Introduces a new NNUE network architecture and associated network parameters
The summary of the changes:
* Position for each perspective mirrored such that the king is on e..h files. Cuts the feature transformer size in half, while preserving enough knowledge to be good. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.b40q4rb1w7on.
* The number of neurons after the feature transformer increased two-fold, to 1024x2. This is possibly mostly due to the now very optimized feature transformer update code.
* The number of neurons after the second layer is reduced from 16 to 8, to reduce the speed impact. This, perhaps surprisingly, doesn't harm the strength much. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.6qkocr97fezq
The AffineTransform code did not work out-of-the box with the smaller number of neurons after the second layer, so some temporary changes have been made to add a special case for InputDimensions == 8. Also additional 0 padding is added to the output for some archs that cannot process inputs by <=8 (SSE2, NEON). VNNI uses an implementation that can keep all outputs in the registers while reducing the number of loads by 3 for each 16 inputs, thanks to the reduced number of output neurons. However GCC is particularily bad at optimization here (and perhaps why the current way the affine transform is done even passed sprt) (see https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit# for details) and more work will be done on this in the following days. I expect the current VNNI implementation to be improved and extended to other architectures.
The network was trained with a slightly modified version of the pytorch trainer (https://github.com/glinscott/nnue-pytorch); the changes are in https://github.com/glinscott/nnue-pytorch/pull/143
The training utilized 2 datasets.
dataset A - https://drive.google.com/file/d/1VlhnHL8f-20AXhGkILujnNXHwy9T-MQw/view?usp=sharing
dataset B - as described in ba01f4b954
The training process was as following:
train on dataset A for 350 epochs, take the best net in terms of elo at 20k nodes per move (it's fine to take anything from later stages of training).
convert the .ckpt to .pt
--resume-from-model from the .pt file, train on dataset B for <600 epochs, take the best net. Lambda=0.8, applied before the loss function.
The first training command:
python3 train.py \
../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \
../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \
--gpus "$3," \
--threads 1 \
--num-workers 1 \
--batch-size 16384 \
--progress_bar_refresh_rate 20 \
--smart-fen-skipping \
--random-fen-skipping 3 \
--features=HalfKAv2_hm^ \
--lambda=1.0 \
--max_epochs=600 \
--default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
The second training command:
python3 serialize.py \
--features=HalfKAv2_hm^ \
../nnue-pytorch-training/experiment_131/run_6/default/version_0/checkpoints/epoch-499.ckpt \
../nnue-pytorch-training/experiment_$1/base/base.pt
python3 train.py \
../nnue-pytorch-training/data/michael_commit_b94a65.binpack \
../nnue-pytorch-training/data/michael_commit_b94a65.binpack \
--gpus "$3," \
--threads 1 \
--num-workers 1 \
--batch-size 16384 \
--progress_bar_refresh_rate 20 \
--smart-fen-skipping \
--random-fen-skipping 3 \
--features=HalfKAv2_hm^ \
--lambda=0.8 \
--max_epochs=600 \
--resume-from-model ../nnue-pytorch-training/experiment_$1/base/base.pt \
--default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
STC: https://tests.stockfishchess.org/tests/view/611120b32a8a49ac5be798c4
LLR: 2.97 (-2.94,2.94) <-0.50,2.50>
Total: 22480 W: 2434 L: 2251 D: 17795
Ptnml(0-2): 101, 1736, 7410, 1865, 128
LTC: https://tests.stockfishchess.org/tests/view/611152b32a8a49ac5be798ea
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 9776 W: 442 L: 333 D: 9001
Ptnml(0-2): 5, 295, 4180, 402, 6
closes https://github.com/official-stockfish/Stockfish/pull/3646
bench: 5189338
combined work by Serio Vieri, Michael Byrne, and Jonathan D (aka SFisGod) based on top of previous developments, by restarts from good nets.
Sergio generated the net https://tests.stockfishchess.org/api/nn/nn-d8609abe8caf.nnue:
The initial net nn-d8609abe8caf.nnue is trained by generating around 16B of training data from the last master net nn-9e3c6298299a.nnue, then trained, continuing from the master net, with lambda=0.2 and sampling ratio of 1. Starting with LR=2e-3, dropping LR with a factor of 0.5 until it reaches LR=5e-4. in_scaling is set to 361. No other significant changes made to the pytorch trainer.
Training data gen command (generates in chunks of 200k positions):
generate_training_data min_depth 9 max_depth 11 count 200000 random_move_count 10 random_move_max_ply 80 random_multi_pv 12 random_multi_pv_diff 100 random_multi_pv_depth 8 write_min_ply 10 eval_limit 1500 book noob_3moves.epd output_file_name gendata/$(date +"%Y%m%d-%H%M")_${HOSTNAME}.binpack
PyTorch trainer command (Note that this only trains for 20 epochs, repeatedly train until convergence):
python train.py --features "HalfKAv2^" --max_epochs 20 --smart-fen-skipping --random-fen-skipping 500 --batch-size 8192 --default_root_dir $dir --seed $RANDOM --threads 4 --num-workers 32 --gpus $gpuids --track_grad_norm 2 --gradient_clip_val 0.05 --lambda 0.2 --log_every_n_steps 50 $resumeopt $data $val
See https://github.com/sergiovieri/Stockfish/tree/tools_mod/rl for the scripts used to generate data.
Based on that Michael generated nn-76a8a7ffb820.nnue in the following way:
The net being submitted was trained with the pytorch trainer: https://github.com/glinscott/nnue-pytorch
python train.py i:/bin/all.binpack i:/bin/all.binpack --gpus 1 --threads 4 --num-workers 30 --batch-size 16384 --progress_bar_refresh_rate 30 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^ --auto_lr_find True --lambda=1.0 --max_epochs=240 --seed %random%%random% --default_root_dir exp/run_109 --resume-from-model ./pt/nn-d8609abe8caf.pt
This run is thus started from Segio Vieri's net nn-d8609abe8caf.nnue
all.binpack equaled 4 parts Wrong_NNUE_2.binpack https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq/view?usp=sharing plus two parts of Training_Data.binpack https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing
Each set was concatenated together - making one large Wrong_NNUE 2 binpack and one large Training so the were approximately equal in size. They were then interleaved together. The idea was to give Wrong_NNUE.binpack closer to equal weighting with the Training_Data binpack
model.py modifications:
loss = torch.pow(torch.abs(p - q), 2.6).mean()
LR = 8.0e-5 calculated as follows: 1.5e-3*(.992^360) - the idea here was to take a highly trained net and just use all.binpack as a finishing micro refinement touch for the last 2 Elo or so. This net was discovered on the 59th epoch.
optimizer = ranger.Ranger(train_params, betas=(.90, 0.999), eps=1.0e-7, gc_loc=False, use_gc=False)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.992)
For this micro optimization, I had set the period to "5" in train.py. This changes the checkpoint output so that every 5th checkpoint file is created
The final touches were to adjust the NNUE scale, as was done by Jonathan in tests running at the same time.
passed LTC
https://tests.stockfishchess.org/tests/view/60fa45aed8a6b65b2f3a77a4
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 53040 W: 1732 L: 1575 D: 49733
Ptnml(0-2): 14, 1432, 23474, 1583, 17
passed STC
https://tests.stockfishchess.org/tests/view/60f9fee2d8a6b65b2f3a7775
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 37928 W: 3178 L: 3001 D: 31749
Ptnml(0-2): 100, 2446, 13695, 2623, 100.
closes https://github.com/official-stockfish/Stockfish/pull/3626
Bench: 5169957
trained with the Python command
c:\nnue>python train.py i:/bin/all.binpack i:/bin/all.binpack --gpus 1 --threads 4 --num-workers 30 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --random-fen-skipping 3 --features=HalfKAv2^ --lambda=1.0 --max_epochs=440 --seed %random%%random% --default_root_dir exp/run_10 --resume-from-model ./pt/nn-3b20abec10c1.pt
`
all.binpack equaled 4 parts Wrong_NNUE_2.binpack https://drive.google.com/file/d/1seGNOqcVdvK_vPNq98j-zV3XPE5zWAeq/view?usp=sharing plus two parts of Training_Data.binpack https://drive.google.com/file/d/1RFkQES3DpsiJqsOtUshENtzPfFgUmEff/view?usp=sharing
Each set was concatenated together - making one large Wrong_NNUE 2 binpack and one large Training so the were approximately equal in size. They were then interleaved together. The idea was to give Wrong_NNUE.binpack closer to equal weighting with the Training_Data binpack .
Net nn-3b20abec10c1.nnue was chosen as the --resume-from-model with the idea that through learning, the manually hex edited values will be learned and will not need to be manually adjusted going forward. They would also be fine tuned by the learning process.
passed STC:
https://tests.stockfishchess.org/tests/view/60cdf91e457376eb8bcab66f
LLR: 2.95 (-2.94,2.94) <-0.50,2.50>
Total: 18256 W: 1639 L: 1479 D: 15138
Ptnml(0-2): 59, 1179, 6505, 1313, 72
passed LTC:
https://tests.stockfishchess.org/tests/view/60ce2166457376eb8bcab6e1
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 18792 W: 654 L: 542 D: 17596
Ptnml(0-2): 9, 490, 8291, 592, 14
closes https://github.com/official-stockfish/Stockfish/pull/3570
Bench: 5020972
Optimization of vondele's nn-33c9d39e5eb6.nnue using SPSA
https://tests.stockfishchess.org/tests/view/60ca68be457376eb8bcab28b
Setting: ck values are default based on how large the parameters are
The new values for this net are the raw values at the end of the tuning (80k games)
The significant changes are in buckets 1 and 2 (5-12 pieces) so the main difference is in playing endgames if we compare it to nn-33c9. There is also change in bucket 7 (29-32 pieces) but not as substantial as the changes in buckets 1 and 2. If we interpret the changes based on an experiment a few months ago, this new net plays more optimistically during endgames and less optimistically during openings.
STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 49504 W: 4246 L: 4053 D: 41205
Ptnml(0-2): 140, 3282, 17749, 3407, 174
https://tests.stockfishchess.org/tests/view/60cbd752457376eb8bcab478
LTC:
LLR: 2.95 (-2.94,2.94) <0.50,3.50>
Total: 88720 W: 4926 L: 4651 D: 79143
Ptnml(0-2): 105, 4048, 35793, 4295, 119
https://tests.stockfishchess.org/tests/view/60cc7828457376eb8bcab4fa
closes https://github.com/official-stockfish/Stockfish/pull/3566
Bench: 4758885
This net was created by @pleomati, who manually edited with an hex editor
10 values randomly chosen in the LCSFNet10 net (nn-6ad41a9207d0.nnue) to
create this one. The LCSFNet10 net was trained by Joost VandeVondele from
a dataset combining Stockfish games and Leela games (16x10^9 positions from
SF self-play at depth 9, and 6.3x10^9 positions from Leela games, so overall
72% of Stockfish positions and 28% of Leela positions).
passed STC 10+0.1:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 50888 W: 5881 L: 5654 D: 39353
Ptnml(0-2): 281, 4290, 16085, 4497, 291
https://tests.stockfishchess.org/tests/view/60cbfa68457376eb8bcab49a
passed LTC 60+0.6:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 25480 W: 1498 L: 1338 D: 22644
Ptnml(0-2): 36, 1155, 10193, 1325, 31
https://tests.stockfishchess.org/tests/view/60cc4af8457376eb8bcab4d4
closes https://github.com/official-stockfish/Stockfish/pull/3564
Bench: 4904930
This net is the result of training on data used by the Leela project. More precisely,
we shuffled T60 and T74 data kindly provided by borg (for different Tnn, the data is
a result of Leela selfplay with differently sized Leela nets).
The data is available at vondele's google drive:
https://drive.google.com/drive/folders/1mftuzYdl9o6tBaceR3d_VBQIrgKJsFpl.
The Leela data comes in small chunks of .binpack files. To shuffle them, we simply
used a small python script to randomly rename the files, and then concatenated them
using `cat`. As validation data we picked a file of T60 data. We will further investigate
T74 data.
The training for the NNUE architecture used 200 epochs with the Python trainer from
the Stockfish project. Unlike the previous run we tried with this data, this run does
not have adjusted scaling — not because we didn't want to, but because we forgot.
However, this training randomly skips 40% more positions than previous run. The loss
was very spiky and decreased slower than it does usually.
Training loss: https://github.com/official-stockfish/images/blob/main/training-loss-8e47cf062333.png
Validation loss: https://github.com/official-stockfish/images/blob/main/validation-loss-8e47cf062333.png
This is the exact training command:
python train.py --smart-fen-skipping --random-fen-skipping 14 --batch-size 16384 --threads 4 --num-workers 4 --gpus 1 trainingdata\training_data.binpack validationdata\val.binpack
---
10k STC result:
ELO: 3.61 +-3.3 (95%) LOS: 98.4%
Total: 10000 W: 1241 L: 1137 D: 7622
Ptnml(0-2): 68, 841, 3086, 929, 76
https://tests.stockfishchess.org/tests/view/60c67e50457376eb8bcaae70
10k LTC result:
ELO: 2.71 +-2.4 (95%) LOS: 98.8%
Total: 10000 W: 659 L: 581 D: 8760
Ptnml(0-2): 22, 485, 3900, 579, 14
https://tests.stockfishchess.org/tests/view/60c69deb457376eb8bcaae98
Passed LTC:
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 9648 W: 685 L: 545 D: 8418
Ptnml(0-2): 22, 448, 3740, 596, 18
https://tests.stockfishchess.org/tests/view/60c6d41c457376eb8bcaaecf
---
closes https://github.com/official-stockfish/Stockfish/pull/3550
Bench: 4877339
This simplification patch implements two changes:
1. it simplifies away the so-called "lazy" path in the NNUE evaluation internals,
where we trusted the psqt head alone to avoid the costly "positional" head in
some cases;
2. it raises a little bit the NNUEThreshold1 in evaluate.cpp (from 682 to 800),
which increases the limit where we switched from NNUE eval to Classical eval.
