/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include "bitcount.h" #include "movegen.h" #include "position.h" #include "psqtab.h" #include "rkiss.h" #include "thread.h" #include "tt.h" #include "ucioption.h" using std::string; using std::cout; using std::endl; Key Position::zobrist[2][8][64]; Key Position::zobEp[64]; Key Position::zobCastle[16]; Key Position::zobSideToMove; Key Position::zobExclusion; Score Position::pieceSquareTable[16][64]; // Material values arrays, indexed by Piece const Value PieceValueMidgame[17] = { VALUE_ZERO, PawnValueMidgame, KnightValueMidgame, BishopValueMidgame, RookValueMidgame, QueenValueMidgame, VALUE_ZERO, VALUE_ZERO, VALUE_ZERO, PawnValueMidgame, KnightValueMidgame, BishopValueMidgame, RookValueMidgame, QueenValueMidgame }; const Value PieceValueEndgame[17] = { VALUE_ZERO, PawnValueEndgame, KnightValueEndgame, BishopValueEndgame, RookValueEndgame, QueenValueEndgame, VALUE_ZERO, VALUE_ZERO, VALUE_ZERO, PawnValueEndgame, KnightValueEndgame, BishopValueEndgame, RookValueEndgame, QueenValueEndgame }; namespace { // Bonus for having the side to move (modified by Joona Kiiski) const Score TempoValue = make_score(48, 22); // To convert a Piece to and from a FEN char const string PieceToChar(".PNBRQK pnbrqk "); } /// CheckInfo c'tor CheckInfo::CheckInfo(const Position& pos) { Color them = opposite_color(pos.side_to_move()); Square ksq = pos.king_square(them); pinned = pos.pinned_pieces(); dcCandidates = pos.discovered_check_candidates(); checkSq[PAWN] = pos.attacks_from(ksq, them); checkSq[KNIGHT] = pos.attacks_from(ksq); checkSq[BISHOP] = pos.attacks_from(ksq); checkSq[ROOK] = pos.attacks_from(ksq); checkSq[QUEEN] = checkSq[BISHOP] | checkSq[ROOK]; checkSq[KING] = EmptyBoardBB; } /// Position c'tors. Here we always create a copy of the original position /// or the FEN string, we want the new born Position object do not depend /// on any external data so we detach state pointer from the source one. Position::Position(const Position& pos, int th) { memcpy(this, &pos, sizeof(Position)); detach(); // Always detach() in copy c'tor to avoid surprises threadID = th; nodes = 0; assert(is_ok()); } Position::Position(const string& fen, bool isChess960, int th) { from_fen(fen, isChess960); threadID = th; } /// Position::detach() copies the content of the current state and castling /// masks inside the position itself. This is needed when the st pointee could /// become stale, as example because the caller is about to going out of scope. void Position::detach() { startState = *st; st = &startState; st->previous = NULL; // As a safe guard } /// Position::from_fen() initializes the position object with the given FEN /// string. This function is not very robust - make sure that input FENs are /// correct (this is assumed to be the responsibility of the GUI). void Position::from_fen(const string& fenStr, bool isChess960) { /* A FEN string defines a particular position using only the ASCII character set. A FEN string contains six fields. The separator between fields is a space. The fields are: 1) Piece placement (from white's perspective). Each rank is described, starting with rank 8 and ending with rank 1; within each rank, the contents of each square are described from file A through file H. Following the Standard Algebraic Notation (SAN), each piece is identified by a single letter taken from the standard English names. White pieces are designated using upper-case letters ("PNBRQK") while Black take lowercase ("pnbrqk"). Blank squares are noted using digits 1 through 8 (the number of blank squares), and "/" separate ranks. 2) Active color. "w" means white moves next, "b" means black. 3) Castling availability. If neither side can castle, this is "-". Otherwise, this has one or more letters: "K" (White can castle kingside), "Q" (White can castle queenside), "k" (Black can castle kingside), and/or "q" (Black can castle queenside). 4) En passant target square in algebraic notation. If there's no en passant target square, this is "-". If a pawn has just made a 2-square move, this is the position "behind" the pawn. This is recorded regardless of whether there is a pawn in position to make an en passant capture. 5) Halfmove clock: This is the number of halfmoves since the last pawn advance or capture. This is used to determine if a draw can be claimed under the fifty-move rule. 6) Fullmove number: The number of the full move. It starts at 1, and is incremented after Black's move. */ char col, row, token; size_t p; Square sq = SQ_A8; std::istringstream fen(fenStr); clear(); fen >> std::noskipws; // 1. Piece placement while ((fen >> token) && !isspace(token)) { if (token == '/') sq -= Square(16); // Jump back of 2 rows else if (isdigit(token)) sq += Square(token - '0'); // Skip the given number of files else if ((p = PieceToChar.find(token)) != string::npos) { put_piece(Piece(p), sq); sq++; } } // 2. Active color fen >> token; sideToMove = (token == 'w' ? WHITE : BLACK); fen >> token; // 3. Castling availability while ((fen >> token) && !isspace(token)) set_castling_rights(token); // 4. En passant square. Ignore if no pawn capture is possible if ( ((fen >> col) && (col >= 'a' && col <= 'h')) && ((fen >> row) && (row == '3' || row == '6'))) { st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); Color them = opposite_color(sideToMove); if (!(attacks_from(st->epSquare, them) & pieces(PAWN, sideToMove))) st->epSquare = SQ_NONE; } // 5-6. Halfmove clock and fullmove number fen >> std::skipws >> st->rule50 >> fullMoves; // Various initialisations chess960 = isChess960; st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(opposite_color(sideToMove)); st->key = compute_key(); st->pawnKey = compute_pawn_key(); st->materialKey = compute_material_key(); st->value = compute_value(); st->npMaterial[WHITE] = compute_non_pawn_material(WHITE); st->npMaterial[BLACK] = compute_non_pawn_material(BLACK); assert(is_ok()); } /// Position::set_castle() is an helper function used to set /// correct castling related flags. void Position::set_castle(int f, Square ksq, Square rsq) { st->castleRights |= f; castleRightsMask[ksq] ^= f; castleRightsMask[rsq] ^= f; castleRookSquare[f] = rsq; } /// Position::set_castling_rights() sets castling parameters castling avaiability. /// This function is compatible with 3 standards: Normal FEN standard, Shredder-FEN /// that uses the letters of the columns on which the rooks began the game instead /// of KQkq and also X-FEN standard that, in case of Chess960, if an inner Rook is /// associated with the castling right, the traditional castling tag will be replaced /// by the file letter of the involved rook as for the Shredder-FEN. void Position::set_castling_rights(char token) { Color c = islower(token) ? BLACK : WHITE; Square sqA = relative_square(c, SQ_A1); Square sqH = relative_square(c, SQ_H1); Square rsq, ksq = king_square(c); token = char(toupper(token)); if (token == 'K') for (rsq = sqH; piece_on(rsq) != make_piece(c, ROOK); rsq--) {} else if (token == 'Q') for (rsq = sqA; piece_on(rsq) != make_piece(c, ROOK); rsq++) {} else if (token >= 'A' && token <= 'H') rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); else return; if (square_file(rsq) < square_file(ksq)) set_castle(WHITE_OOO << c, ksq, rsq); else set_castle(WHITE_OO << c, ksq, rsq); } /// Position::to_fen() returns a FEN representation of the position. In case /// of Chess960 the Shredder-FEN notation is used. Mainly a debugging function. const string Position::to_fen() const { std::ostringstream fen; Square sq; int emptyCnt; for (Rank rank = RANK_8; rank >= RANK_1; rank--) { emptyCnt = 0; for (File file = FILE_A; file <= FILE_H; file++) { sq = make_square(file, rank); if (!square_is_empty(sq)) { if (emptyCnt) { fen << emptyCnt; emptyCnt = 0; } fen << PieceToChar[piece_on(sq)]; } else emptyCnt++; } if (emptyCnt) fen << emptyCnt; if (rank > RANK_1) fen << '/'; } fen << (sideToMove == WHITE ? " w " : " b "); if (st->castleRights != CASTLES_NONE) { if (can_castle(WHITE_OO)) fen << (chess960 ? char(toupper(file_to_char(square_file(castle_rook_square(WHITE_OO))))) : 'K'); if (can_castle(WHITE_OOO)) fen << (chess960 ? char(toupper(file_to_char(square_file(castle_rook_square(WHITE_OOO))))) : 'Q'); if (can_castle(BLACK_OO)) fen << (chess960 ? file_to_char(square_file(castle_rook_square(BLACK_OO))) : 'k'); if (can_castle(BLACK_OOO)) fen << (chess960 ? file_to_char(square_file(castle_rook_square(BLACK_OOO))) : 'q'); } else fen << '-'; fen << (ep_square() == SQ_NONE ? " -" : " " + square_to_string(ep_square())) << " " << st->rule50 << " " << fullMoves; return fen.str(); } /// Position::print() prints an ASCII representation of the position to /// the standard output. If a move is given then also the san is printed. void Position::print(Move move) const { const char* dottedLine = "\n+---+---+---+---+---+---+---+---+\n"; if (move) { Position p(*this, thread()); string dd = (sideToMove == BLACK ? ".." : ""); cout << "\nMove is: " << dd << move_to_san(p, move); } for (Rank rank = RANK_8; rank >= RANK_1; rank--) { cout << dottedLine << '|'; for (File file = FILE_A; file <= FILE_H; file++) { Square sq = make_square(file, rank); Piece piece = piece_on(sq); if (piece == PIECE_NONE && square_color(sq) == DARK) piece = PIECE_NONE_DARK_SQ; char c = (piece_color(piece_on(sq)) == BLACK ? '=' : ' '); cout << c << PieceToChar[piece] << c << '|'; } } cout << dottedLine << "Fen is: " << to_fen() << "\nKey is: " << st->key << endl; } /// Position:hidden_checkers<>() returns a bitboard of all pinned (against the /// king) pieces for the given color. Or, when template parameter FindPinned is /// false, the function return the pieces of the given color candidate for a /// discovery check against the enemy king. template Bitboard Position::hidden_checkers() const { // Pinned pieces protect our king, dicovery checks attack the enemy king Bitboard b, result = EmptyBoardBB; Bitboard pinners = pieces(FindPinned ? opposite_color(sideToMove) : sideToMove); Square ksq = king_square(FindPinned ? sideToMove : opposite_color(sideToMove)); // Pinners are sliders, that give check when candidate pinned is removed pinners &= (pieces(ROOK, QUEEN) & RookPseudoAttacks[ksq]) | (pieces(BISHOP, QUEEN) & BishopPseudoAttacks[ksq]); while (pinners) { b = squares_between(ksq, pop_1st_bit(&pinners)) & occupied_squares(); // Only one bit set and is an our piece? if (b && !(b & (b - 1)) && (b & pieces(sideToMove))) result |= b; } return result; } /// Position:pinned_pieces() returns a bitboard of all pinned (against the /// king) pieces for the side to move. Bitboard Position::pinned_pieces() const { return hidden_checkers(); } /// Position:discovered_check_candidates() returns a bitboard containing all /// pieces for the side to move which are candidates for giving a discovered /// check. Bitboard Position::discovered_check_candidates() const { return hidden_checkers(); } /// Position::attackers_to() computes a bitboard containing all pieces which /// attacks a given square. Bitboard Position::attackers_to(Square s) const { return (attacks_from(s, BLACK) & pieces(PAWN, WHITE)) | (attacks_from(s, WHITE) & pieces(PAWN, BLACK)) | (attacks_from(s) & pieces(KNIGHT)) | (attacks_from(s) & pieces(ROOK, QUEEN)) | (attacks_from(s) & pieces(BISHOP, QUEEN)) | (attacks_from(s) & pieces(KING)); } Bitboard Position::attackers_to(Square s, Bitboard occ) const { return (attacks_from(s, BLACK) & pieces(PAWN, WHITE)) | (attacks_from(s, WHITE) & pieces(PAWN, BLACK)) | (attacks_from(s) & pieces(KNIGHT)) | (rook_attacks_bb(s, occ) & pieces(ROOK, QUEEN)) | (bishop_attacks_bb(s, occ) & pieces(BISHOP, QUEEN)) | (attacks_from(s) & pieces(KING)); } /// Position::attacks_from() computes a bitboard of all attacks /// of a given piece put in a given square. Bitboard Position::attacks_from(Piece p, Square s) const { assert(square_is_ok(s)); switch (p) { case WB: case BB: return attacks_from(s); case WR: case BR: return attacks_from(s); case WQ: case BQ: return attacks_from(s); default: return StepAttacksBB[p][s]; } } Bitboard Position::attacks_from(Piece p, Square s, Bitboard occ) { assert(square_is_ok(s)); switch (p) { case WB: case BB: return bishop_attacks_bb(s, occ); case WR: case BR: return rook_attacks_bb(s, occ); case WQ: case BQ: return bishop_attacks_bb(s, occ) | rook_attacks_bb(s, occ); default: return StepAttacksBB[p][s]; } } /// Position::move_attacks_square() tests whether a move from the current /// position attacks a given square. bool Position::move_attacks_square(Move m, Square s) const { assert(move_is_ok(m)); assert(square_is_ok(s)); Bitboard occ, xray; Square f = move_from(m), t = move_to(m); assert(!square_is_empty(f)); if (bit_is_set(attacks_from(piece_on(f), t), s)) return true; // Move the piece and scan for X-ray attacks behind it occ = occupied_squares(); do_move_bb(&occ, make_move_bb(f, t)); xray = ( (rook_attacks_bb(s, occ) & pieces(ROOK, QUEEN)) |(bishop_attacks_bb(s, occ) & pieces(BISHOP, QUEEN))) & pieces(piece_color(piece_on(f))); // If we have attacks we need to verify that are caused by our move // and are not already existent ones. return xray && (xray ^ (xray & attacks_from(s))); } /// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal bool Position::pl_move_is_legal(Move m, Bitboard pinned) const { assert(move_is_ok(m)); assert(pinned == pinned_pieces()); Color us = side_to_move(); Square from = move_from(m); assert(piece_color(piece_on(from)) == us); assert(piece_on(king_square(us)) == make_piece(us, KING)); // En passant captures are a tricky special case. Because they are rather // uncommon, we do it simply by testing whether the king is attacked after // the move is made. if (move_is_ep(m)) { Color them = opposite_color(us); Square to = move_to(m); Square capsq = to + pawn_push(them); Square ksq = king_square(us); Bitboard b = occupied_squares(); assert(to == ep_square()); assert(piece_on(from) == make_piece(us, PAWN)); assert(piece_on(capsq) == make_piece(them, PAWN)); assert(piece_on(to) == PIECE_NONE); clear_bit(&b, from); clear_bit(&b, capsq); set_bit(&b, to); return !