/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Definition of layer ClippedReLU of NNUE evaluation function
#ifndef NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
#define NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
#include "../nnue_common.h"
namespace Stockfish::Eval::NNUE::Layers {
// Clipped ReLU
template
class ClippedReLU {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using OutputType = std::uint8_t;
static_assert(std::is_same::value, "");
// Number of input/output dimensions
static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions;
static constexpr IndexType OutputDimensions = InputDimensions;
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple(OutputDimensions, 32);
// Size of forward propagation buffer used in this layer
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
std::uint32_t hashValue = 0x538D24C7u;
hashValue += PreviousLayer::get_hash_value();
return hashValue;
}
// Read network parameters
bool read_parameters(std::istream& stream) {
return previousLayer.read_parameters(stream);
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
return previousLayer.write_parameters(stream);
}
// Forward propagation
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
const auto output = reinterpret_cast(buffer);
#if defined(USE_AVX2)
if constexpr (InputDimensions % SimdWidth == 0) {
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m256i Zero = _mm256_setzero_si256();
const __m256i Offsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])), WeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])), WeightScaleBits);
_mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), Zero), Offsets));
}
} else {
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const __m128i Zero = _mm_setzero_si128();
const auto in = reinterpret_cast(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i], _mm_max_epi8(packedbytes, Zero));
}
}
constexpr IndexType Start =
InputDimensions % SimdWidth == 0
? InputDimensions / SimdWidth * SimdWidth
: InputDimensions / (SimdWidth / 2) * (SimdWidth / 2);
#elif defined(USE_SSE2)
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
#ifdef USE_SSE41
const __m128i Zero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
const auto in = reinterpret_cast(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, Zero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_MMX)
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
const auto in = reinterpret_cast(input);
const auto out = reinterpret_cast<__m64*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m64 words0 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]),
WeightScaleBits);
const __m64 words1 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]),
WeightScaleBits);
const __m64 packedbytes = _mm_packs_pi16(words0, words1);
out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
_mm_empty();
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_NEON)
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const int8x8_t Zero = {0};
const auto in = reinterpret_cast(input);
const auto out = reinterpret_cast(output);
for (IndexType i = 0; i < NumChunks; ++i) {
int16x8_t shifted;
const auto pack = reinterpret_cast(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], WeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], WeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), Zero);
}
constexpr IndexType Start = NumChunks * (SimdWidth / 2);
#else
constexpr IndexType Start = 0;
#endif
for (IndexType i = Start; i < InputDimensions; ++i) {
output[i] = static_cast(
std::max(0, std::min(127, input[i] >> WeightScaleBits)));
}
// Affine transform layers expect that there is at least
// ceil_to_multiple(OutputDimensions, 32) initialized values.
// We cannot do this in the affine transform because it requires
// preallocating space here.
for (IndexType i = OutputDimensions; i < PaddedOutputDimensions; ++i) {
output[i] = 0;
}
return output;
}
private:
PreviousLayer previousLayer;
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED