/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008 Marco Costalba Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include #include #include "material.h" //// //// Local definitions //// namespace { const Value BishopPairMidgameBonus = Value(109); const Value BishopPairEndgameBonus = Value(97); Key KNNKMaterialKey, KKNNMaterialKey; } //// //// Classes //// /// See header for a class description. It is declared here to avoid /// to include in the header file. class EndgameFunctions { public: EndgameFunctions(); EndgameEvaluationFunctionBase* getEEF(Key key) const; EndgameScalingFunctionBase* getESF(Key key, Color* c) const; private: void add(const std::string& keyCode, EndgameEvaluationFunctionBase* f); void add(const std::string& keyCode, Color c, EndgameScalingFunctionBase* f); Key buildKey(const std::string& keyCode); struct ScalingInfo { Color col; EndgameScalingFunctionBase* fun; }; std::map EEFmap; std::map ESFmap; }; //// //// Functions //// /// Constructor for the MaterialInfoTable class MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) { size = numOfEntries; entries = new MaterialInfo[size]; funcs = new EndgameFunctions(); if (!entries || !funcs) { std::cerr << "Failed to allocate " << (numOfEntries * sizeof(MaterialInfo)) << " bytes for material hash table." << std::endl; exit(EXIT_FAILURE); } clear(); } /// Destructor for the MaterialInfoTable class MaterialInfoTable::~MaterialInfoTable() { delete [] entries; delete funcs; } /// MaterialInfoTable::clear() clears a material hash table by setting /// all entries to 0. void MaterialInfoTable::clear() { memset(entries, 0, size * sizeof(MaterialInfo)); } /// MaterialInfoTable::get_material_info() takes a position object as input, /// computes or looks up a MaterialInfo object, and returns a pointer to it. /// If the material configuration is not already present in the table, it /// is stored there, so we don't have to recompute everything when the /// same material configuration occurs again. MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) { Key key = pos.get_material_key(); int index = key & (size - 1); MaterialInfo* mi = entries + index; // If mi->key matches the position's material hash key, it means that we // have analysed this material configuration before, and we can simply // return the information we found the last time instead of recomputing it. if (mi->key == key) return mi; // Clear the MaterialInfo object, and set its key mi->clear(); mi->key = key; // A special case before looking for a specialized evaluation function // KNN vs K is a draw. if (key == KNNKMaterialKey || key == KKNNMaterialKey) { mi->factor[WHITE] = mi->factor[BLACK] = 0; return mi; } // Let's look if we have a specialized evaluation function for this // particular material configuration. First we look for a fixed // configuration one, then a generic one if previous search failed. if ((mi->evaluationFunction = funcs->getEEF(key)) != NULL) return mi; else if ( pos.non_pawn_material(BLACK) == Value(0) && pos.piece_count(BLACK, PAWN) == 0 && pos.non_pawn_material(WHITE) >= RookValueEndgame) { mi->evaluationFunction = &EvaluateKXK; return mi; } else if ( pos.non_pawn_material(WHITE) == Value(0) && pos.piece_count(WHITE, PAWN) == 0 && pos.non_pawn_material(BLACK) >= RookValueEndgame) { mi->evaluationFunction = &EvaluateKKX; return mi; } else if ( pos.pawns() == EmptyBoardBB && pos.rooks() == EmptyBoardBB && pos.queens() == EmptyBoardBB) { // Minor piece endgame with at least one minor piece per side, // and no pawns. assert(pos.knights(WHITE) | pos.bishops(WHITE)); assert(pos.knights(BLACK) | pos.bishops(BLACK)); if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2 && pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2) { mi->evaluationFunction = &EvaluateKmmKm; return mi; } } // OK, we didn't find any special evaluation function for the current // material configuration. Is there a suitable scaling function? // // The code below is rather messy, and it could easily get worse later, // if we decide to add more special cases. We face problems when there // are several conflicting applicable scaling functions and we need to // decide which one to use. Color c; EndgameScalingFunctionBase* sf; if ((sf = funcs->getESF(key, &c)) != NULL) { mi->scalingFunction[c] = sf; return mi; } if ( pos.non_pawn_material(WHITE) == BishopValueMidgame && pos.piece_count(WHITE, BISHOP) == 1 && pos.piece_count(WHITE, PAWN) >= 1) mi->scalingFunction[WHITE] = &ScaleKBPK; if ( pos.non_pawn_material(BLACK) == BishopValueMidgame && pos.piece_count(BLACK, BISHOP) == 1 && pos.piece_count(BLACK, PAWN) >= 1) mi->scalingFunction[BLACK] = &ScaleKKBP; if ( pos.piece_count(WHITE, PAWN) == 0 && pos.non_pawn_material(WHITE) == QueenValueMidgame && pos.piece_count(WHITE, QUEEN) == 1 && pos.piece_count(BLACK, ROOK) == 1 && pos.piece_count(BLACK, PAWN) >= 1) mi->scalingFunction[WHITE] = &ScaleKQKRP; else if ( pos.piece_count(BLACK, PAWN) == 0 && pos.non_pawn_material(BLACK) == QueenValueMidgame && pos.piece_count(BLACK, QUEEN) == 1 && pos.piece_count(WHITE, ROOK) == 1 && pos.piece_count(WHITE, PAWN) >= 1) mi->scalingFunction[BLACK] = &ScaleKRPKQ; if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0)) { if (pos.piece_count(BLACK, PAWN) == 0) { assert(pos.piece_count(WHITE, PAWN) >= 2); mi->scalingFunction[WHITE] = &ScaleKPsK; } else if (pos.piece_count(WHITE, PAWN) == 0) { assert(pos.piece_count(BLACK, PAWN) >= 2); mi->scalingFunction[BLACK] = &ScaleKKPs; } else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1) { mi->scalingFunction[WHITE] = &ScaleKPKPw; mi->scalingFunction[BLACK] = &ScaleKPKPb; } } // Compute the space weight if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >= 2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame) { int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(BLACK, KNIGHT) + pos.piece_count(WHITE, BISHOP) + pos.piece_count(BLACK, BISHOP); mi->spaceWeight = minorPieceCount * minorPieceCount; } // Evaluate the material balance int sign; Value egValue = Value(0); Value mgValue = Value(0); for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign) { // No pawns makes it difficult to win, even with a material advantage if ( pos.piece_count(c, PAWN) == 0 && pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame) { if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c)) || pos.non_pawn_material(c) < RookValueMidgame) mi->factor[c] = 0; else { switch (pos.piece_count(c, BISHOP)) { case 2: mi->factor[c] = 32; break; case 1: mi->factor[c] = 12; break; case 0: mi->factor[c] = 6; break; } } } // Bishop pair if (pos.piece_count(c, BISHOP) >= 2) { mgValue += sign * BishopPairMidgameBonus; egValue += sign * BishopPairEndgameBonus; } // Knights are stronger when there are many pawns on the board. The // formula is taken from Larry Kaufman's paper "The Evaluation of Material // Imbalances in Chess": // http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm mgValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16); egValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16); // Redundancy of major pieces, again based on Kaufman's paper: if (pos.piece_count(c, ROOK) >= 1) { Value v = Value((pos.piece_count(c, ROOK) - 1) * 32 + pos.piece_count(c, QUEEN) * 16); mgValue -= sign * v; egValue -= sign * v; } } mi->mgValue = int16_t(mgValue); mi->egValue = int16_t(egValue); return mi; } /// EndgameFunctions member definitions. This class is used to store the maps /// of end game and scaling functions that MaterialInfoTable will query for /// each key. The maps are constant and are populated only at construction, /// but are per-thread instead of globals to avoid expensive locks. EndgameFunctions::EndgameFunctions() { KNNKMaterialKey = buildKey("KNNK"); KKNNMaterialKey = buildKey("KKNN"); add("KPK", &EvaluateKPK); add("KKP", &EvaluateKKP); add("KBNK", &EvaluateKBNK); add("KKBN", &EvaluateKKBN); add("KRKP", &EvaluateKRKP); add("KPKR", &EvaluateKPKR); add("KRKB", &EvaluateKRKB); add("KBKR", &EvaluateKBKR); add("KRKN", &EvaluateKRKN); add("KNKR", &EvaluateKNKR); add("KQKR", &EvaluateKQKR); add("KRKQ", &EvaluateKRKQ); add("KBBKN", &EvaluateKBBKN); add("KNKBB", &EvaluateKNKBB); add("KNPK", WHITE, &ScaleKNPK); add("KKNP", BLACK, &ScaleKKNP); add("KRPKR", WHITE, &ScaleKRPKR); add("KRKRP", BLACK, &ScaleKRKRP); add("KBPKB", WHITE, &ScaleKBPKB); add("KBKBP", BLACK, &ScaleKBKBP); add("KBPPKB", WHITE, &ScaleKBPPKB); add("KBKBPP", BLACK, &ScaleKBKBPP); add("KBPKN", WHITE, &ScaleKBPKN); add("KNKBP", BLACK, &ScaleKNKBP); add("KRPPKRP", WHITE, &ScaleKRPPKRP); add("KRPKRPP", BLACK, &ScaleKRPKRPP); add("KRPPKRP", WHITE, &ScaleKRPPKRP); add("KRPKRPP", BLACK, &ScaleKRPKRPP); } Key EndgameFunctions::buildKey(const std::string& keyCode) { assert(keyCode.length() > 0 && keyCode[0] == 'K'); assert(keyCode.length() < 8); std::stringstream s; bool upcase = false; // Build up a fen substring with the given pieces, note // that the fen string could be of an illegal position. for (size_t i = 0; i < keyCode.length(); i++) { if (keyCode[i] == 'K') upcase = !upcase; s << char(upcase? toupper(keyCode[i]) : tolower(keyCode[i])); } s << 8 - keyCode.length() << "/8/8/8/8/8/8/8 w -"; return Position(s.str()).get_material_key(); } void EndgameFunctions::add(const std::string& keyCode, EndgameEvaluationFunctionBase* f) { EEFmap.insert(std::pair(buildKey(keyCode), f)); } void EndgameFunctions::add(const std::string& keyCode, Color c, EndgameScalingFunctionBase* f) { ScalingInfo s = {c, f}; ESFmap.insert(std::pair(buildKey(keyCode), s)); } EndgameEvaluationFunctionBase* EndgameFunctions::getEEF(Key key) const { std::map::const_iterator it(EEFmap.find(key)); return (it != EEFmap.end() ? it->second : NULL); } EndgameScalingFunctionBase* EndgameFunctions::getESF(Key key, Color* c) const { std::map::const_iterator it(ESFmap.find(key)); if (it == ESFmap.end()) return NULL; *c = it->second.col; return it->second.fun; }