Both effects increase the number of positional evaluations done by our new net
architecture, but the results of our tests below seem to indicate that the loss
of speed will be compensated by the gain of eval quality.
STC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 26280 W: 2244 L: 2137 D: 21899
Ptnml(0-2): 72, 1755, 9405, 1810, 98
https://tests.stockfishchess.org/tests/view/60ae73f112066fd299795a51
LTC:
LLR: 2.95 (-2.94,2.94) <-2.50,0.50>
Total: 20592 W: 750 L: 677 D: 19165
Ptnml(0-2): 9, 614, 8980, 681, 12
https://tests.stockfishchess.org/tests/view/60ae88e812066fd299795a82
closes https://github.com/official-stockfish/Stockfish/pull/3503
Bench: 3817907
Definition of the lazy threshold moved to evaluate.cpp where all others are.
Lazy threshold only used for real searches, not used for the "eval" call.
This preserves the purity of NNUE evaluation, which is useful to verify
consistency between the engine and the NNUE trainer.
closes https://github.com/official-stockfish/Stockfish/pull/3499
No functional change
Our new nets output two values for the side to move in the last layer.
We can interpret the first value as a material evaluation of the
position, and the second one as the dynamic, positional value of the
location of pieces.
This patch changes the balance for the (materialist, positional) parts
of the score from (128, 128) to (121, 135) when the piece material is
equal between the two players, but keeps the standard (128, 128) balance
when one player is at least an exchange up.
Passed STC:
LLR: 2.93 (-2.94,2.94) <-0.50,2.50>
Total: 15936 W: 1421 L: 1266 D: 13249
Ptnml(0-2): 37, 1037, 5694, 1134, 66
https://tests.stockfishchess.org/tests/view/60a82df9ce8ea25a3ef0408f
Passed LTC:
LLR: 2.94 (-2.94,2.94) <0.50,3.50>
Total: 13904 W: 516 L: 410 D: 12978
Ptnml(0-2): 4, 374, 6088, 484, 2
https://tests.stockfishchess.org/tests/view/60a8bbf9ce8ea25a3ef04101
closes https://github.com/official-stockfish/Stockfish/pull/3492
Bench: 3856635
This PR adds an ability to export any currently loaded network.
The export_net command now takes an optional filename parameter.
If the loaded net is not the embedded net the filename parameter is required.
Two changes were required to support this:
* the "architecture" string, which is really just a some kind of description in the net, is now saved into netDescription on load and correctly saved on export.
* the AffineTransform scrambles weights for some architectures and sparsifies them, such that retrieving the index is hard. This is solved by having a temporary scrambled<->unscrambled index lookup table when loading the network, and the actual index is saved for each individual weight that makes it to canSaturate16. This increases the size of the canSaturate16 entries by 6 bytes.
closes https://github.com/official-stockfish/Stockfish/pull/3456
No functional change
Include scaling change as suggested by Dietrich Kappe,
the one who trained net for Komodo. According to him,
some nets may require different scaling in order to utilize its full strength.
STC:
LLR: 2.93 (-2.94,2.94) {-0.25,1.25}
Total: 99856 W: 9669 L: 9401 D: 80786
Ptnml(0-2): 374, 7468, 34037, 7614, 435
https://tests.stockfishchess.org/tests/view/5fc2697642a050a89f02c8ec
LTC:
LLR: 2.96 (-2.94,2.94) {0.25,1.25}
Total: 29840 W: 1220 L: 1081 D: 27539
Ptnml(0-2): 10, 969, 12827, 1100, 14
https://tests.stockfishchess.org/tests/view/5fc2ea5142a050a89f02c957
Bench: 3561701
- Clean signature of functions in namespace NNUE
- Add comment for countermove based pruning
- Remove bestMoveCount variable
- Add const qualifier to kpp_board_index array
- Fix spaces in get_best_thread()
- Fix indention in capture LMR code in search.cpp
- Rename TtmemDeleter to LargePageDeleter
Closes https://github.com/official-stockfish/Stockfish/pull/3063
No functional change