f4c.nnue

SPSA 3: https://tests.stockfishchess.org/tests/view/613737be0cd98ab40c0c9e4e
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-0ddc28184f4c.nnue
New net: nn-2419828bb394.nnue

SPSA 4: https://tests.stockfishchess.org/tests/view/613966ff689039fce12e0fe7
Parameters: A total of 64 net biases were tuned (hidden layer 1)
Base net: nn-2419828bb394.nnue
New net: nn-05d9b1ee3037.nnue

SPSA 5: https://tests.stockfishchess.org/tests/view/613b4a38689039fce12e1209
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-05d9b1ee3037.nnue
New net: nn-98c6ce0fc15f.nnue

SPSA 6: https://tests.stockfishchess.org/tests/view/613e331515591e7c9ebc3fe9
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-98c6ce0fc15f.nnue
New net: nn-13406b1dcbe0.nnue

STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 82008 W: 21044 L: 20752 D: 40212
Ptnml(0-2): 264, 9341, 21525, 9587, 287
https://tests.stockfishchess.org/tests/view/613f7c6cf29dda16fcca870c

LTC:
LLR: 2.96 (-2.94,2.94) <0.50,3.50>
Total: 182928 W: 46258 L: 45602 D: 91068
Ptnml(0-2): 107, 19448, 51712, 20076, 121
https://tests.stockfishchess.org/tests/view/613fccb97315e7c73204a48c

Closes #3703

Bench: 6658747
2021-09-15 17:50:20 +02:00
SFisGOD
be63ce1bb5 Update default net to nn-6762d36ad265.nnue
SPSA 1: https://tests.stockfishchess.org/tests/view/612cdb1fbb4956d8b78eb5ab
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-fe433fd8c7f6.nnue
New net: nn-5f134823db04.nnue

SPSA 2: https://tests.stockfishchess.org/tests/view/612fcde645091e810014af19
Parameters: A total of 64 net biases were tuned (hidden layer 1)
Base net: nn-5f134823db04.nnue
New net: nn-8eca5dd4e3f7.nnue

SPSA 3: https://tests.stockfishchess.org/tests/view/6130822345091e810014af61
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-8eca5dd4e3f7.nnue
New net: nn-4556108e4f00.nnue

SPSA 4: https://tests.stockfishchess.org/tests/view/613287652ffb3c36aceb923c
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-4556108e4f00.nnue
New net: nn-6762d36ad265.nnue

STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 162776 W: 41220 L: 40807 D: 80749
Ptnml(0-2): 517, 18800, 42359, 19177, 535
https://tests.stockfishchess.org/tests/view/6134107125b9b35584838559

LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 41056 W: 10428 L: 10156 D: 20472
Ptnml(0-2): 30, 4288, 11618, 4564, 28
https://tests.stockfishchess.org/tests/view/6134ad6525b9b3558483857a

closes https://github.com/official-stockfish/Stockfish/pull/3691

Bench: 5812158
2021-09-06 14:08:22 +02:00
SFisGOD
2807dcfab6 Update default net to nn-735bba95dec0.nnue
SPSA 1: https://tests.stockfishchess.org/tests/view/61286d8b62d20cf82b5ad1bd
Parameters: A total of 256 net biases were tuned (hidden layer 2)
Base net: nn-33495fe25081.nnue
New net: nn-83e3cf2af92b.nnue

SPSA 2: https://tests.stockfishchess.org/tests/view/6129cf2162d20cf82b5ad25f
Parameters: A total of 64 net biases were tuned (hidden layer 1)
Base net: nn-83e3cf2af92b.nnue
New net: nn-69a528eaef35.nnue

SPSA 3: https://tests.stockfishchess.org/tests/view/612a0dcb62d20cf82b5ad2a0
Parameters: 256 net weights and 8 net biases (output layer)
Base net: nn-69a528eaef35.nnue
New net: nn-735bba95dec0.nnue

STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 95144 W: 24310 L: 23999 D: 46835
Ptnml(0-2): 232, 11059, 24748, 11232, 301
https://tests.stockfishchess.org/tests/view/612bb3be0fdf40644b4b9996

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 33632 W: 8522 L: 8271 D: 16839
Ptnml(0-2): 18, 3511, 9516, 3744, 27
https://tests.stockfishchess.org/tests/view/612ce5b9bb4956d8b78eb5b3

Closes https://github.com/official-stockfish/Stockfish/pull/3685

Bench: 5600615
2021-08-31 12:56:19 +02:00
SFisGOD
69eede7d08 Update default net to nn-33495fe25081.nnue
STC:
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 37368 W: 9621 L: 9391 D: 18356
Ptnml(0-2): 117, 4287, 9664, 4481, 135
https://tests.stockfishchess.org/tests/view/612768165318138ee1204977

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 13328 W: 3446 L: 3246 D: 6636
Ptnml(0-2): 11, 1383, 3682, 1571, 17
https://tests.stockfishchess.org/tests/view/6127dc8d62d20cf82b5ad196

Closes https://github.com/official-stockfish/Stockfish/pull/3679

Bench: 5179347
2021-08-27 07:51:26 +02:00