/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if !defined(BITBOARD_H_INCLUDED) #define BITBOARD_H_INCLUDED //// //// Includes //// #include "direction.h" #include "piece.h" #include "square.h" #include "types.h" //// //// Constants and variables //// const Bitboard EmptyBoardBB = 0ULL; const Bitboard FileABB = 0x0101010101010101ULL; const Bitboard FileBBB = 0x0202020202020202ULL; const Bitboard FileCBB = 0x0404040404040404ULL; const Bitboard FileDBB = 0x0808080808080808ULL; const Bitboard FileEBB = 0x1010101010101010ULL; const Bitboard FileFBB = 0x2020202020202020ULL; const Bitboard FileGBB = 0x4040404040404040ULL; const Bitboard FileHBB = 0x8080808080808080ULL; const Bitboard Rank1BB = 0xFFULL; const Bitboard Rank2BB = 0xFF00ULL; const Bitboard Rank3BB = 0xFF0000ULL; const Bitboard Rank4BB = 0xFF000000ULL; const Bitboard Rank5BB = 0xFF00000000ULL; const Bitboard Rank6BB = 0xFF0000000000ULL; const Bitboard Rank7BB = 0xFF000000000000ULL; const Bitboard Rank8BB = 0xFF00000000000000ULL; extern const Bitboard SquaresByColorBB[2]; extern const Bitboard FileBB[8]; extern const Bitboard NeighboringFilesBB[8]; extern const Bitboard ThisAndNeighboringFilesBB[8]; extern const Bitboard RankBB[8]; extern const Bitboard RelativeRankBB[2][8]; extern const Bitboard InFrontBB[2][8]; extern Bitboard SetMaskBB[65]; extern Bitboard ClearMaskBB[65]; extern Bitboard StepAttackBB[16][64]; extern Bitboard RayBB[64][8]; extern Bitboard BetweenBB[64][64]; extern Bitboard SquaresInFrontMask[2][64]; extern Bitboard PassedPawnMask[2][64]; extern Bitboard AttackSpanMask[2][64]; extern const uint64_t RMult[64]; extern const int RShift[64]; extern Bitboard RMask[64]; extern int RAttackIndex[64]; extern Bitboard RAttacks[0x19000]; extern const uint64_t BMult[64]; extern const int BShift[64]; extern Bitboard BMask[64]; extern int BAttackIndex[64]; extern Bitboard BAttacks[0x1480]; extern Bitboard BishopPseudoAttacks[64]; extern Bitboard RookPseudoAttacks[64]; extern Bitboard QueenPseudoAttacks[64]; extern uint8_t BitCount8Bit[256]; //// //// Inline functions //// /// Functions for testing whether a given bit is set in a bitboard, and for /// setting and clearing bits. inline Bitboard bit_is_set(Bitboard b, Square s) { return b & SetMaskBB[s]; } inline void set_bit(Bitboard *b, Square s) { *b |= SetMaskBB[s]; } inline void clear_bit(Bitboard *b, Square s) { *b &= ClearMaskBB[s]; } /// Functions used to update a bitboard after a move. This is faster /// then calling a sequence of clear_bit() + set_bit() inline Bitboard make_move_bb(Square from, Square to) { return SetMaskBB[from] | SetMaskBB[to]; } inline void do_move_bb(Bitboard *b, Bitboard move_bb) { *b ^= move_bb; } /// rank_bb() and file_bb() take a file or a square as input, and return /// a bitboard representing all squares on the given file or rank. inline Bitboard rank_bb(Rank r) { return RankBB[r]; } inline Bitboard rank_bb(Square s) { return rank_bb(square_rank(s)); } inline Bitboard file_bb(File f) { return FileBB[f]; } inline Bitboard file_bb(Square s) { return file_bb(square_file(s)); } /// neighboring_files_bb takes a file or a square as input, and returns a /// bitboard representing all squares on the neighboring files. inline Bitboard neighboring_files_bb(File f) { return NeighboringFilesBB[f]; } inline Bitboard neighboring_files_bb(Square s) { return NeighboringFilesBB[square_file(s)]; } /// this_and_neighboring_files_bb takes a file or a square as input, and /// returns a bitboard representing all squares on the given and neighboring /// files. inline Bitboard this_and_neighboring_files_bb(File f) { return ThisAndNeighboringFilesBB[f]; } inline Bitboard this_and_neighboring_files_bb(Square s) { return ThisAndNeighboringFilesBB[square_file(s)]; } /// relative_rank_bb() takes a color and a rank as input, and returns a bitboard /// representing all squares on the given rank from the given color's point of /// view. For instance, relative_rank_bb(WHITE, 7) gives all squares on the /// 7th rank, while relative_rank_bb(BLACK, 7) gives all squares on the 2nd /// rank. inline Bitboard relative_rank_bb(Color c, Rank r) { return RelativeRankBB[c][r]; } /// in_front_bb() takes a color and a rank or square as input, and returns a /// bitboard representing all the squares on all ranks in front of the rank /// (or square), from the given color's point of view. For instance, /// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while /// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. inline Bitboard in_front_bb(Color c, Rank r) { return InFrontBB[c][r]; } inline Bitboard in_front_bb(Color c, Square s) { return InFrontBB[c][square_rank(s)]; } /// behind_bb() takes a color and a rank or square as input, and returns a /// bitboard representing all the squares on all ranks behind of the rank /// (or square), from the given color's point of view. inline Bitboard behind_bb(Color c, Rank r) { return InFrontBB[opposite_color(c)][r]; } inline Bitboard behind_bb(Color c, Square s) { return InFrontBB[opposite_color(c)][square_rank(s)]; } /// ray_bb() gives a bitboard representing all squares along the ray in a /// given direction from a given square. inline Bitboard ray_bb(Square s, SignedDirection d) { return RayBB[s][d]; } /// Functions for computing sliding attack bitboards. rook_attacks_bb(), /// bishop_attacks_bb() and queen_attacks_bb() all take a square and a /// bitboard of occupied squares as input, and return a bitboard representing /// all squares attacked by a rook, bishop or queen on the given square. #if defined(IS_64BIT) inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { Bitboard b = blockers & RMask[s]; return RAttacks[RAttackIndex[s] + ((b * RMult[s]) >> RShift[s])]; } inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { Bitboard b = blockers & BMask[s]; return BAttacks[BAttackIndex[s] + ((b * BMult[s]) >> BShift[s])]; } #else // if !defined(IS_64BIT) inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { Bitboard b = blockers & RMask[s]; return RAttacks[RAttackIndex[s] + (unsigned(int(b) * int(RMult[s]) ^ int(b >> 32) * int(RMult[s] >> 32)) >> RShift[s])]; } inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { Bitboard b = blockers & BMask[s]; return BAttacks[BAttackIndex[s] + (unsigned(int(b) * int(BMult[s]) ^ int(b >> 32) * int(BMult[s] >> 32)) >> BShift[s])]; } #endif inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) { return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers); } /// squares_between returns a bitboard representing all squares between /// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a /// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not /// on the same line, file or diagonal, EmptyBoardBB is returned. inline Bitboard squares_between(Square s1, Square s2) { return BetweenBB[s1][s2]; } /// squares_in_front_of takes a color and a square as input, and returns a /// bitboard representing all squares along the line in front of the square, /// from the point of view of the given color. Definition of the table is: /// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s) inline Bitboard squares_in_front_of(Color c, Square s) { return SquaresInFrontMask[c][s]; } /// squares_behind is similar to squares_in_front, but returns the squares /// behind the square instead of in front of the square. inline Bitboard squares_behind(Color c, Square s) { return SquaresInFrontMask[opposite_color(c)][s]; } /// passed_pawn_mask takes a color and a square as input, and returns a /// bitboard mask which can be used to test if a pawn of the given color on /// the given square is a passed pawn. Definition of the table is: /// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s) inline Bitboard passed_pawn_mask(Color c, Square s) { return PassedPawnMask[c][s]; } /// attack_span_mask takes a color and a square as input, and returns a bitboard /// representing all squares that can be attacked by a pawn of the given color /// when it moves along its file starting from the given square. Definition is: /// AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); inline Bitboard attack_span_mask(Color c, Square s) { return AttackSpanMask[c][s]; } /// first_1() finds the least significant nonzero bit in a nonzero bitboard. /// pop_1st_bit() finds and clears the least significant nonzero bit in a /// nonzero bitboard. #if defined(USE_BSFQ) // Assembly code by Heinz van Saanen inline Square first_1(Bitboard b) { Bitboard dummy; __asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) ); return (Square)(dummy); } inline Square pop_1st_bit(Bitboard* b) { const Square s = first_1(*b); *b &= ~(1ULL<