/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Input features and network structure used in NNUE evaluation function
#ifndef NNUE_ARCHITECTURE_H_INCLUDED
#define NNUE_ARCHITECTURE_H_INCLUDED
#include
#include
#include
#include "features/half_ka_v2_hm.h"
#include "layers/affine_transform.h"
#include "layers/affine_transform_sparse_input.h"
#include "layers/clipped_relu.h"
#include "layers/sqr_clipped_relu.h"
#include "nnue_common.h"
namespace Stockfish::Eval::NNUE {
// Input features used in evaluation function
using FeatureSet = Features::HalfKAv2_hm;
// Number of input feature dimensions after conversion
constexpr IndexType TransformedFeatureDimensionsBig = 3072;
constexpr int L2Big = 15;
constexpr int L3Big = 32;
constexpr IndexType TransformedFeatureDimensionsSmall = 128;
constexpr int L2Small = 15;
constexpr int L3Small = 32;
constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;
template
struct NetworkArchitecture {
static constexpr IndexType TransformedFeatureDimensions = L1;
static constexpr int FC_0_OUTPUTS = L2;
static constexpr int FC_1_OUTPUTS = L3;
Layers::AffineTransformSparseInput fc_0;
Layers::SqrClippedReLU ac_sqr_0;
Layers::ClippedReLU ac_0;
Layers::AffineTransform fc_1;
Layers::ClippedReLU ac_1;
Layers::AffineTransform fc_2;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
// input slice hash
std::uint32_t hashValue = 0xEC42E90Du;
hashValue ^= TransformedFeatureDimensions * 2;
hashValue = decltype(fc_0)::get_hash_value(hashValue);
hashValue = decltype(ac_0)::get_hash_value(hashValue);
hashValue = decltype(fc_1)::get_hash_value(hashValue);
hashValue = decltype(ac_1)::get_hash_value(hashValue);
hashValue = decltype(fc_2)::get_hash_value(hashValue);
return hashValue;
}
// Read network parameters
bool read_parameters(std::istream& stream) {
return fc_0.read_parameters(stream) && ac_0.read_parameters(stream)
&& fc_1.read_parameters(stream) && ac_1.read_parameters(stream)
&& fc_2.read_parameters(stream);
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
return fc_0.write_parameters(stream) && ac_0.write_parameters(stream)
&& fc_1.write_parameters(stream) && ac_1.write_parameters(stream)
&& fc_2.write_parameters(stream);
}
std::int32_t propagate(const TransformedFeatureType* transformedFeatures) {
struct alignas(CacheLineSize) Buffer {
alignas(CacheLineSize) typename decltype(fc_0)::OutputBuffer fc_0_out;
alignas(CacheLineSize) typename decltype(ac_sqr_0)::OutputType
ac_sqr_0_out[ceil_to_multiple(FC_0_OUTPUTS * 2, 32)];
alignas(CacheLineSize) typename decltype(ac_0)::OutputBuffer ac_0_out;
alignas(CacheLineSize) typename decltype(fc_1)::OutputBuffer fc_1_out;
alignas(CacheLineSize) typename decltype(ac_1)::OutputBuffer ac_1_out;
alignas(CacheLineSize) typename decltype(fc_2)::OutputBuffer fc_2_out;
Buffer() { std::memset(this, 0, sizeof(*this)); }
};
#if defined(__clang__) && (__APPLE__)
// workaround for a bug reported with xcode 12
static thread_local auto tlsBuffer = std::make_unique();
// Access TLS only once, cache result.
Buffer& buffer = *tlsBuffer;
#else
alignas(CacheLineSize) static thread_local Buffer buffer;
#endif
fc_0.propagate(transformedFeatures, buffer.fc_0_out);
ac_sqr_0.propagate(buffer.fc_0_out, buffer.ac_sqr_0_out);
ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out);
std::memcpy(buffer.ac_sqr_0_out + FC_0_OUTPUTS, buffer.ac_0_out,
FC_0_OUTPUTS * sizeof(typename decltype(ac_0)::OutputType));
fc_1.propagate(buffer.ac_sqr_0_out, buffer.fc_1_out);
ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out);
fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);
// buffer.fc_0_out[FC_0_OUTPUTS] is such that 1.0 is equal to 127*(1<