/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Definition of layer AffineTransformSparseInput of NNUE evaluation function #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED #define NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED #include #include #include #include #include "../nnue_common.h" #include "affine_transform.h" #include "simd.h" /* This file contains the definition for a fully connected layer (aka affine transform) with block sparse input. */ namespace Stockfish::Eval::NNUE::Layers { #if defined(USE_SSSE3) alignas(CacheLineSize) static inline const std::array, 256> lookup_indices = [](){ std::array, 256> v{}; for (unsigned i = 0; i < 256; ++i) { std::uint64_t j = i, k = 0; while(j) v[i][k++] = pop_lsb(j); } return v; }(); // Find indices of nonzero numbers in an int32_t array template void find_nnz(const std::int32_t* input, std::uint16_t* out, IndexType& count_out) { #if defined (USE_AVX512) using vec_t = __m512i; #define vec_nnz(a) _mm512_cmpgt_epi32_mask(a, _mm512_setzero_si512()) #elif defined (USE_AVX2) using vec_t = __m256i; #if defined(USE_VNNI) && !defined(USE_AVXVNNI) #define vec_nnz(a) _mm256_cmpgt_epi32_mask(a, _mm256_setzero_si256()) #else #define vec_nnz(a) _mm256_movemask_ps(_mm256_castsi256_ps(_mm256_cmpgt_epi32(a, _mm256_setzero_si256()))) #endif #elif defined (USE_SSSE3) using vec_t = __m128i; #define vec_nnz(a) _mm_movemask_ps(_mm_castsi128_ps(_mm_cmpgt_epi32(a, _mm_setzero_si128()))) #endif constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(std::int32_t); // Inputs are processed InputSimdWidth at a time and outputs are processed 8 at a time so we process in chunks of max(InputSimdWidth, 8) constexpr IndexType ChunkSize = std::max(InputSimdWidth, 8); constexpr IndexType NumChunks = InputDimensions / ChunkSize; constexpr IndexType InputsPerChunk = ChunkSize / InputSimdWidth; constexpr IndexType OutputsPerChunk = ChunkSize / 8; const auto inputVector = reinterpret_cast(input); IndexType count = 0; __m128i base = _mm_setzero_si128(); const __m128i increment = _mm_set1_epi16(8); for (IndexType i = 0; i < NumChunks; ++i) { // bitmask of nonzero values in this chunk unsigned nnz = 0; for (IndexType j = 0; j < InputsPerChunk; ++j) { const vec_t inputChunk = inputVector[i * InputsPerChunk + j]; nnz |= (unsigned)vec_nnz(inputChunk) << (j * InputSimdWidth); } for (IndexType j = 0; j < OutputsPerChunk; ++j) { const auto lookup = (nnz >> (j * 8)) & 0xFF; const auto offsets = _mm_loadu_si128(reinterpret_cast(&lookup_indices[lookup])); _mm_storeu_si128(reinterpret_cast<__m128i*>(out + count), _mm_add_epi16(base, offsets)); count += popcount(lookup); base = _mm_add_epi16(base, increment); } } count_out = count; } # undef vec_nnz #endif // Sparse input implementation template class AffineTransformSparseInput { public: // Input/output type // Input/output type using InputType = std::uint8_t; using OutputType = std::int32_t; // Number of input/output dimensions static constexpr IndexType InputDimensions = InDims; static constexpr IndexType OutputDimensions = OutDims; static_assert(OutputDimensions % 16 == 0, "Only implemented for OutputDimensions divisible by 16."); static constexpr IndexType PaddedInputDimensions = ceil_to_multiple(InputDimensions, MaxSimdWidth); static constexpr IndexType PaddedOutputDimensions = ceil_to_multiple(OutputDimensions, MaxSimdWidth); #if defined (USE_SSSE3) static constexpr IndexType ChunkSize = 4; #else static constexpr IndexType ChunkSize = 1; #endif using OutputBuffer = OutputType[PaddedOutputDimensions]; // Hash value embedded in the evaluation file static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) { std::uint32_t hashValue = 0xCC03DAE4u; hashValue += OutputDimensions; hashValue ^= prevHash >> 1; hashValue ^= prevHash << 31; return hashValue; } static IndexType get_weight_index_scrambled(IndexType i) { return (i / ChunkSize) % (PaddedInputDimensions / ChunkSize) * OutputDimensions * ChunkSize + i / PaddedInputDimensions * ChunkSize + i % ChunkSize; } static IndexType get_weight_index(IndexType i) { #if defined (USE_SSSE3) return get_weight_index_scrambled(i); #else return i; #endif } // Read network parameters bool read_parameters(std::istream& stream) { read_little_endian(stream, biases, OutputDimensions); for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) weights[get_weight_index(i)] = read_little_endian(stream); return !stream.fail(); } // Write network parameters bool write_parameters(std::ostream& stream) const { write_little_endian(stream, biases, OutputDimensions); for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) write_little_endian(stream, weights[get_weight_index(i)]); return !stream.fail(); } // Forward propagation const OutputType* propagate( const InputType* input, OutputType* output) const { #if defined (USE_SSSE3) #if defined (USE_AVX512) using vec_t = __m512i; #define vec_setzero _mm512_setzero_si512 #define vec_set_32 _mm512_set1_epi32 #define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32 #elif defined (USE_AVX2) using vec_t = __m256i; #define vec_setzero _mm256_setzero_si256 #define vec_set_32 _mm256_set1_epi32 #define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32 #elif defined (USE_SSSE3) using vec_t = __m128i; #define vec_setzero _mm_setzero_si128 #define vec_set_32 _mm_set1_epi32 #define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32 #endif static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType); constexpr IndexType NumChunks = ceil_to_multiple(InputDimensions, 8) / ChunkSize; constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth; std::uint16_t nnz[NumChunks]; IndexType count; const auto input32 = reinterpret_cast(input); // Find indices of nonzero 32bit blocks find_nnz(input32, nnz, count); const vec_t* biasvec = reinterpret_cast(biases); vec_t acc[NumRegs]; for (IndexType k = 0; k < NumRegs; ++k) acc[k] = biasvec[k]; for (IndexType j = 0; j < count; ++j) { const auto i = nnz[j]; const vec_t in = vec_set_32(input32[i]); const auto col = reinterpret_cast(&weights[i * OutputDimensions * ChunkSize]); for (IndexType k = 0; k < NumRegs; ++k) vec_add_dpbusd_32(acc[k], in, col[k]); } vec_t* outptr = reinterpret_cast(output); for (IndexType k = 0; k < NumRegs; ++k) outptr[k] = acc[k]; # undef vec_setzero # undef vec_set_32 # undef vec_add_dpbusd_32 #else // Use dense implementation for the other architectures. affine_transform_non_ssse3< InputDimensions, PaddedInputDimensions, OutputDimensions>(output, weights, biases, input); #endif return output; } private: using BiasType = OutputType; using WeightType = std::int8_t; alignas(CacheLineSize) BiasType biases[OutputDimensions]; alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions]; }; } // namespace Stockfish::Eval::NNUE::Layers #endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED