/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "network.h"
#include
#include
#include
#include
#include
#include
#include
#include "../evaluate.h"
#include "../incbin/incbin.h"
#include "../memory.h"
#include "../misc.h"
#include "../position.h"
#include "../types.h"
#include "nnue_architecture.h"
#include "nnue_common.h"
#include "nnue_misc.h"
namespace {
// Macro to embed the default efficiently updatable neural network (NNUE) file
// data in the engine binary (using incbin.h, by Dale Weiler).
// This macro invocation will declare the following three variables
// const unsigned char gEmbeddedNNUEData[]; // a pointer to the embedded data
// const unsigned char *const gEmbeddedNNUEEnd; // a marker to the end
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
// Note that this does not work in Microsoft Visual Studio.
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
INCBIN(EmbeddedNNUEBig, EvalFileDefaultNameBig);
INCBIN(EmbeddedNNUESmall, EvalFileDefaultNameSmall);
#else
const unsigned char gEmbeddedNNUEBigData[1] = {0x0};
const unsigned char* const gEmbeddedNNUEBigEnd = &gEmbeddedNNUEBigData[1];
const unsigned int gEmbeddedNNUEBigSize = 1;
const unsigned char gEmbeddedNNUESmallData[1] = {0x0};
const unsigned char* const gEmbeddedNNUESmallEnd = &gEmbeddedNNUESmallData[1];
const unsigned int gEmbeddedNNUESmallSize = 1;
#endif
struct EmbeddedNNUE {
EmbeddedNNUE(const unsigned char* embeddedData,
const unsigned char* embeddedEnd,
const unsigned int embeddedSize) :
data(embeddedData),
end(embeddedEnd),
size(embeddedSize) {}
const unsigned char* data;
const unsigned char* end;
const unsigned int size;
};
using namespace Stockfish::Eval::NNUE;
EmbeddedNNUE get_embedded(EmbeddedNNUEType type) {
if (type == EmbeddedNNUEType::BIG)
return EmbeddedNNUE(gEmbeddedNNUEBigData, gEmbeddedNNUEBigEnd, gEmbeddedNNUEBigSize);
else
return EmbeddedNNUE(gEmbeddedNNUESmallData, gEmbeddedNNUESmallEnd, gEmbeddedNNUESmallSize);
}
}
namespace Stockfish::Eval::NNUE {
namespace Detail {
// Read evaluation function parameters
template
bool read_parameters(std::istream& stream, T& reference) {
std::uint32_t header;
header = read_little_endian(stream);
if (!stream || header != T::get_hash_value())
return false;
return reference.read_parameters(stream);
}
// Write evaluation function parameters
template
bool write_parameters(std::ostream& stream, const T& reference) {
write_little_endian(stream, T::get_hash_value());
return reference.write_parameters(stream);
}
} // namespace Detail
template
Network::Network(const Network& other) :
evalFile(other.evalFile),
embeddedType(other.embeddedType) {
if (other.featureTransformer)
featureTransformer = make_unique_large_page(*other.featureTransformer);
network = make_unique_aligned(LayerStacks);
if (!other.network)
return;
for (std::size_t i = 0; i < LayerStacks; ++i)
network[i] = other.network[i];
}
template
Network&
Network::operator=(const Network& other) {
evalFile = other.evalFile;
embeddedType = other.embeddedType;
if (other.featureTransformer)
featureTransformer = make_unique_large_page(*other.featureTransformer);
network = make_unique_aligned(LayerStacks);
if (!other.network)
return *this;
for (std::size_t i = 0; i < LayerStacks; ++i)
network[i] = other.network[i];
return *this;
}
template
void Network::load(const std::string& rootDirectory, std::string evalfilePath) {
#if defined(DEFAULT_NNUE_DIRECTORY)
std::vector dirs = {"", "", rootDirectory,
stringify(DEFAULT_NNUE_DIRECTORY)};
#else
std::vector dirs = {"", "", rootDirectory};
#endif
if (evalfilePath.empty())
evalfilePath = evalFile.defaultName;
for (const auto& directory : dirs)
{
if (evalFile.current != evalfilePath)
{
if (directory != "")
{
load_user_net(directory, evalfilePath);
}
if (directory == "" && evalfilePath == evalFile.defaultName)
{
load_internal();
}
}
}
}
template
bool Network::save(const std::optional& filename) const {
std::string actualFilename;
std::string msg;
if (filename.has_value())
actualFilename = filename.value();
else
{
if (evalFile.current != evalFile.defaultName)
{
msg = "Failed to export a net. "
"A non-embedded net can only be saved if the filename is specified";
sync_cout << msg << sync_endl;
return false;
}
actualFilename = evalFile.defaultName;
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save(stream, evalFile.current, evalFile.netDescription);
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
sync_cout << msg << sync_endl;
return saved;
}
template
NetworkOutput
Network::evaluate(const Position& pos,
AccumulatorCaches::Cache* cache) const {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType
transformedFeatures[FeatureTransformer::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
const int bucket = (pos.count() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, cache, transformedFeatures, bucket);
const auto positional = network[bucket].propagate(transformedFeatures);
return {static_cast(psqt / OutputScale), static_cast(positional / OutputScale)};
}
template
void Network::verify(std::string evalfilePath,
const std::function& f) const {
if (evalfilePath.empty())
evalfilePath = evalFile.defaultName;
if (evalFile.current != evalfilePath)
{
if (f)
{
std::string msg1 =
"Network evaluation parameters compatible with the engine must be available.";
std::string msg2 = "The network file " + evalfilePath + " was not loaded successfully.";
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
"including the directory name, to the network file.";
std::string msg4 = "The default net can be downloaded from: "
"https://tests.stockfishchess.org/api/nn/"
+ evalFile.defaultName;
std::string msg5 = "The engine will be terminated now.";
std::string msg = "ERROR: " + msg1 + '\n' + "ERROR: " + msg2 + '\n' + "ERROR: " + msg3
+ '\n' + "ERROR: " + msg4 + '\n' + "ERROR: " + msg5 + '\n';
f(msg);
}
exit(EXIT_FAILURE);
}
if (f)
{
size_t size = sizeof(*featureTransformer) + sizeof(Arch) * LayerStacks;
f("info string NNUE evaluation using " + evalfilePath + " ("
+ std::to_string(size / (1024 * 1024)) + "MiB, ("
+ std::to_string(featureTransformer->InputDimensions) + ", "
+ std::to_string(network[0].TransformedFeatureDimensions) + ", "
+ std::to_string(network[0].FC_0_OUTPUTS) + ", " + std::to_string(network[0].FC_1_OUTPUTS)
+ ", 1))");
}
}
template
void Network::hint_common_access(
const Position& pos, AccumulatorCaches::Cache* cache) const {
featureTransformer->hint_common_access(pos, cache);
}
template
NnueEvalTrace
Network::trace_evaluate(const Position& pos,
AccumulatorCaches::Cache* cache) const {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType
transformedFeatures[FeatureTransformer::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
NnueEvalTrace t{};
t.correctBucket = (pos.count() - 1) / 4;
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
{
const auto materialist =
featureTransformer->transform(pos, cache, transformedFeatures, bucket);
const auto positional = network[bucket].propagate(transformedFeatures);
t.psqt[bucket] = static_cast(materialist / OutputScale);
t.positional[bucket] = static_cast(positional / OutputScale);
}
return t;
}
template
void Network::load_user_net(const std::string& dir,
const std::string& evalfilePath) {
std::ifstream stream(dir + evalfilePath, std::ios::binary);
auto description = load(stream);
if (description.has_value())
{
evalFile.current = evalfilePath;
evalFile.netDescription = description.value();
}
}
template
void Network::load_internal() {
// C++ way to prepare a buffer for a memory stream
class MemoryBuffer: public std::basic_streambuf {
public:
MemoryBuffer(char* p, size_t n) {
setg(p, p, p + n);
setp(p, p + n);
}
};
const auto embedded = get_embedded(embeddedType);
MemoryBuffer buffer(const_cast(reinterpret_cast(embedded.data)),
size_t(embedded.size));
std::istream stream(&buffer);
auto description = load(stream);
if (description.has_value())
{
evalFile.current = evalFile.defaultName;
evalFile.netDescription = description.value();
}
}
template
void Network::initialize() {
featureTransformer = make_unique_large_page();
network = make_unique_aligned(LayerStacks);
}
template
bool Network::save(std::ostream& stream,
const std::string& name,
const std::string& netDescription) const {
if (name.empty() || name == "None")
return false;
return write_parameters(stream, netDescription);
}
template
std::optional Network::load(std::istream& stream) {
initialize();
std::string description;
return read_parameters(stream, description) ? std::make_optional(description) : std::nullopt;
}
// Read network header
template
bool Network::read_header(std::istream& stream,
std::uint32_t* hashValue,
std::string* desc) const {
std::uint32_t version, size;
version = read_little_endian(stream);
*hashValue = read_little_endian(stream);
size = read_little_endian(stream);
if (!stream || version != Version)
return false;
desc->resize(size);
stream.read(&(*desc)[0], size);
return !stream.fail();
}
// Write network header
template
bool Network::write_header(std::ostream& stream,
std::uint32_t hashValue,
const std::string& desc) const {
write_little_endian(stream, Version);
write_little_endian(stream, hashValue);
write_little_endian(stream, std::uint32_t(desc.size()));
stream.write(&desc[0], desc.size());
return !stream.fail();
}
template
bool Network::read_parameters(std::istream& stream,
std::string& netDescription) const {
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription))
return false;
if (hashValue != Network::hash)
return false;
if (!Detail::read_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
{
if (!Detail::read_parameters(stream, network[i]))
return false;
}
return stream && stream.peek() == std::ios::traits_type::eof();
}
template
bool Network::write_parameters(std::ostream& stream,
const std::string& netDescription) const {
if (!write_header(stream, Network::hash, netDescription))
return false;
if (!Detail::write_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
{
if (!Detail::write_parameters(stream, network[i]))
return false;
}
return bool(stream);
}
// Explicit template instantiation
template class Network<
NetworkArchitecture,
FeatureTransformer>;
template class Network<
NetworkArchitecture,
FeatureTransformer>;
} // namespace Stockfish::Eval::NNUE