/* Copyright (c) 2013 Ronald de Man This file may be redistributed and/or modified without restrictions. tbprobe.cpp contains the Stockfish-specific routines of the tablebase probing code. It should be relatively easy to adapt this code to other chess engines. */ #include #include #include // For std::memset #include #include #include #include #include #include "../bitboard.h" #include "../movegen.h" #include "../position.h" #include "../search.h" #include "../thread_win32.h" #include "../types.h" #include "tbprobe.h" #ifndef _WIN32 #include #include #include #include #else #define WIN32_LEAN_AND_MEAN #define NOMINMAX #include #endif #define TBPIECES 6 using namespace Tablebases; int Tablebases::MaxCardinality = 0; namespace { typedef uint64_t base_t; inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } inline WDLScore operator+(WDLScore d1, WDLScore d2) { return WDLScore(int(d1) + int(d2)); } inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } struct PairsData { char *indextable; uint16_t *sizetable; uint8_t *data; uint16_t *offset; uint8_t *symlen; uint8_t *sympat; int blocksize; int idxbits; int min_len; base_t base[1]; // C++ complains about base[]... }; class WDLEntry { static constexpr uint8_t TB_MAGIC[] = { 0x71, 0xE8, 0x23, 0x5D }; public: WDLEntry(const Position& pos, Key keys[]); ~WDLEntry(); bool init(const std::string& fname); char* baseAddress; uint64_t key; uint64_t mapping; uint8_t ready; uint8_t num; uint8_t symmetric; uint8_t has_pawns; union { struct { uint8_t hasUniquePieces; PairsData* precomp; int factor[TBPIECES]; uint8_t pieces[TBPIECES]; uint8_t norm[TBPIECES]; } piece[2]; struct { uint8_t pawns[2]; struct { PairsData* precomp[2]; int factor[2][TBPIECES]; uint8_t pieces[2][TBPIECES]; uint8_t norm[2][TBPIECES]; } file[4]; } pawn; }; }; class DTZEntry { static constexpr uint8_t TB_MAGIC[] = { 0xD7, 0x66, 0x0C, 0xA5 }; public: DTZEntry(const WDLEntry& wdl, Key keys[]); ~DTZEntry(); bool init(const std::string& fname); uint64_t keys[2]; char* baseAddress; uint64_t key; uint64_t mapping; uint8_t ready; uint8_t num; uint8_t symmetric; uint8_t has_pawns; union { struct { uint8_t hasUniquePieces; PairsData* precomp; int factor[TBPIECES]; uint8_t pieces[TBPIECES]; uint8_t norm[TBPIECES]; uint8_t flags; // accurate, mapped, side uint16_t map_idx[4]; uint8_t* map; } piece; struct { uint8_t pawns[2]; struct { PairsData* precomp; int factor[TBPIECES]; uint8_t pieces[TBPIECES]; uint8_t norm[TBPIECES]; uint8_t flags; uint16_t map_idx[4]; } file[4]; uint8_t* map; } pawn; }; }; const signed char OffdiagA1H8[] = { 0,-1,-1,-1,-1,-1,-1,-1, 1, 0,-1,-1,-1,-1,-1,-1, 1, 1, 0,-1,-1,-1,-1,-1, 1, 1, 1, 0,-1,-1,-1,-1, 1, 1, 1, 1, 0,-1,-1,-1, 1, 1, 1, 1, 1, 0,-1,-1, 1, 1, 1, 1, 1, 1, 0,-1, 1, 1, 1, 1, 1, 1, 1, 0 }; const uint8_t Triangle[] = { 6, 0, 1, 2, 2, 1, 0, 6, 0, 7, 3, 4, 4, 3, 7, 0, 1, 3, 8, 5, 5, 8, 3, 1, 2, 4, 5, 9, 9, 5, 4, 2, 2, 4, 5, 9, 9, 5, 4, 2, 1, 3, 8, 5, 5, 8, 3, 1, 0, 7, 3, 4, 4, 3, 7, 0, 6, 0, 1, 2, 2, 1, 0, 6 }; const uint8_t Lower[] = { 28, 0, 1, 2, 3, 4, 5, 6, 0, 29, 7, 8, 9, 10, 11, 12, 1, 7, 30, 13, 14, 15, 16, 17, 2, 8, 13, 31, 18, 19, 20, 21, 3, 9, 14, 18, 32, 22, 23, 24, 4, 10, 15, 19, 22, 33, 25, 26, 5, 11, 16, 20, 23, 25, 34, 27, 6, 12, 17, 21, 24, 26, 27, 35 }; const uint8_t Diag[] = { 0, 0, 0, 0, 0, 0, 0, 8, 0, 1, 0, 0, 0, 0, 9, 0, 0, 0, 2, 0, 0, 10, 0, 0, 0, 0, 0, 3, 11, 0, 0, 0, 0, 0, 0, 12, 4, 0, 0, 0, 0, 0, 13, 0, 0, 5, 0, 0, 0, 14, 0, 0, 0, 0, 6, 0, 15, 0, 0, 0, 0, 0, 0, 7 }; const uint8_t Flap[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 18, 18, 12, 6, 0, 1, 7, 13, 19, 19, 13, 7, 1, 2, 8, 14, 20, 20, 14, 8, 2, 3, 9, 15, 21, 21, 15, 9, 3, 4, 10, 16, 22, 22, 16, 10, 4, 5, 11, 17, 23, 23, 17, 11, 5, 0, 0, 0, 0, 0, 0, 0, 0 }; const uint8_t Ptwist[] = { 0, 0, 0, 0, 0, 0, 0, 0, 47, 35, 23, 11, 10, 22, 34, 46, 45, 33, 21, 9, 8, 20, 32, 44, 43, 31, 19, 7, 6, 18, 30, 42, 41, 29, 17, 5, 4, 16, 28, 40, 39, 27, 15, 3, 2, 14, 26, 38, 37, 25, 13, 1, 0, 12, 24, 36, 0, 0, 0, 0, 0, 0, 0, 0 }; const uint8_t Invflap[] = { 8, 16, 24, 32, 40, 48, 9, 17, 25, 33, 41, 49, 10, 18, 26, 34, 42, 50, 11, 19, 27, 35, 43, 51 }; const short KK_idx[10][64] = { { -1, -1, -1, 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 }, { 58, -1, -1, -1, 59, 60, 61, 62, 63, -1, -1, -1, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,101,102,103,104,105,106,107, 108,109,110,111,112,113,114,115 }, { 116,117, -1, -1, -1,118,119,120, 121,122, -1, -1, -1,123,124,125, 126,127,128,129,130,131,132,133, 134,135,136,137,138,139,140,141, 142,143,144,145,146,147,148,149, 150,151,152,153,154,155,156,157, 158,159,160,161,162,163,164,165, 166,167,168,169,170,171,172,173 }, { 174, -1, -1, -1,175,176,177,178, 179, -1, -1, -1,180,181,182,183, 184, -1, -1, -1,185,186,187,188, 189,190,191,192,193,194,195,196, 197,198,199,200,201,202,203,204, 205,206,207,208,209,210,211,212, 213,214,215,216,217,218,219,220, 221,222,223,224,225,226,227,228 }, { 229,230, -1, -1, -1,231,232,233, 234,235, -1, -1, -1,236,237,238, 239,240, -1, -1, -1,241,242,243, 244,245,246,247,248,249,250,251, 252,253,254,255,256,257,258,259, 260,261,262,263,264,265,266,267, 268,269,270,271,272,273,274,275, 276,277,278,279,280,281,282,283 }, { 284,285,286,287,288,289,290,291, 292,293, -1, -1, -1,294,295,296, 297,298, -1, -1, -1,299,300,301, 302,303, -1, -1, -1,304,305,306, 307,308,309,310,311,312,313,314, 315,316,317,318,319,320,321,322, 323,324,325,326,327,328,329,330, 331,332,333,334,335,336,337,338 }, { -1, -1,339,340,341,342,343,344, -1, -1,345,346,347,348,349,350, -1, -1,441,351,352,353,354,355, -1, -1, -1,442,356,357,358,359, -1, -1, -1, -1,443,360,361,362, -1, -1, -1, -1, -1,444,363,364, -1, -1, -1, -1, -1, -1,445,365, -1, -1, -1, -1, -1, -1, -1,446 }, { -1, -1, -1,366,367,368,369,370, -1, -1, -1,371,372,373,374,375, -1, -1, -1,376,377,378,379,380, -1, -1, -1,447,381,382,383,384, -1, -1, -1, -1,448,385,386,387, -1, -1, -1, -1, -1,449,388,389, -1, -1, -1, -1, -1, -1,450,390, -1, -1, -1, -1, -1, -1, -1,451 }, { 452,391,392,393,394,395,396,397, -1, -1, -1, -1,398,399,400,401, -1, -1, -1, -1,402,403,404,405, -1, -1, -1, -1,406,407,408,409, -1, -1, -1, -1,453,410,411,412, -1, -1, -1, -1, -1,454,413,414, -1, -1, -1, -1, -1, -1,455,415, -1, -1, -1, -1, -1, -1, -1,456 }, { 457,416,417,418,419,420,421,422, -1,458,423,424,425,426,427,428, -1, -1, -1, -1, -1,429,430,431, -1, -1, -1, -1, -1,432,433,434, -1, -1, -1, -1, -1,435,436,437, -1, -1, -1, -1, -1,459,438,439, -1, -1, -1, -1, -1, -1,460,440, -1, -1, -1, -1, -1, -1, -1,461 } }; const int wdl_to_dtz[] = { -1, -101, 0, 101, 1 }; const int wdl_to_map[] = { 1, 3, 0, 2, 0 }; const uint8_t pa_flags[] = { 8, 0, 0, 0, 4 }; const Value WDL_to_value[] = { -VALUE_MATE + MAX_PLY + 1, VALUE_DRAW - 2, VALUE_DRAW, VALUE_DRAW + 2, VALUE_MATE - MAX_PLY - 1 }; const std::string PieceToChar = " PNBRQK"; Mutex TB_mutex; std::string TBPaths; std::deque WDLTable; std::list DTZTable; int Binomial[6][64]; int Pawnidx[5][24]; int Pfactor[5][4]; class HashTable { struct Entry { Key key; WDLEntry* ptr; }; static const int TBHASHBITS = 10; static const int HSHMAX = 5; Entry table[1 << TBHASHBITS][HSHMAX]; void insert(Key key, WDLEntry* ptr) { Entry* entry = table[key >> (64 - TBHASHBITS)]; for (int i = 0; i < HSHMAX; ++i, ++entry) if (!entry->ptr || entry->key == key) { entry->key = key; entry->ptr = ptr; return; } std::cerr << "HSHMAX too low!" << std::endl; exit(1); } public: WDLEntry* operator[](Key key) { Entry* entry = table[key >> (64 - TBHASHBITS)]; for (int i = 0; i < HSHMAX; ++i, ++entry) if (entry->key == key) return entry->ptr; return nullptr; } void clear() { std::memset(table, 0, sizeof(table)); } void insert(const std::vector& pieces); }; HashTable WDLHash; class TBFile : public std::ifstream { std::string fname; public: // Open the file with the given name found among the TBPaths. TBPaths stores // the paths to directories where the .rtbw and .rtbz files can be found. // Multiple directories are separated by ";" on Windows and by ":" on // Unix-based operating systems. // // Example: // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 TBFile(const std::string& f) { #ifndef _WIN32 const char SepChar = ':'; #else const char SepChar = ';'; #endif std::stringstream ss(TBPaths); std::string path; while (std::getline(ss, path, SepChar)) { fname = path + "/" + f; std::ifstream::open(fname); if (is_open()) return; } } // Memory map the file and check it. File should be already open and // will be closed after mapping. uint8_t* map(char** baseAddress, uint64_t* mapping, const uint8_t TB_MAGIC[]) { if (!is_open()) { std::cerr << "Could not find " << fname << std::endl; *baseAddress = nullptr; return nullptr; } close(); #ifndef _WIN32 struct stat statbuf; int fd = ::open(fname.c_str(), O_RDONLY); fstat(fd, &statbuf); *mapping = statbuf.st_size; *baseAddress = (char*)mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); ::close(fd); if (*baseAddress == (char*)(-1)) { std::cerr << "Could not mmap() " << fname << std::endl; exit(1); } #else HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); DWORD size_high; DWORD size_low = GetFileSize(fd, &size_high); HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); CloseHandle(fd); if (!mmap) { std::cerr << "CreateFileMapping() failed" << std::endl; exit(1); } *mapping = (uint64_t)mmap; *baseAddress = (char*)MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); if (!*baseAddress) { std::cerr << "MapViewOfFile() failed, name = " << fname << ", error = " << GetLastError() << std::endl; exit(1); } #endif uint8_t* data = (uint8_t*)*baseAddress; if ( *data++ != TB_MAGIC[0] || *data++ != TB_MAGIC[1] || *data++ != TB_MAGIC[2] || *data++ != TB_MAGIC[3]) { std::cerr << "Corrupted table in file " << fname << std::endl; unmap(*baseAddress, *mapping); *baseAddress = nullptr; return nullptr; } return data; } static void unmap(char* baseAddress, uint64_t mapping) { #ifndef _WIN32 munmap(baseAddress, mapping); #else UnmapViewOfFile(baseAddress); CloseHandle((HANDLE)mapping); #endif } }; WDLEntry::WDLEntry(const Position& pos, Key keys[]) { memset(this, 0, sizeof(WDLEntry)); key = keys[WHITE]; num = pos.count(WHITE) + pos.count(BLACK); symmetric = (keys[WHITE] == keys[BLACK]); has_pawns = pos.count(WHITE) + pos.count(BLACK); if (has_pawns) { // FIXME: What it means this one? bool c = ( !pos.count(BLACK) || ( pos.count(WHITE) && pos.count(BLACK) >= pos.count(WHITE))); pawn.pawns[0] = pos.count(c ? WHITE : BLACK); pawn.pawns[1] = pos.count(c ? BLACK : WHITE); } else for (Color c = WHITE; c <= BLACK; ++c) for (PieceType pt = PAWN; pt < KING; ++pt) if (popcount(pos.pieces(c, pt)) == 1) piece[0].hasUniquePieces = piece[1].hasUniquePieces = true; } WDLEntry::~WDLEntry() { if (baseAddress) TBFile::unmap(baseAddress, mapping); if (has_pawns) for (File f = FILE_A; f <= FILE_D; ++f) { free(pawn.file[f].precomp[0]); free(pawn.file[f].precomp[1]); } else { free(piece[0].precomp); free(piece[1].precomp); } } DTZEntry::DTZEntry(const WDLEntry& wdl, Key k[]) { memset(this, 0, sizeof(DTZEntry)); keys[0] = k[0]; keys[1] = k[1]; key = wdl.key; num = wdl.num; symmetric = wdl.symmetric; has_pawns = wdl.has_pawns; if (has_pawns) { pawn.pawns[0] = wdl.pawn.pawns[0]; pawn.pawns[1] = wdl.pawn.pawns[1]; } else piece.hasUniquePieces = wdl.piece[0].hasUniquePieces; } DTZEntry::~DTZEntry() { if (baseAddress) TBFile::unmap(baseAddress, mapping); if (has_pawns) for (File f = FILE_A; f <= FILE_D; ++f) free(pawn.file[f].precomp); else free(piece.precomp); } // Given a position with 6 or fewer pieces, produce a text string // of the form KQPvKRP, where "KQP" represents the white pieces if // mirror == false and the black pieces if mirror == true. std::string file_name(const Position& pos, bool mirror) { std::string w, b; for (PieceType pt = KING; pt >= PAWN; --pt) { w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); } return mirror ? b + 'v' + w : w + 'v' + b; } void HashTable::insert(const std::vector& pieces) { StateInfo st; Position pos; std::string code; for (PieceType pt : pieces) code += PieceToChar[pt]; int bk = code.find('K', 1); // Black king TBFile f(code.substr(0, bk) + 'v' + code.substr(bk) + ".rtbw"); if (!f.is_open()) return; f.close(); if (int(pieces.size()) > Tablebases::MaxCardinality) Tablebases::MaxCardinality = pieces.size(); Key keys[] = { pos.set(code, WHITE, &st).material_key(), pos.set(code, BLACK, &st).material_key() }; WDLTable.push_back(WDLEntry(pos.set(code, WHITE, &st), keys)); insert(keys[WHITE], &WDLTable.back()); insert(keys[BLACK], &WDLTable.back()); } uint64_t encode_piece(uint8_t hasUniquePieces, uint8_t* norm, Square* pos, int* factor, int n) { uint64_t idx; int i; if (file_of(pos[0]) > FILE_D) for (i = 0; i < n; ++i) pos[i] ^= 7; // Mirror SQ_H1 -> SQ_A1 if (rank_of(pos[0]) > RANK_4) for (i = 0; i < n; ++i) pos[i] ^= 070; // Vertical flip SQ_A8 -> SQ_A1 for (i = 0; i < n; ++i) if (OffdiagA1H8[pos[i]]) break; // First piece not on A1-H8 diagonal if (i < (hasUniquePieces ? 3 : 2) && OffdiagA1H8[pos[i]] > 0) for (i = 0; i < n; ++i) pos[i] = Square(((pos[i] >> 3) | (pos[i] << 3)) & 63); // Flip about the A1-H8 diagonal if (hasUniquePieces) { // There are unique pieces other than W_KING and B_KING i = pos[1] > pos[0]; int j = (pos[2] > pos[0]) + (pos[2] > pos[1]); if (OffdiagA1H8[pos[0]]) idx = Triangle[pos[0]] * 63*62 + (pos[1] - i) * 62 + (pos[2] - j); else if (OffdiagA1H8[pos[1]]) idx = 6*63*62 + Diag[pos[0]] * 28*62 + Lower[pos[1]] * 62 + pos[2] - j; else if (OffdiagA1H8[pos[2]]) idx = 6*63*62 + 4*28*62 + (Diag[pos[0]]) * 7*28 + (Diag[pos[1]] - i) * 28 + Lower[pos[2]]; else idx = 6*63*62 + 4*28*62 + 4*7*28 + (Diag[pos[0]] * 7*6) + (Diag[pos[1]] - i) * 6 + (Diag[pos[2]] - j); i = 3; } else { idx = KK_idx[Triangle[pos[0]]][pos[1]]; i = 2; } idx *= factor[0]; while (i < n) { int t = norm[i]; std::sort(&pos[i], &pos[i + t]); uint64_t s = 0; for (int l = i; l < i + t; ++l) { int j = 0; for (int k = 0; k < i; ++k) j += pos[l] > pos[k]; s += Binomial[l - i + 1][pos[l] - j]; } idx += s * factor[i]; i += t; } return idx; } // determine file of leftmost pawn and sort pawns File pawn_file(uint8_t pawns[], Square *pos) { static const File file_to_file[] = { FILE_A, FILE_B, FILE_C, FILE_D, FILE_D, FILE_C, FILE_B, FILE_A }; for (int i = 1; i < pawns[0]; ++i) if (Flap[pos[0]] > Flap[pos[i]]) std::swap(pos[0], pos[i]); return file_to_file[pos[0] & 7]; } uint64_t encode_pawn(uint8_t pawns[], uint8_t *norm, Square *pos, int *factor, int n) { int i; if (pos[0] & 4) for (i = 0; i < n; ++i) pos[i] ^= 7; for (i = 1; i < pawns[0]; ++i) for (int j = i + 1; j < pawns[0]; ++j) if (Ptwist[pos[i]] < Ptwist[pos[j]]) std::swap(pos[i], pos[j]); int t = pawns[0] - 1; uint64_t idx = Pawnidx[t][Flap[pos[0]]]; for (i = t; i > 0; --i) idx += Binomial[t - i + 1][Ptwist[pos[i]]]; idx *= factor[0]; // remaining pawns i = pawns[0]; t = i + pawns[1]; if (t > i) { std::sort(&pos[i], &pos[t]); uint64_t s = 0; for (int m = i; m < t; ++m) { int j = 0; for (int k = 0; k < i; ++k) j += pos[m] > pos[k]; s += Binomial[m - i + 1][pos[m] - j - 8]; } idx += s * factor[i]; i = t; } while (i < n) { t = norm[i]; std::sort(&pos[i], &pos[i + t]); uint64_t s = 0; for (int l = i; l < i + t; ++l) { int j = 0; for (int k = 0; k < i; ++k) j += pos[l] > pos[k]; s += Binomial[l - i + 1][pos[l] - j]; } idx += s * factor[i]; i += t; } return idx; } template uint64_t set_factors(T& p, int num, int order) { int n = 64 - p.norm[0]; uint64_t result = 1; for (int i = p.norm[0], k = 0; i < num || k == order; ++k) { if (k == order) { p.factor[0] = (int)result; result *= p.hasUniquePieces ? 31332 : 462; } else { p.factor[i] = (int)result; result *= Binomial[p.norm[i]][n]; n -= p.norm[i]; i += p.norm[i]; } } return result; } uint64_t calc_factors_pawn(int *factor, int num, int order, int order2, uint8_t *norm, File f) { assert(FILE_A <= f && f <= FILE_D); int i = norm[0]; if (order2 < 0x0f) i += norm[i]; int n = 64 - i; uint64_t result = 1; for (int k = 0; i < num || k == order || k == order2; ++k) { if (k == order) { factor[0] = (int)result; result *= Pfactor[norm[0] - 1][f]; } else if (k == order2) { factor[norm[0]] = (int)result; result *= Binomial[norm[norm[0]]][48 - norm[0]]; } else { factor[i] = (int)result; result *= Binomial[norm[i]][n]; n -= norm[i]; i += norm[i]; } } return result; } template void set_norms(T& p, int num) { for (int i = 0; i < num; ++i) p.norm[i] = 0; p.norm[0] = p.hasUniquePieces ? 3 : 2; for (int i = p.norm[0]; i < num; i += p.norm[i]) for (int j = i; j < num && p.pieces[j] == p.pieces[i]; ++j) ++p.norm[i]; } void set_norm_pawn(uint8_t pawns[], uint8_t *norm, uint8_t *pieces, int num) { int i, j; for (i = 0; i < num; ++i) norm[i] = 0; norm[0] = pawns[0]; if (pawns[1]) norm[pawns[0]] = pawns[1]; for (i = pawns[0] + pawns[1]; i < num; i += norm[i]) for (j = i; j < num && pieces[j] == pieces[i]; ++j) ++norm[i]; } void calc_symlen(PairsData *d, int s, char *tmp) { int s1, s2; uint8_t* w = d->sympat + 3 * s; s2 = (w[2] << 4) | (w[1] >> 4); if (s2 == 0x0fff) d->symlen[s] = 0; else { s1 = ((w[1] & 0xf) << 8) | w[0]; if (!tmp[s1]) calc_symlen(d, s1, tmp); if (!tmp[s2]) calc_symlen(d, s2, tmp); d->symlen[s] = uint8_t(d->symlen[s1] + d->symlen[s2] + 1); } tmp[s] = 1; } uint16_t ReadUshort(uint8_t* d) { return uint16_t(d[0] | (d[1] << 8)); } uint32_t ReadUint32(uint8_t* d) { return d[0] | (d[1] << 8) | (d[2] << 16) | (d[3] << 24); } PairsData *setup_pairs(uint8_t *data, uint64_t tb_size, uint64_t *size, unsigned char **next, uint8_t *flags, int wdl) { PairsData *d; int i; *flags = data[0]; if (data[0] & 0x80) { d = (PairsData *)malloc(sizeof(PairsData)); d->idxbits = 0; if (wdl) d->min_len = data[1]; else d->min_len = 0; *next = data + 2; size[0] = size[1] = size[2] = 0; return d; } int blocksize = data[1]; int idxbits = data[2]; int real_num_blocks = ReadUint32(&data[4]); int num_blocks = real_num_blocks + *(uint8_t *)(&data[3]); int max_len = data[8]; int min_len = data[9]; int h = max_len - min_len + 1; int num_syms = ReadUshort(&data[10 + 2 * h]); d = (PairsData *)malloc(sizeof(PairsData) + (h - 1) * sizeof(base_t) + num_syms); d->blocksize = blocksize; d->idxbits = idxbits; d->offset = (uint16_t*)(&data[10]); d->symlen = ((uint8_t *)d) + sizeof(PairsData) + (h - 1) * sizeof(base_t); d->sympat = &data[12 + 2 * h]; d->min_len = min_len; *next = &data[12 + 2 * h + 3 * num_syms + (num_syms & 1)]; uint64_t num_indices = (tb_size + (1ULL << idxbits) - 1) >> idxbits; size[0] = 6ULL * num_indices; size[1] = 2ULL * num_blocks; size[2] = (1ULL << blocksize) * real_num_blocks; // char tmp[num_syms]; char tmp[4096]; for (i = 0; i < num_syms; ++i) tmp[i] = 0; for (i = 0; i < num_syms; ++i) if (!tmp[i]) calc_symlen(d, i, tmp); d->base[h - 1] = 0; for (i = h - 2; i >= 0; --i) d->base[i] = (d->base[i + 1] + ReadUshort((uint8_t*)(d->offset + i)) - ReadUshort((uint8_t*)(d->offset + i + 1))) / 2; for (i = 0; i < h; ++i) d->base[i] <<= 64 - (min_len + i); d->offset -= d->min_len; return d; } bool WDLEntry::init(const std::string& fname) { uint8_t* next; uint64_t tb_size[8]; uint64_t size[8 * 3]; uint8_t flags; uint8_t* data = TBFile(fname).map(&baseAddress, &mapping, TB_MAGIC); if (!data) return false; int split = *data & 1; File maxFile = *data & 2 ? FILE_D : FILE_A; data++; if (!has_pawns) { int order[] = { *data & 0xF, *data >> 4 }; data++; for (int i = 0; i < num; ++i, ++data) { piece[0].pieces[i] = *data & 0xF; piece[1].pieces[i] = *data >> 4; } for (int i = 0; i < 2; ++i) { set_norms(piece[i], num); tb_size[i] = set_factors(piece[i], num, order[i]); } data += (uintptr_t)data & 1; piece[0].precomp = setup_pairs(data, tb_size[0], &size[0], &next, &flags, 1); data = next; if (split) { piece[1].precomp = setup_pairs(data, tb_size[1], &size[3], &next, &flags, 1); data = next; } else piece[1].precomp = nullptr; piece[0].precomp->indextable = (char*)data; data += size[0]; if (split) { piece[1].precomp->indextable = (char*)data; data += size[3]; } piece[0].precomp->sizetable = (uint16_t*)data; data += size[1]; if (split) { piece[1].precomp->sizetable = (uint16_t*)data; data += size[4]; } data = (uint8_t*)(((uintptr_t)data + 0x3f) & ~0x3F); piece[0].precomp->data = data; data += size[2]; if (split) { data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); piece[1].precomp->data = data; } } else { bool p = (pawn.pawns[1] > 0); for (File f = FILE_A; f <= FILE_D; ++f) { int order1[] = { *data & 0x0F, *data >> 4 }; data++; int order2[] = { p ? *data & 0xF : 0xF, p ? *data >> 4 : 0xF }; data += p; for (int i = 0; i < num; ++i, ++data) { pawn.file[f].pieces[0][i] = *data & 0xF; pawn.file[f].pieces[1][i] = *data >> 4; } for (int i = 0; i < 2; ++i) { set_norm_pawn(pawn.pawns, pawn.file[f].norm[i], pawn.file[f].pieces[i], num); tb_size[2 * f + i] = calc_factors_pawn(pawn.file[f].factor[i], num, order1[i], order2[i], pawn.file[f].norm[i], f); } } data += (uintptr_t)data & 1; for (File f = FILE_A; f <= maxFile; ++f) { pawn.file[f].precomp[0] = setup_pairs(data, tb_size[2 * f], &size[6 * f], &next, &flags, 1); data = next; if (split) { pawn.file[f].precomp[1] = setup_pairs(data, tb_size[2 * f + 1], &size[6 * f + 3], &next, &flags, 1); data = next; } else pawn.file[f].precomp[1] = nullptr; } for (File f = FILE_A; f <= maxFile; ++f) { pawn.file[f].precomp[0]->indextable = (char *)data; data += size[6 * f]; if (split) { pawn.file[f].precomp[1]->indextable = (char *)data; data += size[6 * f + 3]; } } for (File f = FILE_A; f <= maxFile; ++f) { pawn.file[f].precomp[0]->sizetable = (uint16_t *)data; data += size[6 * f + 1]; if (split) { pawn.file[f].precomp[1]->sizetable = (uint16_t *)data; data += size[6 * f + 4]; } } for (File f = FILE_A; f <= maxFile; ++f) { data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); pawn.file[f].precomp[0]->data = data; data += size[6 * f + 2]; if (split) { data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); pawn.file[f].precomp[1]->data = data; data += size[6 * f + 5]; } } } return true; } bool DTZEntry::init(const std::string& fname) { uint8_t *next; uint64_t tb_size[4]; uint64_t size[4 * 3]; uint8_t* data = TBFile(fname).map(&baseAddress, &mapping, TB_MAGIC); if (!data) return false; File maxFile = *data & 2 ? FILE_D : FILE_A; data++; if (!has_pawns) { int order = *data & 0xF; data++; for (int i = 0; i < num; ++i, ++data) piece.pieces[i] = *data & 0x0F; set_norms(piece, num); tb_size[0] = set_factors(piece, num, order); data += (uintptr_t)data & 1; piece.precomp = setup_pairs(data, tb_size[0], &size[0], &next, &(piece.flags), 0); data = next; piece.map = data; if (piece.flags & 2) { int i; for (i = 0; i < 4; ++i) { piece.map_idx[i] = (uint16_t)(data + 1 - piece.map); data += 1 + data[0]; } data += (uintptr_t)data & 1; } piece.precomp->indextable = (char *)data; data += size[0]; piece.precomp->sizetable = (uint16_t *)data; data += size[1]; data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); piece.precomp->data = data; data += size[2]; } else { bool p = (pawn.pawns[1] > 0); for (File f = FILE_A; f <= FILE_D; ++f) { int order1 = *data++ & 0xF; int order2 = p ? *data++ & 0xF : 0xF; for (int i = 0; i < num; ++i, ++data) pawn.file[f].pieces[i] = *data & 0xF; set_norm_pawn(pawn.pawns, pawn.file[f].norm, pawn.file[f].pieces, num); tb_size[f] = calc_factors_pawn(pawn.file[f].factor, num, order1, order2, pawn.file[f].norm, f); } data += (uintptr_t)data & 1; for (File f = FILE_A; f <= maxFile; ++f) { pawn.file[f].precomp = setup_pairs(data, tb_size[f], &size[3 * f], &next, &(pawn.file[f].flags), 0); data = next; } pawn.map = data; for (File f = FILE_A; f <= maxFile; ++f) { if (pawn.file[f].flags & 2) for (int i = 0; i < 4; ++i) { pawn.file[f].map_idx[i] = (uint16_t)(data + 1 - pawn.map); data += 1 + data[0]; } } data += (uintptr_t)data & 1; for (File f = FILE_A; f <= maxFile; ++f) { pawn.file[f].precomp->indextable = (char *)data; data += size[3 * f]; } for (File f = FILE_A; f <= maxFile; ++f) { pawn.file[f].precomp->sizetable = (uint16_t *)data; data += size[3 * f + 1]; } for (File f = FILE_A; f <= maxFile; ++f) { data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); pawn.file[f].precomp->data = data; data += size[3 * f + 2]; } } return true; } template inline void byteSwap(T& x) { char tmp, *c = (char*)(&x); for (int i = 0; i < Half; ++i) tmp = c[i], c[i] = c[End-i], c[End-i] = tmp; } int decompress_pairs(PairsData* d, uint64_t idx) { const union { uint32_t i; char c[4]; } LE = { 0x01020304 }; const bool LittleEndian = (LE.c[0] == 4); if (!d->idxbits) return d->min_len; // idx = blockidx | litidx where litidx is a signed number of lenght d->idxbits uint32_t blockidx = (uint32_t)(idx >> d->idxbits); int litidx = (idx & ((1ULL << d->idxbits) - 1)) - (1ULL << (d->idxbits - 1)); // indextable points to an array of blocks of 6 bytes representing numbers in // little endian. The low 4 bytes are the block, the high 2 bytes the idxOffset. uint32_t block = *(uint32_t *)(d->indextable + 6 * blockidx); uint16_t idxOffset = *(uint16_t *)(d->indextable + 6 * blockidx + 4); if (!LittleEndian) { byteSwap(block); byteSwap(idxOffset); } litidx += idxOffset; while (litidx < 0) litidx += d->sizetable[--block] + 1; while (litidx > d->sizetable[block]) litidx -= d->sizetable[block++] + 1; uint32_t* ptr = (uint32_t*)(d->data + (block << d->blocksize)); uint64_t code = *((uint64_t*)ptr); if (LittleEndian) byteSwap(code); int m = d->min_len; uint16_t *offset = d->offset; base_t* base = d->base - m; uint8_t* symlen = d->symlen; int sym, bitcnt; ptr += 2; bitcnt = 0; // number of "empty bits" in code for (;;) { int l = m; while (code < base[l]) ++l; sym = offset[l]; if (!LittleEndian) sym = ((sym & 0xff) << 8) | (sym >> 8); sym += (int)((code - base[l]) >> (64 - l)); if (litidx < (int)symlen[sym] + 1) break; litidx -= (int)symlen[sym] + 1; code <<= l; bitcnt += l; if (bitcnt >= 32) { bitcnt -= 32; uint32_t tmp = *ptr++; if (LittleEndian) byteSwap(tmp); code |= (uint64_t)tmp << bitcnt; } } uint8_t *sympat = d->sympat; while (symlen[sym] != 0) { uint8_t* w = sympat + (3 * sym); int s1 = ((w[1] & 0xf) << 8) | w[0]; if (litidx < (int)symlen[s1] + 1) sym = s1; else { litidx -= (int)symlen[s1] + 1; sym = (w[2] << 4) | (w[1] >> 4); } } return sympat[3 * sym]; } WDLScore probe_wdl_table(Position& pos, int* success) { Key key = pos.material_key(); if (pos.count(WHITE) + pos.count(BLACK) == 2) return WDLDraw; // KvK WDLEntry* entry = WDLHash[key]; if (!entry) { *success = 0; return WDLDraw; } // Init table at first access attempt if (!entry->ready) { std::unique_lock lk(TB_mutex); if (!entry->ready) { std::string fname = file_name(pos, entry->key != key) + ".rtbw"; if (!entry->init(fname)) { // Was ptr2->key = 0ULL; Just leave !ptr->ready condition *success = 0; return WDLDraw; } entry->ready = 1; } } Square squares[TBPIECES]; int bside, smirror, cmirror; assert(key == entry->key || !entry->symmetric); // Entries are stored from point of view of white, so in case of a symmetric // material distribution, we just need to lookup the relative TB entry in // case we are black. Instead in case of asymmetric distribution, because // stored entry is the same for both keys, we have first to verify if the // entry is stored according to our key, otherwise we have to lookup // the relative entry. if (entry->symmetric) { cmirror = pos.side_to_move() * 8; smirror = pos.side_to_move() * 070; bside = WHITE; } else { cmirror = (key != entry->key) * 8; // Switch color smirror = (key != entry->key) * 070; // Vertical flip SQ_A1 -> SQ_A8 bside = (key != entry->key) ^ pos.side_to_move(); } // squares[i] is to contain the square 0-63 (A1-H8) for a piece of type // pc[i] ^ cmirror, where 1 = white pawn, ..., 14 = black king. // Pieces of the same type are guaranteed to be consecutive. if (!entry->has_pawns) { for (int i = 0; i < entry->num; ) { Piece pc = Piece(entry->piece[bside].pieces[i] ^ cmirror); Bitboard b = pos.pieces(color_of(pc), type_of(pc)); do squares[i++] = pop_lsb(&b); while (b); } uint64_t idx = encode_piece(entry->piece[bside].hasUniquePieces, entry->piece[bside].norm, squares, entry->piece[bside].factor, entry->num); return WDLScore(decompress_pairs(entry->piece[bside].precomp, idx) - 2); } else { Piece pc = Piece(entry->pawn.file[0].pieces[0][0] ^ cmirror); Bitboard b = pos.pieces(color_of(pc), type_of(pc)); int i = 0; do squares[i++] = pop_lsb(&b) ^ smirror; while (b); File f = pawn_file(entry->pawn.pawns, squares); for ( ; i < entry->num; ) { pc = Piece(entry->pawn.file[f].pieces[bside][i] ^ cmirror); b = pos.pieces(color_of(pc), type_of(pc)); do squares[i++] = pop_lsb(&b) ^ smirror; while (b); } uint64_t idx = encode_pawn(entry->pawn.pawns, entry->pawn.file[f].norm[bside], squares, entry->pawn.file[f].factor[bside], entry->num); return WDLScore(decompress_pairs(entry->pawn.file[f].precomp[bside], idx) - 2); } } int probe_dtz_table(const Position& pos, int wdl, int *success) { Key key = pos.material_key(); if ( DTZTable.front().keys[0] != key && DTZTable.front().keys[1] != key) { // Enforce "Most Recently Used" (MRU) order for DTZ_list for (auto it = DTZTable.begin(); it != DTZTable.end(); ++it) if (it->keys[0] == key) { // Move to front without deleting the element DTZTable.splice(DTZTable.begin(),DTZTable, it); break; } // If still not found, add a new one if (DTZTable.front().keys[0] != key) { WDLEntry* ptr = WDLHash[key]; if (!ptr) { *success = 0; return 0; } StateInfo st; Position p; std::string code = file_name(pos, ptr->key != key); std::string fname = code + ".rtbz"; code.erase(code.find('v'), 1); Key keys[] = { p.set(code, WHITE, &st).material_key(), p.set(code, BLACK, &st).material_key() }; DTZTable.push_front(DTZEntry(*ptr, keys)); if (!DTZTable.front().init(fname)) { // In case file is not found init() fails, but we leave // the entry so to avoid rechecking at every probe (same // functionality as WDL case). // FIXME: This is different form original functionality! /* DTZTable.pop_front(); */ *success = 0; return 0; } // Keep list size within 64 entries // FIXME remove it when we will know what we are doing if (DTZTable.size() > 64) DTZTable.pop_back(); } } DTZEntry* ptr = &DTZTable.front(); if (!ptr->baseAddress) { *success = 0; return 0; } uint64_t idx; int i, res; Square squares[TBPIECES]; int bside, mirror, cmirror; if (!ptr->symmetric) { if (key != ptr->key) { cmirror = 8; mirror = 070; bside = (pos.side_to_move() == WHITE); } else { cmirror = mirror = 0; bside = !(pos.side_to_move() == WHITE); } } else { cmirror = pos.side_to_move() == WHITE ? 0 : 8; mirror = pos.side_to_move() == WHITE ? 0 : 070; bside = 0; } if (!ptr->has_pawns) { if ((ptr->piece.flags & 1) != bside && !ptr->symmetric) { *success = -1; return 0; } uint8_t *pc = ptr->piece.pieces; for (i = 0; i < ptr->num;) { Bitboard bb = pos.pieces((Color)((pc[i] ^ cmirror) >> 3), (PieceType)(pc[i] & 7)); do { squares[i++] = pop_lsb(&bb); } while (bb); } idx = encode_piece(ptr->piece.hasUniquePieces, ptr->piece.norm, squares, ptr->piece.factor, ptr->num); res = decompress_pairs(ptr->piece.precomp, idx); if (ptr->piece.flags & 2) res = ptr->piece.map[ptr->piece.map_idx[wdl_to_map[wdl + 2]] + res]; if (!(ptr->piece.flags & pa_flags[wdl + 2]) || (wdl & 1)) res *= 2; } else { int k = ptr->pawn.file[0].pieces[0] ^ cmirror; Bitboard bb = pos.pieces((Color)(k >> 3), (PieceType)(k & 7)); i = 0; do { squares[i++] = pop_lsb(&bb) ^ mirror; } while (bb); File f = pawn_file(ptr->pawn.pawns, squares); if ((ptr->pawn.file[f].flags & 1) != bside) { *success = -1; return 0; } uint8_t *pc = ptr->pawn.file[f].pieces; for (; i < ptr->num;) { bb = pos.pieces((Color)((pc[i] ^ cmirror) >> 3), (PieceType)(pc[i] & 7)); do { squares[i++] = pop_lsb(&bb) ^ mirror; } while (bb); } idx = encode_pawn(ptr->pawn.pawns, ptr->pawn.file[f].norm, squares, ptr->pawn.file[f].factor, ptr->num); res = decompress_pairs(ptr->pawn.file[f].precomp, idx); if (ptr->pawn.file[f].flags & 2) res = ptr->pawn.map[ptr->pawn.file[f].map_idx[wdl_to_map[wdl + 2]] + res]; if (!(ptr->pawn.file[f].flags & pa_flags[wdl + 2]) || (wdl & 1)) res *= 2; } return res; } // Add underpromotion captures to list of captures. ExtMove *add_underprom_caps(Position& pos, ExtMove *stack, ExtMove *end) { ExtMove *moves, *extra = end; for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (type_of(move) == PROMOTION && !pos.empty(to_sq(move))) { (*extra++).move = (Move)(move - (1 << 12)); (*extra++).move = (Move)(move - (2 << 12)); (*extra++).move = (Move)(move - (3 << 12)); } } return extra; } WDLScore probe_ab(Position& pos, WDLScore alpha, WDLScore beta, int *success) { WDLScore value; ExtMove stack[64]; ExtMove *moves, *end; StateInfo st; // Generate (at least) all legal non-ep captures including (under)promotions. // It is OK to generate more, as long as they are filtered out below. if (!pos.checkers()) { end = generate(pos, stack); // Since underpromotion captures are not included, we need to add them. end = add_underprom_caps(pos, stack, end); } else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if ( !pos.capture(capture) || type_of(capture) == ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); value = -probe_ab(pos, -beta, -alpha, success); pos.undo_move(capture); if (*success == 0) return WDLDraw; if (value > alpha) { if (value >= beta) { *success = 2; return value; } alpha = value; } } value = probe_wdl_table(pos, success); // FIXME why this is not at the beginning? if (*success == 0) return WDLDraw; if (alpha >= value) { *success = 1 + (alpha > 0); return alpha; } else { *success = 1; return value; } } int probe_dtz(Position& pos, int *success); // This routine treats a position with en passant captures as one without. int probe_dtz_no_ep(Position& pos, int *success) { int dtz; WDLScore wdl = probe_ab(pos, WDLHardLoss, WDLHardWin, success); if (*success == 0) return 0; if (wdl == WDLDraw) return 0; if (*success == 2) return wdl == WDLHardWin ? 