/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Definition of layer ClippedReLU of NNUE evaluation function #ifndef NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED #define NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED #include "../nnue_common.h" namespace Stockfish::Eval::NNUE::Layers { // Clipped ReLU template class ClippedReLU { public: // Input/output type using InputType = typename PreviousLayer::OutputType; using OutputType = std::uint8_t; static_assert(std::is_same::value, ""); // Number of input/output dimensions static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions; static constexpr IndexType OutputDimensions = InputDimensions; static constexpr IndexType PaddedOutputDimensions = ceil_to_multiple(OutputDimensions, 32); // Size of forward propagation buffer used in this layer static constexpr std::size_t SelfBufferSize = ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize); // Size of the forward propagation buffer used from the input layer to this layer static constexpr std::size_t BufferSize = PreviousLayer::BufferSize + SelfBufferSize; // Hash value embedded in the evaluation file static constexpr std::uint32_t get_hash_value() { std::uint32_t hashValue = 0x538D24C7u; hashValue += PreviousLayer::get_hash_value(); return hashValue; } // Read network parameters bool read_parameters(std::istream& stream) { return previousLayer.read_parameters(stream); } // Write network parameters bool write_parameters(std::ostream& stream) const { return previousLayer.write_parameters(stream); } // Forward propagation const OutputType* propagate( const TransformedFeatureType* transformedFeatures, char* buffer) const { const auto input = previousLayer.propagate( transformedFeatures, buffer + SelfBufferSize); const auto output = reinterpret_cast(buffer); #if defined(USE_AVX2) if constexpr (InputDimensions % SimdWidth == 0) { constexpr IndexType NumChunks = InputDimensions / SimdWidth; const __m256i Zero = _mm256_setzero_si256(); const __m256i Offsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0); const auto in = reinterpret_cast(input); const auto out = reinterpret_cast<__m256i*>(output); for (IndexType i = 0; i < NumChunks; ++i) { const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32( _mm256_load_si256(&in[i * 4 + 0]), _mm256_load_si256(&in[i * 4 + 1])), WeightScaleBits); const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32( _mm256_load_si256(&in[i * 4 + 2]), _mm256_load_si256(&in[i * 4 + 3])), WeightScaleBits); _mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8( _mm256_packs_epi16(words0, words1), Zero), Offsets)); } } else { constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2); const __m128i Zero = _mm_setzero_si128(); const auto in = reinterpret_cast(input); const auto out = reinterpret_cast<__m128i*>(output); for (IndexType i = 0; i < NumChunks; ++i) { const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32( _mm_load_si128(&in[i * 4 + 0]), _mm_load_si128(&in[i * 4 + 1])), WeightScaleBits); const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32( _mm_load_si128(&in[i * 4 + 2]), _mm_load_si128(&in[i * 4 + 3])), WeightScaleBits); const __m128i packedbytes = _mm_packs_epi16(words0, words1); _mm_store_si128(&out[i], _mm_max_epi8(packedbytes, Zero)); } } constexpr IndexType Start = InputDimensions % SimdWidth == 0 ? InputDimensions / SimdWidth * SimdWidth : InputDimensions / (SimdWidth / 2) * (SimdWidth / 2); #elif defined(USE_SSE2) constexpr IndexType NumChunks = InputDimensions / SimdWidth; #ifdef USE_SSE41 const __m128i Zero = _mm_setzero_si128(); #else const __m128i k0x80s = _mm_set1_epi8(-128); #endif const auto in = reinterpret_cast(input); const auto out = reinterpret_cast<__m128i*>(output); for (IndexType i = 0; i < NumChunks; ++i) { const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32( _mm_load_si128(&in[i * 4 + 0]), _mm_load_si128(&in[i * 4 + 1])), WeightScaleBits); const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32( _mm_load_si128(&in[i * 4 + 2]), _mm_load_si128(&in[i * 4 + 3])), WeightScaleBits); const __m128i packedbytes = _mm_packs_epi16(words0, words1); _mm_store_si128(&out[i], #ifdef USE_SSE41 _mm_max_epi8(packedbytes, Zero) #else _mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s) #endif ); } constexpr IndexType Start = NumChunks * SimdWidth; #elif defined(USE_MMX) constexpr IndexType NumChunks = InputDimensions / SimdWidth; const __m64 k0x80s = _mm_set1_pi8(-128); const auto in = reinterpret_cast(input); const auto out = reinterpret_cast<__m64*>(output); for (IndexType i = 0; i < NumChunks; ++i) { const __m64 words0 = _mm_srai_pi16( _mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]), WeightScaleBits); const __m64 words1 = _mm_srai_pi16( _mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]), WeightScaleBits); const __m64 packedbytes = _mm_packs_pi16(words0, words1); out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s); } _mm_empty(); constexpr IndexType Start = NumChunks * SimdWidth; #elif defined(USE_NEON) constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2); const int8x8_t Zero = {0}; const auto in = reinterpret_cast(input); const auto out = reinterpret_cast(output); for (IndexType i = 0; i < NumChunks; ++i) { int16x8_t shifted; const auto pack = reinterpret_cast(&shifted); pack[0] = vqshrn_n_s32(in[i * 2 + 0], WeightScaleBits); pack[1] = vqshrn_n_s32(in[i * 2 + 1], WeightScaleBits); out[i] = vmax_s8(vqmovn_s16(shifted), Zero); } constexpr IndexType Start = NumChunks * (SimdWidth / 2); #else constexpr IndexType Start = 0; #endif for (IndexType i = Start; i < InputDimensions; ++i) { output[i] = static_cast( std::max(0, std::min(127, input[i] >> WeightScaleBits))); } // Affine transform layers expect that there is at least // ceil_to_multiple(OutputDimensions, 32) initialized values. // We cannot do this in the affine transform because it requires // preallocating space here. for (IndexType i = OutputDimensions; i < PaddedOutputDimensions; ++i) { output[i] = 0; } return output; } private: PreviousLayer previousLayer; }; } // namespace Stockfish::Eval::NNUE::Layers #endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED