/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef BITBOARD_H_INCLUDED
#define BITBOARD_H_INCLUDED
#include
#include
#include
#include
#include
#include
#include "types.h"
namespace Stockfish {
namespace Bitboards {
void init();
std::string pretty(Bitboard b);
} // namespace Stockfish::Bitboards
constexpr Bitboard FileABB = 0x0101010101010101ULL;
constexpr Bitboard FileBBB = FileABB << 1;
constexpr Bitboard FileCBB = FileABB << 2;
constexpr Bitboard FileDBB = FileABB << 3;
constexpr Bitboard FileEBB = FileABB << 4;
constexpr Bitboard FileFBB = FileABB << 5;
constexpr Bitboard FileGBB = FileABB << 6;
constexpr Bitboard FileHBB = FileABB << 7;
constexpr Bitboard Rank1BB = 0xFF;
constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
extern uint8_t PopCnt16[1 << 16];
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
// Magic holds all magic bitboards relevant data for a single square
struct Magic {
Bitboard mask;
Bitboard magic;
Bitboard* attacks;
unsigned shift;
// Compute the attack's index using the 'magic bitboards' approach
unsigned index(Bitboard occupied) const {
if (HasPext)
return unsigned(pext(occupied, mask));
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
}
};
extern Magic RookMagics[SQUARE_NB];
extern Magic BishopMagics[SQUARE_NB];
inline Bitboard square_bb(Square s) {
assert(is_ok(s));
return (1ULL << s);
}
// Overloads of bitwise operators between a Bitboard and a Square for testing
// whether a given bit is set in a bitboard, and for setting and clearing bits.
inline Bitboard operator&(Bitboard b, Square s) { return b & square_bb(s); }
inline Bitboard operator|(Bitboard b, Square s) { return b | square_bb(s); }
inline Bitboard operator^(Bitboard b, Square s) { return b ^ square_bb(s); }
inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); }
inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); }
inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
constexpr bool more_than_one(Bitboard b) { return b & (b - 1); }
// rank_bb() and file_bb() return a bitboard representing all the squares on
// the given file or rank.
constexpr Bitboard rank_bb(Rank r) { return Rank1BB << (8 * r); }
constexpr Bitboard rank_bb(Square s) { return rank_bb(rank_of(s)); }
constexpr Bitboard file_bb(File f) { return FileABB << f; }
constexpr Bitboard file_bb(Square s) { return file_bb(file_of(s)); }
// shift() moves a bitboard one or two steps as specified by the direction D
template
constexpr Bitboard shift(Bitboard b) {
return D == NORTH ? b << 8
: D == SOUTH ? b >> 8
: D == NORTH + NORTH ? b << 16
: D == SOUTH + SOUTH ? b >> 16
: D == EAST ? (b & ~FileHBB) << 1
: D == WEST ? (b & ~FileABB) >> 1
: D == NORTH_EAST ? (b & ~FileHBB) << 9
: D == NORTH_WEST ? (b & ~FileABB) << 7
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7
: D == SOUTH_WEST ? (b & ~FileABB) >> 9
: 0;
}
// pawn_attacks_bb() returns the squares attacked by pawns of the given color
// from the squares in the given bitboard.
template
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
return C == WHITE ? shift(b) | shift(b)
: shift(b) | shift(b);
}
inline Bitboard pawn_attacks_bb(Color c, Square s) {
assert(is_ok(s));
return PawnAttacks[c][s];
}
// line_bb() returns a bitboard representing an entire line (from board edge
// to board edge) that intersects the two given squares. If the given squares
// are not on a same file/rank/diagonal, the function returns 0. For instance,
// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal.
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
}
// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open
// segment between the squares s1 and s2 (excluding s1 but including s2). If the
// given squares are not on a same file/rank/diagonal, it returns s2. For instance,
// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but
// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick
// allows to generate non-king evasion moves faster: the defending piece must either
// interpose itself to cover the check or capture the checking piece.
inline Bitboard between_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return BetweenBB[s1][s2];
}
// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
// straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) { return line_bb(s1, s2) & s3; }
// distance() functions return the distance between x and y, defined as the
// number of steps for a king in x to reach y.
template
inline int distance(Square x, Square y);
template<>
inline int distance(Square x, Square y) {
return std::abs(file_of(x) - file_of(y));
}
template<>
inline int distance(Square x, Square y) {
return std::abs(rank_of(x) - rank_of(y));
}
template<>
inline int distance(Square x, Square y) {
return SquareDistance[x][y];
}
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
// attacks_bb(Square) returns the pseudo attacks of the given piece type
// assuming an empty board.
template
inline Bitboard attacks_bb(Square s) {
assert((Pt != PAWN) && (is_ok(s)));
return PseudoAttacks[Pt][s];
}
// attacks_bb(Square, Bitboard) returns the attacks by the given piece
// assuming the board is occupied according to the passed Bitboard.
// Sliding piece attacks do not continue passed an occupied square.
template
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
assert((Pt != PAWN) && (is_ok(s)));
switch (Pt)
{
case BISHOP :
return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
case ROOK :
return RookMagics[s].attacks[RookMagics[s].index(occupied)];
case QUEEN :
return attacks_bb(s, occupied) | attacks_bb(s, occupied);
default :
return PseudoAttacks[Pt][s];
}
}
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
assert((pt != PAWN) && (is_ok(s)));
switch (pt)
{
case BISHOP :
return attacks_bb(s, occupied);
case ROOK :
return attacks_bb(s, occupied);
case QUEEN :
return attacks_bb(s, occupied) | attacks_bb(s, occupied);
default :
return PseudoAttacks[pt][s];
}
}
// popcount() counts the number of non-zero bits in a bitboard
inline int popcount(Bitboard b) {
#ifndef USE_POPCNT
union {
Bitboard bb;
uint16_t u[4];
} v = {b};
return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
#elif defined(_MSC_VER)
return int(_mm_popcnt_u64(b));
#else // Assumed gcc or compatible compiler
return __builtin_popcountll(b);
#endif
}
// lsb() and msb() return the least/most significant bit in a non-zero bitboard
#if defined(__GNUC__) // GCC, Clang, ICX
inline Square lsb(Bitboard b) {
assert(b);
return Square(__builtin_ctzll(b));
}
inline Square msb(Bitboard b) {
assert(b);
return Square(63 ^ __builtin_clzll(b));
}
#elif defined(_MSC_VER) // MSVC
#ifdef _WIN64 // MSVC, WIN64
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanForward64(&idx, b);
return (Square) idx;
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanReverse64(&idx, b);
return (Square) idx;
}
#else // MSVC, WIN32
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
if (b & 0xffffffff)
{
_BitScanForward(&idx, int32_t(b));
return Square(idx);
}
else
{
_BitScanForward(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
if (b >> 32)
{
_BitScanReverse(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
else
{
_BitScanReverse(&idx, int32_t(b));
return Square(idx);
}
}
#endif
#else // Compiler is neither GCC nor MSVC compatible
#error "Compiler not supported."
#endif
// least_significant_square_bb() returns the bitboard of the least significant
// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b);
return b & -b;
}
// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard& b) {
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
}
} // namespace Stockfish
#endif // #ifndef BITBOARD_H_INCLUDED