// NNUE評価関数の入力特徴量の変換を行うクラス #ifndef _NNUE_FEATURE_TRANSFORMER_H_ #define _NNUE_FEATURE_TRANSFORMER_H_ #if defined(EVAL_NNUE) #include "nnue_common.h" #include "nnue_architecture.h" #include "features/index_list.h" #include // std::memset() namespace Eval { namespace NNUE { // 入力特徴量変換器 class FeatureTransformer { private: // 片側分の出力の次元数 static constexpr IndexType kHalfDimensions = kTransformedFeatureDimensions; public: // 出力の型 using OutputType = TransformedFeatureType; // 入出力の次元数 static constexpr IndexType kInputDimensions = RawFeatures::kDimensions; static constexpr IndexType kOutputDimensions = kHalfDimensions * 2; // 順伝播用バッファのサイズ static constexpr std::size_t kBufferSize = kOutputDimensions * sizeof(OutputType); // 評価関数ファイルに埋め込むハッシュ値 static constexpr std::uint32_t GetHashValue() { return RawFeatures::kHashValue ^ kOutputDimensions; } // 構造を表す文字列 static std::string GetStructureString() { return RawFeatures::GetName() + "[" + std::to_string(kInputDimensions) + "->" + std::to_string(kHalfDimensions) + "x2]"; } // パラメータを読み込む bool ReadParameters(std::istream& stream) { stream.read(reinterpret_cast(biases_), kHalfDimensions * sizeof(BiasType)); stream.read(reinterpret_cast(weights_), kHalfDimensions * kInputDimensions * sizeof(WeightType)); return !stream.fail(); } // パラメータを書き込む bool WriteParameters(std::ostream& stream) const { stream.write(reinterpret_cast(biases_), kHalfDimensions * sizeof(BiasType)); stream.write(reinterpret_cast(weights_), kHalfDimensions * kInputDimensions * sizeof(WeightType)); return !stream.fail(); } // 可能なら差分計算を進める bool UpdateAccumulatorIfPossible(const Position& pos) const { const auto now = pos.state(); if (now->accumulator.computed_accumulation) { return true; } const auto prev = now->previous; if (prev && prev->accumulator.computed_accumulation) { UpdateAccumulator(pos); return true; } return false; } // 入力特徴量を変換する void Transform(const Position& pos, OutputType* output, bool refresh) const { if (refresh || !UpdateAccumulatorIfPossible(pos)) { RefreshAccumulator(pos); } const auto& accumulation = pos.state()->accumulator.accumulation; #if defined(USE_AVX2) constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth; constexpr int kControl = 0b11011000; const __m256i kZero = _mm256_setzero_si256(); #elif defined(USE_SSE41) constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth; const __m128i kZero = _mm_setzero_si128(); #elif defined(IS_ARM) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); const int8x8_t kZero = {0}; #endif const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()}; for (IndexType p = 0; p < 2; ++p) { const IndexType offset = kHalfDimensions * p; #if defined(USE_AVX2) auto out = reinterpret_cast<__m256i*>(&output[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { __m256i sum0 = #if defined(__MINGW32__) || defined(__MINGW64__) // HACK: Use _mm256_loadu_si256() instead of _mm256_load_si256. Because the binary // compiled with g++ in MSYS2 crashes here because the output memory is not aligned // even though alignas is specified. _mm256_loadu_si256 #else _mm256_load_si256 #endif (&reinterpret_cast( accumulation[perspectives[p]][0])[j * 2 + 0]); __m256i sum1 = #if defined(__MINGW32__) || defined(__MINGW64__) _mm256_loadu_si256 #else _mm256_load_si256 #endif (&reinterpret_cast( accumulation[perspectives[p]][0])[j * 2 + 1]); for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) { sum0 = _mm256_add_epi16(sum0, reinterpret_cast( accumulation[perspectives[p]][i])[j * 2 + 0]); sum1 = _mm256_add_epi16(sum1, reinterpret_cast( accumulation[perspectives[p]][i])[j * 2 + 1]); } #if defined(__MINGW32__) || defined(__MINGW64__) _mm256_storeu_si256 #else _mm256_store_si256 #endif (&out[j], _mm256_permute4x64_epi64(_mm256_max_epi8( _mm256_packs_epi16(sum0, sum1), kZero), kControl)); } #elif defined(USE_SSE41) auto out = reinterpret_cast<__m128i*>(&output[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { __m128i sum0 = _mm_load_si128(&reinterpret_cast( accumulation[perspectives[p]][0])[j * 2 + 0]); __m128i sum1 = _mm_load_si128(&reinterpret_cast( accumulation[perspectives[p]][0])[j * 2 + 1]); for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) { sum0 = _mm_add_epi16(sum0, reinterpret_cast( accumulation[perspectives[p]][i])[j * 2 + 0]); sum1 = _mm_add_epi16(sum1, reinterpret_cast( accumulation[perspectives[p]][i])[j * 2 + 1]); } _mm_store_si128(&out[j], _mm_max_epi8( _mm_packs_epi16(sum0, sum1), kZero)); } #elif defined(IS_ARM) const auto out = reinterpret_cast(&output[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { int16x8_t sum = reinterpret_cast( accumulation[perspectives[p]][0])[j]; for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) { sum = vaddq_s16(sum, reinterpret_cast( accumulation[perspectives[p]][i])[j]); } out[j] = vmax_s8(vqmovn_s16(sum), kZero); } #else for (IndexType j = 0; j < kHalfDimensions; ++j) { BiasType sum = accumulation[static_cast(perspectives[p])][0][j]; for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) { sum += accumulation[static_cast(perspectives[p])][i][j]; } output[offset + j] = static_cast( std::max(0, std::min(127, sum))); } #endif } } private: // 差分計算を用いずに累積値を計算する void RefreshAccumulator(const Position& pos) const { auto& accumulator = pos.state()->accumulator; for (IndexType i = 0; i < kRefreshTriggers.size(); ++i) { Features::IndexList active_indices[2]; RawFeatures::AppendActiveIndices(pos, kRefreshTriggers[i], active_indices); for (const auto perspective : Colors) { if (i == 0) { std::memcpy(accumulator.accumulation[perspective][i], biases_, kHalfDimensions * sizeof(BiasType)); } else { std::memset(accumulator.accumulation[perspective][i], 0, kHalfDimensions * sizeof(BiasType)); } for (const auto index : active_indices[perspective]) { const IndexType offset = kHalfDimensions * index; #if defined(USE_AVX2) auto accumulation = reinterpret_cast<__m256i*>( &accumulator.accumulation[perspective][i][0]); auto column = reinterpret_cast(&weights_[offset]); constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); for (IndexType j = 0; j < kNumChunks; ++j) { #if defined(__MINGW32__) || defined(__MINGW64__) _mm256_storeu_si256(&accumulation[j], _mm256_add_epi16(_mm256_loadu_si256(&accumulation[j]), column[j])); #else accumulation[j] = _mm256_add_epi16(accumulation[j], column[j]); #endif } #elif defined(USE_SSE2) auto accumulation = reinterpret_cast<__m128i*>( &accumulator.accumulation[perspective][i][0]); auto column = reinterpret_cast(&weights_[offset]); constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); for (IndexType j = 0; j < kNumChunks; ++j) { accumulation[j] = _mm_add_epi16(accumulation[j], column[j]); } #elif defined(IS_ARM) auto accumulation = reinterpret_cast( &accumulator.accumulation[perspective][i][0]); auto column = reinterpret_cast(&weights_[offset]); constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); for (IndexType j = 0; j < kNumChunks; ++j) { accumulation[j] = vaddq_s16(accumulation[j], column[j]); } #else for (IndexType j = 0; j < kHalfDimensions; ++j) { accumulator.accumulation[perspective][i][j] += weights_[offset + j]; } #endif } } } accumulator.computed_accumulation = true; accumulator.computed_score = false; } // 差分計算を用いて累積値を計算する void UpdateAccumulator(const Position& pos) const { const auto prev_accumulator = pos.state()->previous->accumulator; auto& accumulator = pos.state()->accumulator; for (IndexType i = 0; i < kRefreshTriggers.size(); ++i) { Features::IndexList removed_indices[2], added_indices[2]; bool reset[2]; RawFeatures::AppendChangedIndices(pos, kRefreshTriggers[i], removed_indices, added_indices, reset); for (const auto perspective : Colors) { #if defined(USE_AVX2) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); auto accumulation = reinterpret_cast<__m256i*>( &accumulator.accumulation[perspective][i][0]); #elif defined(USE_SSE2) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); auto accumulation = reinterpret_cast<__m128i*>( &accumulator.accumulation[perspective][i][0]); #elif defined(IS_ARM) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); auto accumulation = reinterpret_cast( &accumulator.accumulation[perspective][i][0]); #endif if (reset[perspective]) { if (i == 0) { std::memcpy(accumulator.accumulation[perspective][i], biases_, kHalfDimensions * sizeof(BiasType)); } else { std::memset(accumulator.accumulation[perspective][i], 0, kHalfDimensions * sizeof(BiasType)); } } else { // 1から0に変化した特徴量に関する差分計算 std::memcpy(accumulator.accumulation[perspective][i], prev_accumulator.accumulation[perspective][i], kHalfDimensions * sizeof(BiasType)); for (const auto index : removed_indices[perspective]) { const IndexType offset = kHalfDimensions * index; #if defined(USE_AVX2) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { accumulation[j] = _mm256_sub_epi16(accumulation[j], column[j]); } #elif defined(USE_SSE2) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { accumulation[j] = _mm_sub_epi16(accumulation[j], column[j]); } #elif defined(IS_ARM) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { accumulation[j] = vsubq_s16(accumulation[j], column[j]); } #else for (IndexType j = 0; j < kHalfDimensions; ++j) { accumulator.accumulation[perspective][i][j] -= weights_[offset + j]; } #endif } } { // 0から1に変化した特徴量に関する差分計算 for (const auto index : added_indices[perspective]) { const IndexType offset = kHalfDimensions * index; #if defined(USE_AVX2) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { accumulation[j] = _mm256_add_epi16(accumulation[j], column[j]); } #elif defined(USE_SSE2) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { accumulation[j] = _mm_add_epi16(accumulation[j], column[j]); } #elif defined(IS_ARM) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { accumulation[j] = vaddq_s16(accumulation[j], column[j]); } #else for (IndexType j = 0; j < kHalfDimensions; ++j) { accumulator.accumulation[perspective][i][j] += weights_[offset + j]; } #endif } } } } accumulator.computed_accumulation = true; accumulator.computed_score = false; } // パラメータの型 using BiasType = std::int16_t; using WeightType = std::int16_t; // 学習用クラスをfriendにする friend class Trainer; // パラメータ alignas(kCacheLineSize) BiasType biases_[kHalfDimensions]; alignas(kCacheLineSize) WeightType weights_[kHalfDimensions * kInputDimensions]; }; } // namespace NNUE } // namespace Eval #endif // defined(EVAL_NNUE) #endif