(rook_attacks_bb(ksq, b) & pieces(ROOK, QUEEN, them)) && !(bishop_attacks_bb(ksq, b) & pieces(BISHOP, QUEEN, them)); } // If the moving piece is a king, check whether the destination // square is attacked by the opponent. Castling moves are checked // for legality during move generation. if (piece_type(piece_on(from)) == KING) return move_is_castle(m) || !(attackers_to(move_to(m)) & pieces(opposite_color(us))); // A non-king move is legal if and only if it is not pinned or it // is moving along the ray towards or away from the king. return !pinned || !bit_is_set(pinned, from) || squares_aligned(from, move_to(m), king_square(us)); } /// Position::move_is_legal() takes a move and tests whether the move /// is legal. This version is not very fast and should be used only /// in non time-critical paths. bool Position::move_is_legal(const Move m) const { for (MoveList ml(*this); !ml.end(); ++ml) if (ml.move() == m) return true; return false; } /// Fast version of Position::move_is_pl() that takes a move and a bitboard /// of pinned pieces as input, and tests whether the move is pseudo legal. bool Position::move_is_pl(const Move m) const { Color us = sideToMove; Color them = opposite_color(sideToMove); Square from = move_from(m); Square to = move_to(m); Piece pc = piece_on(from); // Use a slower but simpler function for uncommon cases if (move_is_special(m)) return move_is_legal(m); // Is not a promotion, so promotion piece must be empty if (promotion_piece_type(m) - 2 != PIECE_TYPE_NONE) return false; // If the from square is not occupied by a piece belonging to the side to // move, the move is obviously not legal. if (pc == PIECE_NONE || piece_color(pc) != us) return false; // The destination square cannot be occupied by a friendly piece if (piece_color(piece_on(to)) == us) return false; // Handle the special case of a pawn move if (piece_type(pc) == PAWN) { // Move direction must be compatible with pawn color int direction = to - from; if ((us == WHITE) != (direction > 0)) return false; // We have already handled promotion moves, so destination // cannot be on the 8/1th rank. if (square_rank(to) == RANK_8 || square_rank(to) == RANK_1) return false; // Proceed according to the square delta between the origin and // destination squares. switch (direction) { case DELTA_NW: case DELTA_NE: case DELTA_SW: case DELTA_SE: // Capture. The destination square must be occupied by an enemy // piece (en passant captures was handled earlier). if (piece_color(piece_on(to)) != them) return false; // From and to files must be one file apart, avoids a7h5 if (abs(square_file(from) - square_file(to)) != 1) return false; break; case DELTA_N: case DELTA_S: // Pawn push. The destination square must be empty. if (!square_is_empty(to)) return false; break; case DELTA_NN: // Double white pawn push. The destination square must be on the fourth // rank, and both the destination square and the square between the // source and destination squares must be empty. if ( square_rank(to) != RANK_4 || !square_is_empty(to) || !square_is_empty(from + DELTA_N)) return false; break; case DELTA_SS: // Double black pawn push. The destination square must be on the fifth // rank, and both the destination square and the square between the // source and destination squares must be empty. if ( square_rank(to) != RANK_5 || !square_is_empty(to) || !square_is_empty(from + DELTA_S)) return false; break; default: return false; } } else if (!bit_is_set(attacks_from(pc, from), to)) return false; if (in_check()) { // In case of king moves under check we have to remove king so to catch // as invalid moves like b1a1 when opposite queen is on c1. if (piece_type(piece_on(from)) == KING) { Bitboard b = occupied_squares(); clear_bit(&b, from); if (attackers_to(move_to(m), b) & pieces(opposite_color(us))) return false; } else { Bitboard target = checkers(); Square checksq = pop_1st_bit(&target); if (target) // double check ? In this case a king move is required return false; // Our move must be a blocking evasion or a capture of the checking piece target = squares_between(checksq, king_square(us)) | checkers(); if (!bit_is_set(target, move_to(m))) return false; } } return true; } /// Position::move_gives_check() tests whether a pseudo-legal move is a check bool Position::move_gives_check(Move m, const CheckInfo& ci) const { assert(move_is_ok(m)); assert(ci.dcCandidates == discovered_check_candidates()); assert(piece_color(piece_on(move_from(m))) == side_to_move()); Square from = move_from(m); Square to = move_to(m); PieceType pt = piece_type(piece_on(from)); // Direct check ? if (bit_is_set(ci.checkSq[pt], to)) return true; // Discovery check ? if (ci.dcCandidates && bit_is_set(ci.dcCandidates, from)) { // For pawn and king moves we need to verify also direction if ( (pt != PAWN && pt != KING) || !squares_aligned(from, to, king_square(opposite_color(side_to_move())))) return true; } // Can we skip the ugly special cases ? if (!move_is_special(m)) return false; Color us = side_to_move(); Bitboard b = occupied_squares(); Square ksq = king_square(opposite_color(us)); // Promotion with check ? if (move_is_promotion(m)) { clear_bit(&b, from); switch (promotion_piece_type(m)) { case KNIGHT: return bit_is_set(attacks_from(to), ksq); case BISHOP: return bit_is_set(bishop_attacks_bb(to, b), ksq); case ROOK: return bit_is_set(rook_attacks_bb(to, b), ksq); case QUEEN: return bit_is_set(queen_attacks_bb(to, b), ksq); default: assert(false); } } // En passant capture with check ? We have already handled the case // of direct checks and ordinary discovered check, the only case we // need to handle is the unusual case of a discovered check through // the captured pawn. if (move_is_ep(m)) { Square capsq = make_square(square_file(to), square_rank(from)); clear_bit(&b, from); clear_bit(&b, capsq); set_bit(&b, to); return (rook_attacks_bb(ksq, b) & pieces(ROOK, QUEEN, us)) ||(bishop_attacks_bb(ksq, b) & pieces(BISHOP, QUEEN, us)); } // Castling with check ? if (move_is_castle(m)) { Square kfrom, kto, rfrom, rto; kfrom = from; rfrom = to; if (rfrom > kfrom) { kto = relative_square(us, SQ_G1); rto = relative_square(us, SQ_F1); } else { kto = relative_square(us, SQ_C1); rto = relative_square(us, SQ_D1); } clear_bit(&b, kfrom); clear_bit(&b, rfrom); set_bit(&b, rto); set_bit(&b, kto); return bit_is_set(rook_attacks_bb(rto, b), ksq); } return false; } /// Position::do_setup_move() makes a permanent move on the board. It should /// be used when setting up a position on board. You can't undo the move. void Position::do_setup_move(Move m) { StateInfo newSt; // Update the number of full moves after black's move if (sideToMove == BLACK) fullMoves++; do_move(m, newSt); // Reset "game ply" in case we made a non-reversible move. // "game ply" is used for repetition detection. if (st->rule50 == 0) st->gamePly = 0; // Our StateInfo newSt is about going out of scope so copy // its content before it disappears. detach(); assert(is_ok()); } /// Position::do_move() makes a move, and saves all information necessary /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal /// moves should be filtered out before this function is called. void Position::do_move(Move m, StateInfo& newSt) { CheckInfo ci(*this); do_move(m, newSt, ci, move_gives_check(m, ci)); } void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveIsCheck) { assert(move_is_ok(m)); assert(&newSt != st); nodes++; Key key = st->key; // Copy some fields of old state to our new StateInfo object except the // ones which are recalculated from scratch anyway, then switch our state // pointer to point to the new, ready to be updated, state. struct ReducedStateInfo { Key pawnKey, materialKey; int castleRights, rule50, gamePly, pliesFromNull; Square epSquare; Score value; Value npMaterial[2]; }; memcpy(&newSt, st, sizeof(ReducedStateInfo)); newSt.previous = st; st = &newSt; // Save the current key to the history[] array, in order to be able to // detect repetition draws. history[st->gamePly++] = key; // Update side to move key ^= zobSideToMove; // Increment the 50 moves rule draw counter. Resetting it to zero in the // case of non-reversible moves is taken care of later. st->rule50++; st->pliesFromNull++; if (move_is_castle(m)) { st->key = key; do_castle_move(m); return; } Color us = side_to_move(); Color them = opposite_color(us); Square from = move_from(m); Square to = move_to(m); bool ep = move_is_ep(m); bool pm = move_is_promotion(m); Piece piece = piece_on(from); PieceType pt = piece_type(piece); PieceType capture = ep ? PAWN : piece_type(piece_on(to)); assert(piece_color(piece_on(from)) == us); assert(piece_color(piece_on(to)) == them || square_is_empty(to)); assert(!(ep || pm) || piece == make_piece(us, PAWN)); assert(!pm || relative_rank(us, to) == RANK_8); if (capture) do_capture_move(key, capture, them, to, ep); // Update hash key key ^= zobrist[us][pt][from] ^ zobrist[us][pt][to]; // Reset en passant square if (st->epSquare != SQ_NONE) { key ^= zobEp[st->epSquare]; st->epSquare = SQ_NONE; } // Update castle rights if needed if ( st->castleRights != CASTLES_NONE && (castleRightsMask[from] & castleRightsMask[to]) != ALL_CASTLES) { key ^= zobCastle[st->castleRights]; st->castleRights &= castleRightsMask[from] & castleRightsMask[to]; key ^= zobCastle[st->castleRights]; } // Prefetch TT access as soon as we know key is updated prefetch((char*)TT.first_entry(key)); // Move the piece Bitboard move_bb = make_move_bb(from, to); do_move_bb(&byColorBB[us], move_bb); do_move_bb(&byTypeBB[pt], move_bb); do_move_bb(&byTypeBB[0], move_bb); // HACK: byTypeBB[0] == occupied squares board[to] = board[from]; board[from] = PIECE_NONE; // Update piece lists, note that index[from] is not updated and // becomes stale. This works as long as index[] is accessed just // by known occupied squares. index[to] = index[from]; pieceList[us][pt][index[to]] = to; // If the moving piece was a pawn do some special extra work if (pt == PAWN) { // Reset rule 50 draw counter st->rule50 = 0; // Update pawn hash key and prefetch in L1/L2 cache st->pawnKey ^= zobrist[us][PAWN][from] ^ zobrist[us][PAWN][to]; // Set en passant square, only if moved pawn can be captured if ((to ^ from) == 16) { if (attacks_from(from + pawn_push(us), us) & pieces(PAWN, them)) { st->epSquare = Square((int(from) + int(to)) / 2); key ^= zobEp[st->epSquare]; } } if (pm) // promotion ? { PieceType promotion = promotion_piece_type(m); assert(promotion >= KNIGHT && promotion <= QUEEN); // Insert promoted piece instead of pawn clear_bit(&byTypeBB[PAWN], to); set_bit(&byTypeBB[promotion], to); board[to] = make_piece(us, promotion); // Update piece counts pieceCount[us][promotion]++; pieceCount[us][PAWN]--; // Update material key st->materialKey ^= zobrist[us][PAWN][pieceCount[us][PAWN]]; st->materialKey ^= zobrist[us][promotion][pieceCount[us][promotion]-1]; // Update piece lists, move the last pawn at index[to] position // and shrink the list. Add a new promotion piece to the list. Square lastPawnSquare = pieceList[us][PAWN][pieceCount[us][PAWN]]; index[lastPawnSquare] = index[to]; pieceList[us][PAWN][index[lastPawnSquare]] = lastPawnSquare; pieceList[us][PAWN][pieceCount[us][PAWN]] = SQ_NONE; index[to] = pieceCount[us][promotion] - 1; pieceList[us][promotion][index[to]] = to; // Partially revert hash keys update key ^= zobrist[us][PAWN][to] ^ zobrist[us][promotion][to]; st->pawnKey ^= zobrist[us][PAWN][to]; // Partially revert and update incremental scores st->value -= pst(make_piece(us, PAWN), to); st->value += pst(make_piece(us, promotion), to); // Update material st->npMaterial[us] += PieceValueMidgame[promotion]; } } // Prefetch pawn and material hash tables Threads[threadID].pawnTable.prefetch(st->pawnKey); Threads[threadID].materialTable.prefetch(st->materialKey); // Update incremental scores st->value += pst_delta(piece, from, to); // Set capture piece st->capturedType = capture; // Update the key with the final value st->key = key; // Update checkers bitboard, piece must be already moved st->checkersBB = EmptyBoardBB; if (moveIsCheck) { if (ep | pm) st->checkersBB = attackers_to(king_square(them)) & pieces(us); else { // Direct checks if (bit_is_set(ci.checkSq[pt], to)) st->checkersBB = SetMaskBB[to]; // Discovery checks if (ci.dcCandidates && bit_is_set(ci.dcCandidates, from)) { if (pt != ROOK) st->checkersBB |= (attacks_from(king_square(them)) & pieces(ROOK, QUEEN, us)); if (pt != BISHOP) st->checkersBB |= (attacks_from(king_square(them)) & pieces(BISHOP, QUEEN, us)); } } } // Finish sideToMove = opposite_color(sideToMove); st->value += (sideToMove == WHITE ? TempoValue : -TempoValue); assert(is_ok()); } /// Position::do_capture_move() is a private method used to update captured /// piece info. It is called from the main Position::do_move function. void Position::do_capture_move(Key& key, PieceType capture, Color them, Square to, bool ep) { assert(capture != KING); Square capsq = to; // If the captured piece was a pawn, update pawn hash key, // otherwise update non-pawn material. if (capture == PAWN) { if (ep) // en passant ? { capsq = to + pawn_push(them); assert(to == st->epSquare); assert(relative_rank(opposite_color(them), to) == RANK_6); assert(piece_on(to) == PIECE_NONE); assert(piece_on(capsq) == make_piece(them, PAWN)); board[capsq] = PIECE_NONE; } st->pawnKey ^= zobrist[them][PAWN][capsq]; } else st->npMaterial[them] -= PieceValueMidgame[capture]; // Remove captured piece clear_bit(&byColorBB[them], capsq); clear_bit(&byTypeBB[capture], capsq); clear_bit(&byTypeBB[0], capsq); // Update hash key key ^= zobrist[them][capture][capsq]; // Update incremental scores st->value -= pst(make_piece(them, capture), capsq); // Update piece count pieceCount[them][capture]--; // Update material hash key st->materialKey ^= zobrist[them][capture][pieceCount[them][capture]]; // Update piece list, move the last piece at index[capsq] position // // WARNING: This is a not perfectly revresible operation. When we // will reinsert the captured piece in undo_move() we will put it // at the end of the list and not in its original place, it means // index[] and pieceList[] are not guaranteed to be invariant to a // do_move() + undo_move() sequence. Square lastPieceSquare = pieceList[them][capture][pieceCount[them][capture]]; index[lastPieceSquare] = index[capsq]; pieceList[them][capture][index[lastPieceSquare]] = lastPieceSquare; pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE; // Reset rule 50 counter st->rule50 = 0; } /// Position::do_castle_move() is a private method used to make a castling /// move. It is called from the main Position::do_move function. Note that /// castling moves are encoded as "king captures friendly rook" moves, for /// instance white short castling in a non-Chess960 game is encoded as e1h1. void Position::do_castle_move(Move m) { assert(move_is_ok(m)); assert(move_is_castle(m)); Color us = side_to_move(); Color them = opposite_color(us); // Find source squares for king and rook Square kfrom = move_from(m); Square rfrom = move_to(m); Square kto, rto; assert(piece_on(kfrom) == make_piece(us, KING)); assert(piece_on(rfrom) == make_piece(us, ROOK)); // Find destination squares for king and rook if (rfrom > kfrom) // O-O { kto = relative_square(us, SQ_G1); rto = relative_square(us, SQ_F1); } else // O-O-O { kto = relative_square(us, SQ_C1); rto = relative_square(us, SQ_D1); } // Remove pieces from source squares clear_bit(&byColorBB[us], kfrom); clear_bit(&byTypeBB[KING], kfrom); clear_bit(&byTypeBB[0], kfrom); clear_bit(&byColorBB[us], rfrom); clear_bit(&byTypeBB[ROOK], rfrom); clear_bit(&byTypeBB[0], rfrom); // Put pieces on destination squares set_bit(&byColorBB[us], kto); set_bit(&byTypeBB[KING], kto); set_bit(&byTypeBB[0], kto); set_bit(&byColorBB[us], rto); set_bit(&byTypeBB[ROOK], rto); set_bit(&byTypeBB[0], rto); // Update board Piece king = make_piece(us, KING); Piece rook = make_piece(us, ROOK); board[kfrom] = board[rfrom] = PIECE_NONE; board[kto] = king; board[rto] = rook; // Update piece lists pieceList[us][KING][index[kfrom]] = kto; pieceList[us][ROOK][index[rfrom]] = rto; int tmp = index[rfrom]; // In Chess960 could be kto == rfrom index[kto] = index[kfrom]; index[rto] = tmp; // Reset capture field st->capturedType = PIECE_TYPE_NONE; // Update incremental scores st->value += pst_delta(king, kfrom, kto); st->value += pst_delta(rook, rfrom, rto); // Update hash key st->key ^= zobrist[us][KING][kfrom] ^ zobrist[us][KING][kto]; st->key ^= zobrist[us][ROOK][rfrom] ^ zobrist[us][ROOK][rto]; // Clear en passant square if (st->epSquare != SQ_NONE) { st->key ^= zobEp[st->epSquare]; st->epSquare = SQ_NONE; } // Update castling rights st->key ^= zobCastle[st->castleRights]; st->castleRights &= castleRightsMask[kfrom]; st->key ^= zobCastle[st->castleRights]; // Reset rule 50 counter st->rule50 = 0; // Update checkers BB st->checkersBB = attackers_to(king_square(them)) & pieces(us); // Finish sideToMove = opposite_color(sideToMove); st->value += (sideToMove == WHITE ? TempoValue : -TempoValue); assert(is_ok()); } /// Position::undo_move() unmakes a move. When it returns, the position should /// be restored to exactly the same state as before the move was made. void Position::undo_move(Move m) { assert(move_is_ok(m)); sideToMove = opposite_color(sideToMove); if (move_is_castle(m)) { undo_castle_move(m); return; } Color us = side_to_move(); Color them = opposite_color(us); Square from = move_from(m); Square to = move_to(m); bool ep = move_is_ep(m); bool pm = move_is_promotion(m); PieceType pt = piece_type(piece_on(to)); assert(square_is_empty(from)); assert(piece_color(piece_on(to)) == us); assert(!pm || relative_rank(us, to) == RANK_8); assert(!ep || to == st->previous->epSquare); assert(!ep || relative_rank(us, to) == RANK_6); assert(!ep || piece_on(to) == make_piece(us, PAWN)); if (pm) // promotion ? { PieceType promotion = promotion_piece_type(m); pt = PAWN; assert(promotion >= KNIGHT && promotion <= QUEEN); assert(piece_on(to) == make_piece(us, promotion)); // Replace promoted piece with a pawn clear_bit(&byTypeBB[promotion], to); set_bit(&byTypeBB[PAWN], to); // Update piece counts pieceCount[us][promotion]--; pieceCount[us][PAWN]++; // Update piece list replacing promotion piece with a pawn Square lastPromotionSquare = pieceList[us][promotion][pieceCount[us][promotion]]; index[lastPromotionSquare] = index[to]; pieceList[us][promotion][index[lastPromotionSquare]] = lastPromotionSquare; pieceList[us][promotion][pieceCount[us][promotion]] = SQ_NONE; index[to] = pieceCount[us][PAWN] - 1; pieceList[us][PAWN][index[to]] = to; } // Put the piece back at the source square Bitboard move_bb = make_move_bb(to, from); do_move_bb(&byColorBB[us], move_bb); do_move_bb(&byTypeBB[pt], move_bb); do_move_bb(&byTypeBB[0], move_bb); // HACK: byTypeBB[0] == occupied squares board[from] = make_piece(us, pt); board[to] = PIECE_NONE; // Update piece list index[from] = index[to]; pieceList[us][pt][index[from]] = from; if (st->capturedType) { Square