/* Copyright (c) 2013 Ronald de Man This file may be redistributed and/or modified without restrictions. tbprobe.cpp contains the Stockfish-specific routines of the tablebase probing code. It should be relatively easy to adapt this code to other chess engines. */ #include #include #include #include // For std::memset #include #include #include #include #include #include #include "../bitboard.h" #include "../movegen.h" #include "../position.h" #include "../search.h" #include "../thread_win32.h" #include "../types.h" #include "tbprobe.h" #ifndef _WIN32 #include #include #include #include #else #define WIN32_LEAN_AND_MEAN #define NOMINMAX #include #endif #define TBPIECES 6 using namespace Tablebases; int Tablebases::MaxCardinality = 0; namespace { inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } inline WDLScore operator+(WDLScore d1, WDLScore d2) { return WDLScore(int(d1) + int(d2)); } inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } struct PairsData { int blocksize; int idxbits; int num_indices; int real_num_blocks; int num_blocks; int max_len; int min_len; uint16_t* offset; uint8_t* sympat; uint8_t* indextable; uint16_t* sizetable; uint8_t* data; std::vector base; std::vector symlen; Piece pieces[TBPIECES]; uint64_t factor[TBPIECES]; uint8_t norm[TBPIECES]; }; // Helper struct to avoid manually define WDLEntry copy c'tor as we should // because default one is not compatible with std::atomic_bool. struct Atomic { Atomic() = default; Atomic(const Atomic& e) : ready(e.ready.load()) {} std::atomic_bool ready; }; struct WDLEntry : Atomic { WDLEntry(const Position& pos, Key keys[]); ~WDLEntry(); bool init(const std::string& fname); template void do_init(T& e, uint8_t* data); void* baseAddress; uint64_t mapping; Key key; int pieceCount; bool symmetric; bool hasPawns; union { struct { typedef int Piece; bool hasUniquePieces; PairsData* precomp; } piece[2]; struct { uint8_t pawnCount[2]; struct { typedef int Pawn; PairsData* precomp; } file[2][4]; } pawn; }; }; struct DTZEntry { enum Flag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8 }; DTZEntry(const WDLEntry& wdl, Key wdlKeys[]); ~DTZEntry(); bool init(const std::string& fname); template void do_init(T& e, uint8_t* data); void* baseAddress; uint64_t mapping; Key key; Key key2; int pieceCount; bool symmetric; bool hasPawns; union { struct { typedef int Piece; bool hasUniquePieces; PairsData* precomp; uint8_t flags; uint16_t map_idx[4]; uint8_t* map; } piece; struct { uint8_t pawnCount[2]; struct { typedef int Pawn; PairsData* precomp; uint8_t flags; uint16_t map_idx[4]; } file[4]; uint8_t* map; } pawn; }; }; typedef decltype(WDLEntry::piece) WDLPiece; typedef decltype(DTZEntry::piece) DTZPiece; typedef decltype(WDLEntry::pawn ) WDLPawn; typedef decltype(DTZEntry::pawn ) DTZPawn; auto item(WDLPiece& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; } auto item(DTZPiece& e, int , int ) -> decltype(e)& { return e; } auto item(WDLPawn& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; } auto item(DTZPawn& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; } const uint8_t MapA1D1D4[64] = { 6, 0, 1, 2, 0, 0, 0, 0, 0, 7, 3, 4, 0, 0, 0, 0, 0, 0, 8, 5, 0, 0, 0, 0, 0, 0, 0, 9 }; const uint8_t MapB1H1H7[] = { 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 