1 : 101; ExtMove stack[MAX_MOVES]; ExtMove *moves, *end = nullptr; StateInfo st; CheckInfo ci(pos); if (wdl > 0) { // Generate at least all legal non-capturing pawn moves // including non-capturing promotions. if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); for (moves = stack; moves < end; ++moves) { Move move = moves->move; if ( type_of(pos.moved_piece(move)) != PAWN || pos.capture(move) || !pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); WDLScore v = -probe_ab(pos, WDLHardLoss, -wdl + WDLSoftWin, success); pos.undo_move(move); if (*success == 0) return 0; if (v == wdl) return v == WDLHardWin ? 1 : 101; } } dtz = 1 + probe_dtz_table(pos, wdl, success); if (*success >= 0) { if (wdl & 1) dtz += 100; return wdl >= 0 ? dtz : -dtz; } if (wdl > 0) { int best = 0xffff; for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN || !pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); int v = -probe_dtz(pos, success); pos.undo_move(move); if (*success == 0) return 0; if (v > 0 && v + 1 < best) best = v + 1; } return best; } else { int best = -1; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); for (moves = stack; moves < end; ++moves) { int v; Move move = moves->move; if (!pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); if (st.rule50 == 0) { if (wdl == -2) v = -1; else { v = probe_ab(pos, WDLSoftWin, WDLHardWin, success); v = (v == 2) ? 0 : -101; } } else { v = -probe_dtz(pos, success) - 1; } pos.undo_move(move); if (*success == 0) return 0; if (v < best) best = v; } return best; } } // Probe the DTZ table for a particular position. // If *success != 0, the probe was successful. // The return value is from the point of view of the side to move: // n < -100 : loss, but draw under 50-move rule // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) // 0 : draw // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) // 100 < n : win, but draw under 50-move rule // // The return value n can be off by 1: a return value -n can mean a loss // in n+1 ply and a return value +n can mean a win in n+1 ply. This // cannot happen for tables with positions exactly on the "edge" of // the 50-move rule. // // This implies that if dtz > 0 is returned, the position is certainly // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine // picks moves that preserve dtz + 50-move-counter <= 99. // // If n = 100 immediately after a capture or pawn move, then the position // is also certainly a win, and during the whole phase until the next // capture or pawn move, the inequality to be preserved is // dtz + 50-movecounter <= 100. // // In short, if a move is available resulting in dtz + 50-move-counter <= 99, // then do not accept moves leading to dtz + 50-move-counter == 100. // int probe_dtz(Position& pos, int *success) { *success = 1; int v = probe_dtz_no_ep(pos, success); if (pos.ep_square() == SQ_NONE) return v; if (*success == 0) return 0; // Now handle en passant. int v1 = -3; ExtMove stack[MAX_MOVES]; ExtMove *moves, *end; StateInfo st; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) != ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); WDLScore v0 = -probe_ab(pos, WDLHardLoss, WDLHardWin, success); pos.undo_move(capture); if (*success == 0) return 0; if (v0 > v1) v1 = v0; } if (v1 > -3) { v1 = wdl_to_dtz[v1 + 2]; if (v < -100) { if (v1 >= 0) v = v1; } else if (v < 0) { if (v1 >= 0 || v1 < -100) v = v1; } else if (v > 100) { if (v1 > 0) v = v1; } else if (v > 0) { if (v1 == 1) v = v1; } else if (v1 >= 0) { v = v1; } else { for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (type_of(move) == ENPASSANT) continue; if (pos.legal(move, ci.pinned)) break; } if (moves == end && !pos.checkers()) { end = generate(pos, end); for (; moves < end; ++moves) { Move move = moves->move; if (pos.legal(move, ci.pinned)) break; } } if (moves == end) v = v1; } } return v; } } // namespace void Tablebases::init(const std::string& paths) { DTZTable.clear(); WDLTable.clear(); WDLHash.clear(); MaxCardinality = 0; TBPaths = paths; if (TBPaths.empty() || TBPaths == "") return; // Fill binomial[] with the Binomial Coefficents using Pascal triangle Binomial[0][0] = 1; for (int n = 1; n < 64; n++) for (int k = 0; k < 6 && k <= n; ++k) Binomial[k][n] = (k > 0 ? Binomial[k-1][n-1] : 0) + (k < n ? Binomial[k][n-1] : 0); for (int i = 0; i < 5; ++i) { int k = 0; for (int j = 1; j <= 4; ++j) { int s = 0; for ( ; k < 6 * j; ++k) { Pawnidx[i][k] = s; s += Binomial[i][Ptwist[Invflap[k]]]; } Pfactor[i][j - 1] = s; } } for (PieceType p1 = PAWN; p1 < KING; ++p1) { WDLHash.insert({KING, p1, KING}); for (PieceType p2 = PAWN; p2 <= p1; ++p2) { WDLHash.insert({KING, p1, p2, KING}); WDLHash.insert({KING, p1, KING, p2}); for (PieceType p3 = PAWN; p3 < KING; ++p3) WDLHash.insert({KING, p1, p2, KING, p3}); for (PieceType p3 = PAWN; p3 <= p2; ++p3) { WDLHash.insert({KING, p1, p2, p3, KING}); for (PieceType p4 = PAWN; p4 <= p3; ++p4) WDLHash.insert({KING, p1, p2, p3, p4, KING}); for (PieceType p4 = PAWN; p4 < KING; ++p4) WDLHash.insert({KING, p1, p2, p3, KING, p4}); } for (PieceType p3 = PAWN; p3 <= p1; ++p3) for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) WDLHash.insert({KING, p1, p2, KING, p3, p4}); } } std::cerr << "info string Found " << WDLTable.size() << " tablebases" << std::endl; } // Probe the WDL table for a particular position. // If *success != 0, the probe was successful. // The return value is from the point of view of the side to move: // -2 : loss // -1 : loss, but draw under 50-move rule // 0 : draw // 1 : win, but draw under 50-move rule // 2 : win WDLScore Tablebases::probe_wdl(Position& pos, int *success) { *success = 1; WDLScore v = probe_ab(pos, WDLHardLoss, WDLHardWin, success); // If en passant is not possible, we are done. if (pos.ep_square() == SQ_NONE) return v; if (*success == 0) return WDLDraw; // Now handle en passant. WDLScore v1 = WDLScore(-3); // FIXME use a proper enum value here // Generate (at least) all legal en passant captures. ExtMove stack[MAX_MOVES]; ExtMove *moves, *end; StateInfo st; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) != ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); WDLScore v0 = -probe_ab(pos, WDLHardLoss, WDLHardWin, success); pos.undo_move(capture); if (*success == 0) return WDLDraw; if (v0 > v1) v1 = v0; } if (v1 > -3) { if (v1 >= v) v = v1; else if (v == 0) { // Check whether there is at least one legal non-ep move. for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) == ENPASSANT) continue; if (pos.legal(capture, ci.pinned)) break; } if (moves == end && !pos.checkers()) { end = generate(pos, end); for (; moves < end; ++moves) { Move move = moves->move; if (pos.legal(move, ci.pinned)) break; } } // If not, then we are forced to play the losing ep capture. if (moves == end) v = v1; } } return v; } // Check whether there has been at least one repetition of positions // since the last capture or pawn move. static int has_repeated(StateInfo *st) { while (1) { int i = 4, e = std::min(st->rule50, st->pliesFromNull); if (e < i) return 0; StateInfo *stp = st->previous->previous; do { stp = stp->previous->previous; if (stp->key == st->key) return 1; i += 2; } while (i <= e); st = st->previous; } } // Use the DTZ tables to filter out moves that don't preserve the win or draw. // If the position is lost, but DTZ is fairly high, only keep moves that // maximise DTZ. // // A return value false indicates that not all probes were successful and that // no moves were filtered out. bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) { int success; int dtz = probe_dtz(pos, &success); if (!success) return false; StateInfo st; CheckInfo ci(pos); // Probe each move for (size_t i = 0; i < rootMoves.size(); ++i) { Move move = rootMoves[i].pv[0]; pos.do_move(move, st, pos.gives_check(move, ci)); int v = 0; if (pos.checkers() && dtz > 0) { ExtMove s[MAX_MOVES]; if (generate(pos, s) == s) v = 1; } if (!v) { if (st.rule50 != 0) { v = -probe_dtz(pos, &success); if (v > 0) ++v; else if (v < 0) --v; } else { v = -probe_wdl(pos, &success); v = wdl_to_dtz[v + 2]; } } pos.undo_move(move); if (!success) return false; rootMoves[i].score = (Value)v; } // Obtain 50-move counter for the root position. // In Stockfish there seems to be no clean way, so we do it like this: int cnt50 = st.previous->rule50; // Use 50-move counter to determine whether the root position is // won, lost or drawn. int wdl = 0; if (dtz > 0) wdl = (dtz + cnt50 <= 100) ? 2 : 1; else if (dtz < 0) wdl = (-dtz + cnt50 <= 100) ? -2 : -1; // Determine the score to report to the user. score = WDL_to_value[wdl + 2]; // If the position is winning or losing, but too few moves left, adjust the // score to show how close it is to winning or losing. // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). if (wdl == 1 && dtz <= 100) score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200); else if (wdl == -1 && dtz >= -100) score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200); // Now be a bit smart about filtering out moves. size_t j = 0; if (dtz > 0) { // winning (or 50-move rule draw) int best = 0xffff; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v > 0 && v < best) best = v; } int max = best; // If the current phase has not seen repetitions, then try all moves // that stay safely within the 50-move budget, if there are any. if (!has_repeated(st.previous) && best + cnt50 <= 99) max = 99 - cnt50; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v > 0 && v <= max) rootMoves[j++] = rootMoves[i]; } } else if (dtz < 0) { // losing (or 50-move rule draw) int best = 0; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v < best) best = v; } // Try all moves, unless we approach or have a 50-move rule draw. if (-best * 2 + cnt50 < 100) return true; for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == best) rootMoves[j++] = rootMoves[i]; } } else { // drawing // Try all moves that preserve the draw. for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == 0) rootMoves[j++] = rootMoves[i]; } } rootMoves.resize(j, Search::RootMove(MOVE_NONE)); return true; } // Use the WDL tables to filter out moves that don't preserve the win or draw. // This is a fallback for the case that some or all DTZ tables are missing. // // A return value false indicates that not all probes were successful and that // no moves were filtered out. bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) { int success; WDLScore wdl = Tablebases::probe_wdl(pos, &success); if (!success) return false; score = WDL_to_value[wdl + 2]; StateInfo st; CheckInfo ci(pos); int best = WDLHardLoss; // Probe each move for (size_t i = 0; i < rootMoves.size(); ++i) { Move move = rootMoves[i].pv[0]; pos.do_move(move, st, pos.gives_check(move, ci)); WDLScore v = -Tablebases::probe_wdl(pos, &success); pos.undo_move(move); if (!success) return false; rootMoves[i].score = (Value)v; if (v > best) best = v; } size_t j = 0; for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == best) rootMoves[j++] = rootMoves[i]; } rootMoves.resize(j, Search::RootMove(MOVE_NONE)); return true; }