capsq = to; if (ep) capsq = to - pawn_push(us); assert(st->capturedType != KING); assert(!ep || square_is_empty(capsq)); // Restore the captured piece set_bit(&byColorBB[them], capsq); set_bit(&byTypeBB[st->capturedType], capsq); set_bit(&byTypeBB[0], capsq); board[capsq] = make_piece(them, st->capturedType); // Update piece count pieceCount[them][st->capturedType]++; // Update piece list, add a new captured piece in capsq square index[capsq] = pieceCount[them][st->capturedType] - 1; pieceList[them][st->capturedType][index[capsq]] = capsq; } // Finally point our state pointer back to the previous state st = st->previous; assert(is_ok()); } /// Position::undo_castle_move() is a private method used to unmake a castling /// move. It is called from the main Position::undo_move function. Note that /// castling moves are encoded as "king captures friendly rook" moves, for /// instance white short castling in a non-Chess960 game is encoded as e1h1. void Position::undo_castle_move(Move m) { assert(move_is_ok(m)); assert(move_is_castle(m)); // When we have arrived here, some work has already been done by // Position::undo_move. In particular, the side to move has been switched, // so the code below is correct. Color us = side_to_move(); // Find source squares for king and rook Square kfrom = move_from(m); Square rfrom = move_to(m); Square kto, rto; // Find destination squares for king and rook if (rfrom > kfrom) // O-O { kto = relative_square(us, SQ_G1); rto = relative_square(us, SQ_F1); } else // O-O-O { kto = relative_square(us, SQ_C1); rto = relative_square(us, SQ_D1); } assert(piece_on(kto) == make_piece(us, KING)); assert(piece_on(rto) == make_piece(us, ROOK)); // Remove pieces from destination squares clear_bit(&byColorBB[us], kto); clear_bit(&byTypeBB[KING], kto); clear_bit(&byTypeBB[0], kto); clear_bit(&byColorBB[us], rto); clear_bit(&byTypeBB[ROOK], rto); clear_bit(&byTypeBB[0], rto); // Put pieces on source squares set_bit(&byColorBB[us], kfrom); set_bit(&byTypeBB[KING], kfrom); set_bit(&byTypeBB[0], kfrom); set_bit(&byColorBB[us], rfrom); set_bit(&byTypeBB[ROOK], rfrom); set_bit(&byTypeBB[0], rfrom); // Update board Piece king = make_piece(us, KING); Piece rook = make_piece(us, ROOK); board[kto] = board[rto] = PIECE_NONE; board[kfrom] = king; board[rfrom] = rook; // Update piece lists pieceList[us][KING][index[kto]] = kfrom; pieceList[us][ROOK][index[rto]] = rfrom; int tmp = index[rto]; // In Chess960 could be rto == kfrom index[kfrom] = index[kto]; index[rfrom] = tmp; // Finally point our state pointer back to the previous state st = st->previous; assert(is_ok()); } /// Position::do_null_move makes() a "null move": It switches the side to move /// and updates the hash key without executing any move on the board. void Position::do_null_move(StateInfo& backupSt) { assert(!in_check()); // Back up the information necessary to undo the null move to the supplied // StateInfo object. // Note that differently from normal case here backupSt is actually used as // a backup storage not as a new state to be used. backupSt.key = st->key; backupSt.epSquare = st->epSquare; backupSt.value = st->value; backupSt.previous = st->previous; backupSt.pliesFromNull = st->pliesFromNull; st->previous = &backupSt; // Save the current key to the history[] array, in order to be able to // detect repetition draws. history[st->gamePly++] = st->key; // Update the necessary information if (st->epSquare != SQ_NONE) st->key ^= zobEp[st->epSquare]; st->key ^= zobSideToMove; prefetch((char*)TT.first_entry(st->key)); sideToMove = opposite_color(sideToMove); st->epSquare = SQ_NONE; st->rule50++; st->pliesFromNull = 0; st->value += (sideToMove == WHITE) ? TempoValue : -TempoValue; assert(is_ok()); } /// Position::undo_null_move() unmakes a "null move". void Position::undo_null_move() { assert(!in_check()); // Restore information from the our backup StateInfo object StateInfo* backupSt = st->previous; st->key = backupSt->key; st->epSquare = backupSt->epSquare; st->value = backupSt->value; st->previous = backupSt->previous; st->pliesFromNull = backupSt->pliesFromNull; // Update the necessary information sideToMove = opposite_color(sideToMove); st->rule50--; st->gamePly--; assert(is_ok()); } /// Position::see() is a static exchange evaluator: It tries to estimate the /// material gain or loss resulting from a move. There are three versions of /// this function: One which takes a destination square as input, one takes a /// move, and one which takes a 'from' and a 'to' square. The function does /// not yet understand promotions captures. int Position::see_sign(Move m) const { assert(move_is_ok(m)); Square from = move_from(m); Square to = move_to(m); // Early return if SEE cannot be negative because captured piece value // is not less then capturing one. Note that king moves always return // here because king midgame value is set to 0. if (piece_value_midgame(piece_on(to)) >= piece_value_midgame(piece_on(from))) return 1; return see(m); } int Position::see(Move m) const { Square from, to; Bitboard occupied, attackers, stmAttackers, b; int swapList[32], slIndex = 1; PieceType capturedType, pt; Color stm; assert(move_is_ok(m)); // As castle moves are implemented as capturing the rook, they have // SEE == RookValueMidgame most of the times (unless the rook is under // attack). if (move_is_castle(m)) return 0; from = move_from(m); to = move_to(m); capturedType = piece_type(piece_on(to)); occupied = occupied_squares(); // Handle en passant moves if (st->epSquare == to && piece_type(piece_on(from)) == PAWN) { Square capQq = to - pawn_push(side_to_move()); assert(capturedType == PIECE_TYPE_NONE); assert(piece_type(piece_on(capQq)) == PAWN); // Remove the captured pawn clear_bit(&occupied, capQq); capturedType = PAWN; } // Find all attackers to the destination square, with the moving piece // removed, but possibly an X-ray attacker added behind it. clear_bit(&occupied, from); attackers = attackers_to(to, occupied); // If the opponent has no attackers we are finished stm = opposite_color(piece_color(piece_on(from))); stmAttackers = attackers & pieces(stm); if (!stmAttackers) return PieceValueMidgame[capturedType]; // The destination square is defended, which makes things rather more // difficult to compute. We proceed by building up a "swap list" containing // the material gain or loss at each stop in a sequence of captures to the // destination square, where the sides alternately capture, and always // capture with the least valuable piece. After each capture, we look for // new X-ray attacks from behind the capturing piece. swapList[0] = PieceValueMidgame[capturedType]; capturedType = piece_type(piece_on(from)); do { // Locate the least valuable attacker for the side to move. The loop // below looks like it is potentially infinite, but it isn't. We know // that the side to move still has at least one attacker left. for (pt = PAWN; !(stmAttackers & pieces(pt)); pt++) assert(pt < KING); // Remove the attacker we just found from the 'occupied' bitboard, // and scan for new X-ray attacks behind the attacker. b = stmAttackers & pieces(pt); occupied ^= (b & (~b + 1)); attackers |= (rook_attacks_bb(to, occupied) & pieces(ROOK, QUEEN)) | (bishop_attacks_bb(to, occupied) & pieces(BISHOP, QUEEN)); attackers &= occupied; // Cut out pieces we've already done // Add the new entry to the swap list assert(slIndex < 32); swapList[slIndex] = -swapList[slIndex - 1] + PieceValueMidgame[capturedType]; slIndex++; // Remember the value of the capturing piece, and change the side to // move before beginning the next iteration. capturedType = pt; stm = opposite_color(stm); stmAttackers = attackers & pieces(stm); // Stop before processing a king capture if (capturedType == KING && stmAttackers) { assert(slIndex < 32); swapList[slIndex++] = QueenValueMidgame*10; break; } } while (stmAttackers); // Having built the swap list, we negamax through it to find the best // achievable score from the point of view of the side to move. while (--slIndex) swapList[slIndex-1] = Min(-swapList[slIndex], swapList[slIndex-1]); return swapList[0]; } /// Position::clear() erases the position object to a pristine state, with an /// empty board, white to move, and no castling rights. void Position::clear() { st = &startState; memset(st, 0, sizeof(StateInfo)); st->epSquare = SQ_NONE; memset(byColorBB, 0, sizeof(Bitboard) * 2); memset(byTypeBB, 0, sizeof(Bitboard) * 8); memset(pieceCount, 0, sizeof(int) * 2 * 8); memset(index, 0, sizeof(int) * 64); for (int i = 0; i < 8; i++) for (int j = 0; j < 16; j++) pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE; for (Square sq = SQ_A1; sq <= SQ_H8; sq++) { board[sq] = PIECE_NONE; castleRightsMask[sq] = ALL_CASTLES; } sideToMove = WHITE; fullMoves = 1; nodes = 0; } /// Position::put_piece() puts a piece on the given square of the board, /// updating the board array, pieces list, bitboards, and piece counts. void Position::put_piece(Piece p, Square s) { Color c = piece_color(p); PieceType pt = piece_type(p); board[s] = p; index[s] = pieceCount[c][pt]++; pieceList[c][pt][index[s]] = s; set_bit(&byTypeBB[pt], s); set_bit(&byColorBB[c], s); set_bit(&byTypeBB[0], s); // HACK: byTypeBB[0] contains all occupied squares. } /// Position::compute_key() computes the hash key of the position. The hash /// key is usually updated incrementally as moves are made and unmade, the /// compute_key() function is only used when a new position is set up, and /// to verify the correctness of the hash key when running in debug mode. Key Position::compute_key() const { Key result = zobCastle[st->castleRights]; for (Square s = SQ_A1; s <= SQ_H8; s++) if (!square_is_empty(s)) result ^= zobrist[piece_color(piece_on(s))][piece_type(piece_on(s))][s]; if (ep_square() != SQ_NONE) result ^= zobEp[ep_square()]; if (side_to_move() == BLACK) result ^= zobSideToMove; return result; } /// Position::compute_pawn_key() computes the hash key of the position. The /// hash key is usually updated incrementally as moves are made and unmade, /// the compute_pawn_key() function is only used when a new position is set /// up, and to verify the correctness of the pawn hash key when running in /// debug mode. Key Position::compute_pawn_key() const { Bitboard b; Key result = 0; for (Color c = WHITE; c <= BLACK; c++) { b = pieces(PAWN, c); while (b) result ^= zobrist[c][PAWN][pop_1st_bit(&b)]; } return result; } /// Position::compute_material_key() computes the hash key of the position. /// The hash key is usually updated incrementally as moves are made and unmade, /// the compute_material_key() function is only used when a new position is set /// up, and to verify the correctness of the material hash key when running in /// debug mode. Key Position::compute_material_key() const { Key result = 0; for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= QUEEN; pt++) for (int i = 0, cnt = piece_count(c, pt); i < cnt; i++) result ^= zobrist[c][pt][i]; return result; } /// Position::compute_value() compute the incremental scores for the middle /// game and the endgame. These functions are used to initialize the incremental /// scores when a new position is set up, and to verify that the scores are correctly /// updated by do_move and undo_move when the program is running in debug mode. Score Position::compute_value() const { Bitboard b; Score result = SCORE_ZERO; for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) { b = pieces(pt, c); while (b) result += pst(make_piece(c, pt), pop_1st_bit(&b)); } result += (side_to_move() == WHITE ? TempoValue / 2 : -TempoValue / 2); return result; } /// Position::compute_non_pawn_material() computes the total non-pawn middle /// game material value for the given side. Material values are updated /// incrementally during the search, this function is only used while /// initializing a new Position object. Value Position::compute_non_pawn_material(Color c) const { Value result = VALUE_ZERO; for (PieceType pt = KNIGHT; pt <= QUEEN; pt++) result += piece_count(c, pt) * PieceValueMidgame[pt]; return result; } /// Position::is_draw() tests whether the position is drawn by material, /// repetition, or the 50 moves rule. It does not detect stalemates, this /// must be done by the search. template bool Position::is_draw() const { // Draw by material? if ( !pieces(PAWN) && (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMidgame)) return true; // Draw by the 50 moves rule? if (st->rule50 > 99 && !is_mate()) return true; // Draw by repetition? if (!SkipRepetition) for (int i = 4, e = Min(Min(st->gamePly, st->rule50), st->pliesFromNull); i <= e; i += 2) if (history[st->gamePly - i] == st->key) return true; return false; } // Explicit template instantiations template bool Position::is_draw() const; template bool Position::is_draw() const; /// Position::is_mate() returns true or false depending on whether the /// side to move is checkmated. bool Position::is_mate() const { return in_check() && !MoveList(*this).size(); } /// Position::init() is a static member function which initializes at /// startup the various arrays used to compute hash keys and the piece /// square tables. The latter is a two-step operation: First, the white /// halves of the