/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED #include #include #include #include #include #include #include "types.h" namespace Stockfish { namespace Bitboards { void init(); std::string pretty(Bitboard b); } // namespace Stockfish::Bitboards constexpr Bitboard FileABB = 0x0101010101010101ULL; constexpr Bitboard FileBBB = FileABB << 1; constexpr Bitboard FileCBB = FileABB << 2; constexpr Bitboard FileDBB = FileABB << 3; constexpr Bitboard FileEBB = FileABB << 4; constexpr Bitboard FileFBB = FileABB << 5; constexpr Bitboard FileGBB = FileABB << 6; constexpr Bitboard FileHBB = FileABB << 7; constexpr Bitboard Rank1BB = 0xFF; constexpr Bitboard Rank2BB = Rank1BB << (8 * 1); constexpr Bitboard Rank3BB = Rank1BB << (8 * 2); constexpr Bitboard Rank4BB = Rank1BB << (8 * 3); constexpr Bitboard Rank5BB = Rank1BB << (8 * 4); constexpr Bitboard Rank6BB = Rank1BB << (8 * 5); constexpr Bitboard Rank7BB = Rank1BB << (8 * 6); constexpr Bitboard Rank8BB = Rank1BB << (8 * 7); extern uint8_t PopCnt16[1 << 16]; extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; // Magic holds all magic bitboards relevant data for a single square struct Magic { Bitboard mask; Bitboard magic; Bitboard* attacks; unsigned shift; // Compute the attack's index using the 'magic bitboards' approach unsigned index(Bitboard occupied) const { if (HasPext) return unsigned(pext(occupied, mask)); if (Is64Bit) return unsigned(((occupied & mask) * magic) >> shift); unsigned lo = unsigned(occupied) & unsigned(mask); unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32); return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift; } }; extern Magic RookMagics[SQUARE_NB]; extern Magic BishopMagics[SQUARE_NB]; constexpr Bitboard square_bb(Square s) { assert(is_ok(s)); return (1ULL << s); } // Overloads of bitwise operators between a Bitboard and a Square for testing // whether a given bit is set in a bitboard, and for setting and clearing bits. inline Bitboard operator&(Bitboard b, Square s) { return b & square_bb(s); } inline Bitboard operator|(Bitboard b, Square s) { return b | square_bb(s); } inline Bitboard operator^(Bitboard b, Square s) { return b ^ square_bb(s); } inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); } inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); } inline Bitboard operator&(Square s, Bitboard b) { return b & s; } inline Bitboard operator|(Square s, Bitboard b) { return b | s; } inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; } inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; } constexpr bool more_than_one(Bitboard b) { return b & (b - 1); } // rank_bb() and file_bb() return a bitboard representing all the squares on // the given file or rank. constexpr Bitboard rank_bb(Rank r) { return Rank1BB << (8 * r); } constexpr Bitboard rank_bb(Square s) { return rank_bb(rank_of(s)); } constexpr Bitboard file_bb(File f) { return FileABB << f; } constexpr Bitboard file_bb(Square s) { return file_bb(file_of(s)); } // Moves a bitboard one or two steps as specified by the direction D template constexpr Bitboard shift(Bitboard b) { return D == NORTH ? b << 8 : D == SOUTH ? b >> 8 : D == NORTH + NORTH ? b << 16 : D == SOUTH + SOUTH ? b >> 16 : D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1 : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7 : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 : 0; } // Returns the squares attacked by pawns of the given color // from the squares in the given bitboard. template constexpr Bitboard pawn_attacks_bb(Bitboard b) { return C == WHITE ? shift(b) | shift(b) : shift(b) | shift(b); } inline Bitboard pawn_attacks_bb(Color c, Square s) { assert(is_ok(s)); return PawnAttacks[c][s]; } // Returns a bitboard representing an entire line (from board edge // to board edge) that intersects the two given squares. If the given squares // are not on a same file/rank/diagonal, the function returns 0. For instance, // line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal. inline Bitboard line_bb(Square s1, Square s2) { assert(is_ok(s1) && is_ok(s2)); return LineBB[s1][s2]; } // Returns a bitboard representing the squares in the semi-open // segment between the squares s1 and s2 (excluding s1 but including s2). If the // given squares are