tables are copied from the MgPST[][] and EgPST[][] arrays. /// Second, the black halves of the tables are initialized by mirroring /// and changing the sign of the corresponding white scores. void Position::init() { RKISS rk; for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) for (Square s = SQ_A1; s <= SQ_H8; s++) zobrist[c][pt][s] = rk.rand(); for (Square s = SQ_A1; s <= SQ_H8; s++) zobEp[s] = rk.rand(); for (int i = 0; i < 16; i++) zobCastle[i] = rk.rand(); zobSideToMove = rk.rand(); zobExclusion = rk.rand(); for (Square s = SQ_A1; s <= SQ_H8; s++) for (Piece p = WP; p <= WK; p++) pieceSquareTable[p][s] = make_score(MgPST[p][s], EgPST[p][s]); for (Square s = SQ_A1; s <= SQ_H8; s++) for (Piece p = BP; p <= BK; p++) pieceSquareTable[p][s] = -pieceSquareTable[p-8][flip_square(s)]; } /// Position::flip() flips position with the white and black sides reversed. This /// is only useful for debugging especially for finding evaluation symmetry bugs. void Position::flip() { // Make a copy of current position before to start changing const Position pos(*this, threadID); clear(); threadID = pos.thread(); // Board for (Square s = SQ_A1; s <= SQ_H8; s++) if (!pos.square_is_empty(s)) put_piece(Piece(pos.piece_on(s) ^ 8), flip_square(s)); // Side to move sideToMove = opposite_color(pos.side_to_move()); // Castling rights if (pos.can_castle(WHITE_OO)) set_castle(BLACK_OO, king_square(BLACK), flip_square(pos.castle_rook_square(WHITE_OO))); if (pos.can_castle(WHITE_OOO)) set_castle(BLACK_OOO, king_square(BLACK), flip_square(pos.castle_rook_square(WHITE_OOO))); if (pos.can_castle(BLACK_OO)) set_castle(WHITE_OO, king_square(WHITE), flip_square(pos.castle_rook_square(BLACK_OO))); if (pos.can_castle(BLACK_OOO)) set_castle(WHITE_OOO, king_square(WHITE), flip_square(pos.castle_rook_square(BLACK_OOO))); // En passant square if (pos.st->epSquare != SQ_NONE) st->epSquare = flip_square(pos.st->epSquare); // Checkers st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(opposite_color(sideToMove)); // Hash keys st->key = compute_key(); st->pawnKey = compute_pawn_key(); st->materialKey = compute_material_key(); // Incremental scores st->value = compute_value(); // Material st->npMaterial[WHITE] = compute_non_pawn_material(WHITE); st->npMaterial[BLACK] = compute_non_pawn_material(BLACK); assert(is_ok()); } /// Position::is_ok() performs some consitency checks for the position object. /// This is meant to be helpful when debugging. bool Position::is_ok(int* failedStep) const { // What features of the position should be verified? const bool debugAll = false; const bool debugBitboards = debugAll || false; const bool debugKingCount = debugAll || false; const bool debugKingCapture = debugAll || false; const bool debugCheckerCount = debugAll || false; const bool debugKey = debugAll || false; const bool debugMaterialKey = debugAll || false; const bool debugPawnKey = debugAll || false; const bool debugIncrementalEval = debugAll || false; const bool debugNonPawnMaterial = debugAll || false; const bool debugPieceCounts = debugAll || false; const bool debugPieceList = debugAll || false; const bool debugCastleSquares = debugAll || false; if (failedStep) *failedStep = 1; // Side to move OK? if (side_to_move() != WHITE && side_to_move() != BLACK) return false; // Are the king squares in the position correct? if (failedStep) (*failedStep)++; if (piece_on(king_square(WHITE)) != WK) return false; if (failedStep) (*failedStep)++; if (piece_on(king_square(BLACK)) != BK) return false; // Do both sides have exactly one king? if (failedStep) (*failedStep)++; if (debugKingCount) { int kingCount[2] = {0, 0}; for (Square s = SQ_A1; s <= SQ_H8; s++) if (piece_type(piece_on(s)) == KING) kingCount[piece_color(piece_on(s))]++; if (kingCount[0] != 1 || kingCount[1] != 1) return false; } // Can the side to move capture the opponent's king? if (failedStep) (*failedStep)++; if (debugKingCapture) { Color us = side_to_move(); Color them = opposite_color(us); Square ksq = king_square(them); if (attackers_to(ksq) & pieces(us)) return false; } // Is there more than 2 checkers? if (failedStep) (*failedStep)++; if (debugCheckerCount && count_1s(st->checkersBB) > 2) return false; // Bitboards OK? if (failedStep) (*failedStep)++; if (debugBitboards) { // The intersection of the white and black pieces must be empty if ((pieces(WHITE) & pieces(BLACK)) != EmptyBoardBB) return false; // The union of the white and black pieces must be equal to all // occupied squares if ((pieces(WHITE) | pieces(BLACK)) != occupied_squares()) return false; // Separate piece type bitboards must have empty intersections for (PieceType p1 = PAWN; p1 <= KING; p1++) for (PieceType p2 = PAWN; p2 <= KING; p2++) if (p1 != p2 && (pieces(p1) & pieces(p2))) return false; } // En passant square OK? if (failedStep) (*failedStep)++; if (ep_square() != SQ_NONE) { // The en passant square must be on rank 6, from the point of view of the // side to move. if (relative_rank(side_to_move(), ep_square()) != RANK_6) return false; } // Hash key OK? if (failedStep) (*failedStep)++; if (debugKey && st->key != compute_key()) return false; // Pawn hash key OK? if (failedStep) (*failedStep)++; if (debugPawnKey && st->pawnKey != compute_pawn_key()) return false; // Material hash key OK? if (failedStep) (*failedStep)++; if (debugMaterialKey && st->materialKey != compute_material_key()) return false; // Incremental eval OK? if (failedStep) (*failedStep)++; if (debugIncrementalEval && st->value != compute_value()) return false; // Non-pawn material OK? if (failedStep) (*failedStep)++; if (debugNonPawnMaterial) { if (st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)) return false; if (st->npMaterial[BLACK] != compute_non_pawn_material(BLACK)) return false; } // Piece counts OK? if (failedStep) (*failedStep)++; if (debugPieceCounts) for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) if (pieceCount[c][pt] != count_1s(pieces(pt, c))) return false; if (failedStep) (*failedStep)++; if (debugPieceList) for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) for (int i = 0; i < pieceCount[c][pt]; i++) { if (piece_on(piece_list(c, pt)[i]) != make_piece(c, pt)) return false; if (index[piece_list(c, pt)[i]] != i) return false; } if (failedStep) (*failedStep)++; if (debugCastleSquares) for (CastleRight f = WHITE_OO; f <= BLACK_OOO; f = CastleRight(f << 1)) { if (!can_castle(f)) continue; Piece rook = (f & (WHITE_OO | WHITE_OOO) ? WR : BR); if ( castleRightsMask[castleRookSquare[f]] != (ALL_CASTLES ^ f) || piece_on(castleRookSquare[f]) != rook) return false; } if (failedStep) *failedStep = 0; return true; }