not on a same file/rank/diagonal, it returns s2. For instance, // between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but // between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick // allows to generate non-king evasion moves faster: the defending piece must either // interpose itself to cover the check or capture the checking piece. inline Bitboard between_bb(Square s1, Square s2) { assert(is_ok(s1) && is_ok(s2)); return BetweenBB[s1][s2]; } // Returns true if the squares s1, s2 and s3 are aligned either on a // straight or on a diagonal line. inline bool aligned(Square s1, Square s2, Square s3) { return line_bb(s1, s2) & s3; } // distance() functions return the distance between x and y, defined as the // number of steps for a king in x to reach y. template inline int distance(Square x, Square y); template<> inline int distance(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); } template<> inline int distance(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); } template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); } // Returns the pseudo attacks of the given piece type // assuming an empty board. template inline Bitboard attacks_bb(Square s) { assert((Pt != PAWN) && (is_ok(s))); return PseudoAttacks[Pt][s]; } // Returns the attacks by the given piece // assuming the board is occupied according to the passed Bitboard. // Sliding piece attacks do not continue passed an occupied square. template inline Bitboard attacks_bb(Square s, Bitboard occupied) { assert((Pt != PAWN) && (is_ok(s))); switch (Pt) { case BISHOP : return BishopMagics[s].attacks[BishopMagics[s].index(occupied)]; case ROOK : return RookMagics[s].attacks[RookMagics[s].index(occupied)]; case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); default : return PseudoAttacks[Pt][s]; } } // Returns the attacks by the given piece // assuming the board is occupied according to the passed Bitboard. // Sliding piece attacks do not continue passed an occupied square. inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) { assert((pt != PAWN) && (is_ok(s))); switch (pt) { case BISHOP : return attacks_bb(s, occupied); case ROOK : return attacks_bb(s, occupied); case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); default : return PseudoAttacks[pt][s]; } } // Counts the number of non-zero bits in a bitboard. inline int popcount(Bitboard b) { #ifndef USE_POPCNT union { Bitboard bb; uint16_t u[4]; } v = {b}; return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; #elif defined(_MSC_VER) return int(_mm_popcnt_u64(b)); #else // Assumed gcc or compatible compiler return __builtin_popcountll(b); #endif } // Returns the least significant bit in a non-zero bitboard. inline Square lsb(Bitboard b) { assert(b); #if defined(__GNUC__) // GCC, Clang, ICX return Square(__builtin_ctzll(b)); #elif defined(_MSC_VER) #ifdef _WIN64 // MSVC, WIN64 unsigned long idx; _BitScanForward64(&idx, b); return Square(idx); #else // MSVC, WIN32 unsigned long idx; if (b & 0xffffffff) { _BitScanForward(&idx, int32_t(b)); return Square(idx); } else { _BitScanForward(&idx, int32_t(b >> 32)); return Square(idx + 32); } #endif #else // Compiler is neither GCC nor MSVC compatible #error "Compiler not supported." #endif } // Returns the most significant bit in a non-zero bitboard. inline Square msb(Bitboard b) { assert(b); #if defined(__GNUC__) // GCC, Clang, ICX return Square(63 ^ __builtin_clzll(b)); #elif defined(_MSC_VER) #ifdef _WIN64 // MSVC, WIN64 unsigned long idx; _BitScanReverse64(&idx, b); return Square(idx); #else // MSVC, WIN32 unsigned long idx; if (b >> 32) { _BitScanReverse(&idx, int32_t(b >> 32)); return Square(idx + 32); } else { _BitScanReverse(&idx, int32_t(b)); return Square(idx); } #endif #else // Compiler is neither GCC nor MSVC compatible #error "Compiler not supported." #endif } // Returns the bitboard of the least significant // square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)). inline Bitboard least_significant_square_bb(Bitboard b) { assert(b); return b & -b; } // Finds and clears the least significant bit in a non-zero bitboard. inline Square pop_lsb(Bitboard& b) { assert(b); const Square s = lsb(b); b &= b - 1; return s; } } // namespace Stockfish #endif // #ifndef BITBOARD_H_INCLUDED