7, 8, 9, 10, 11, 12, 0, 0, 0, 13, 14, 15, 16, 17, 0, 0, 0, 0, 18, 19, 20, 21, 0, 0, 0, 0, 0, 22, 23, 24, 0, 0, 0, 0, 0, 0, 25, 26, 0, 0, 0, 0, 0, 0, 0, 27 }; const uint8_t Flap[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 18, 18, 12, 6, 0, 1, 7, 13, 19, 19, 13, 7, 1, 2, 8, 14, 20, 20, 14, 8, 2, 3, 9, 15, 21, 21, 15, 9, 3, 4, 10, 16, 22, 22, 16, 10, 4, 5, 11, 17, 23, 23, 17, 11, 5, 0, 0, 0, 0, 0, 0, 0, 0 }; const uint8_t Ptwist[] = { 0, 0, 0, 0, 0, 0, 0, 0, 47, 35, 23, 11, 10, 22, 34, 46, 45, 33, 21, 9, 8, 20, 32, 44, 43, 31, 19, 7, 6, 18, 30, 42, 41, 29, 17, 5, 4, 16, 28, 40, 39, 27, 15, 3, 2, 14, 26, 38, 37, 25, 13, 1, 0, 12, 24, 36, 0, 0, 0, 0, 0, 0, 0, 0 }; const uint8_t Invflap[] = { 8, 16, 24, 32, 40, 48, 9, 17, 25, 33, 41, 49, 10, 18, 26, 34, 42, 50, 11, 19, 27, 35, 43, 51 }; int KK_idx[10][64]; const uint8_t WDL_MAGIC[] = { 0x71, 0xE8, 0x23, 0x5D }; const uint8_t DTZ_MAGIC[] = { 0xD7, 0x66, 0x0C, 0xA5 }; const int wdl_to_dtz[] = { -1, -101, 0, 101, 1 }; const Value WDL_to_value[] = { -VALUE_MATE + MAX_PLY + 1, VALUE_DRAW - 2, VALUE_DRAW, VALUE_DRAW + 2, VALUE_MATE - MAX_PLY - 1 }; const std::string PieceToChar = " PNBRQK pnbrqk"; Mutex TB_mutex; std::string TBPaths; std::deque WDLTable; std::list DTZTable; int Binomial[6][64]; int Pawnidx[5][24]; int Pfactor[5][4]; enum { BigEndian, LittleEndian }; template inline void swap_byte(T& x) { char tmp, *c = (char*)(&x); for (int i = 0; i < Half; ++i) tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; } template T number(void* addr) { const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; const bool IsLittleEndian = (Le.c[0] == 4); T v = *((T*)addr); if (LE != IsLittleEndian) swap_byte(v); return v; } class HashTable { struct Entry { Key key; WDLEntry* ptr; }; static const int TBHASHBITS = 10; static const int HSHMAX = 5; Entry table[1 << TBHASHBITS][HSHMAX]; void insert(Key key, WDLEntry* ptr) { Entry* entry = table[key >> (64 - TBHASHBITS)]; for (int i = 0; i < HSHMAX; ++i, ++entry) if (!entry->ptr || entry->key == key) { entry->key = key; entry->ptr = ptr; return; } std::cerr << "HSHMAX too low!" << std::endl; exit(1); } public: WDLEntry* operator[](Key key) { Entry* entry = table[key >> (64 - TBHASHBITS)]; for (int i = 0; i < HSHMAX; ++i, ++entry) if (entry->key == key) return entry->ptr; return nullptr; } void clear() { std::memset(table, 0, sizeof(table)); } void insert(const std::vector& pieces); }; HashTable WDLHash; class TBFile : public std::ifstream { std::string fname; public: // Open the file with the given name found among the TBPaths. TBPaths stores // the paths to directories where the .rtbw and .rtbz files can be found. // Multiple directories are separated by ";" on Windows and by ":" on // Unix-based operating systems. // // Example: // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 TBFile(const std::string& f) { #ifndef _WIN32 const char SepChar = ':'; #else const char SepChar = ';'; #endif std::stringstream ss(TBPaths); std::string path; while (std::getline(ss, path, SepChar)) { fname = path + "/" + f; std::ifstream::open(fname); if (is_open()) return; } } // Memory map the file and check it. File should be already open and // will be closed after mapping. uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t TB_MAGIC[]) { if (!is_open()) { std::cerr << "Could not find " << fname << std::endl; *baseAddress = nullptr; return nullptr; } close(); #ifndef _WIN32 struct stat statbuf; int fd = ::open(fname.c_str(), O_RDONLY); fstat(fd, &statbuf); *mapping = statbuf.st_size; *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); ::close(fd); if (*baseAddress == MAP_FAILED) { std::cerr << "Could not mmap() " << fname << std::endl; exit(1); } #else HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); DWORD size_high; DWORD size_low = GetFileSize(fd, &size_high); HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); CloseHandle(fd); if (!mmap) { std::cerr << "CreateFileMapping() failed" << std::endl; exit(1); } *mapping = (uint64_t)mmap; *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); if (!*baseAddress) { std::cerr << "MapViewOfFile() failed, name = " << fname << ", error = " << GetLastError() << std::endl; exit(1); } #endif uint8_t* data = (uint8_t*)*baseAddress; if ( *data++ != TB_MAGIC[0] || *data++ != TB_MAGIC[1] || *data++ != TB_MAGIC[2] || *data++ != TB_MAGIC[3]) { std::cerr << "Corrupted table in file " << fname << std::endl; unmap(*baseAddress, *mapping); *baseAddress = nullptr; return nullptr; } return data; } static void unmap(void* baseAddress, uint64_t mapping) { #ifndef _WIN32 munmap(baseAddress, mapping); #else UnmapViewOfFile(baseAddress); CloseHandle((HANDLE)mapping); #endif } }; WDLEntry::WDLEntry(const Position& pos, Key keys[]) { memset(this, 0, sizeof(WDLEntry)); key = keys[WHITE]; pieceCount = pos.count(WHITE) + pos.count(BLACK); symmetric = (keys[WHITE] == keys[BLACK]); hasPawns = pos.pieces(PAWN); if (hasPawns) { // Set the leading color. In case both sides have pawns the leading color // is the side with less pawns because this leads to a better compression. bool c = !pos.count(BLACK) || ( pos.count(WHITE) && pos.count(BLACK) >= pos.count(WHITE)); pawn.pawnCount[0] = pos.count(c ? WHITE : BLACK); pawn.pawnCount[1] = pos.count(c ? BLACK : WHITE); } else for (Color c = WHITE; c <= BLACK; ++c) for (PieceType pt = PAWN; pt < KING; ++pt) if (popcount(pos.pieces(c, pt)) == 1) piece[0].hasUniquePieces = piece[1].hasUniquePieces = true; } WDLEntry::~WDLEntry() { if (baseAddress) TBFile::unmap(baseAddress, mapping); if (hasPawns) for (File f = FILE_A; f <= FILE_D; ++f) { delete pawn.file[0][f].precomp; delete pawn.file[1][f].precomp; } else { delete piece[0].precomp; delete piece[1].precomp; } } DTZEntry::DTZEntry(const WDLEntry& wdl, Key wdlKeys[]) { memset(this, 0, sizeof(DTZEntry)); key = wdlKeys[0]; key2 = wdlKeys[1]; assert(key == wdl.key); pieceCount = wdl.pieceCount; symmetric = wdl.symmetric; hasPawns = wdl.hasPawns; if (hasPawns) { pawn.pawnCount[0] = wdl.pawn.pawnCount[0]; pawn.pawnCount[1] = wdl.pawn.pawnCount[1]; } else piece.hasUniquePieces = wdl.piece[0].hasUniquePieces; } DTZEntry::~DTZEntry() { if (baseAddress) TBFile::unmap(baseAddress, mapping); if (hasPawns) for (File f = FILE_A; f <= FILE_D; ++f) delete pawn.file[f].precomp; else delete piece.precomp; } // Given a position with 6 or fewer pieces, produce a text string // of the form KQPvKRP, where "KQP" represents the white pieces if // mirror == false and the black pieces if mirror == true. std::string file_name(const Position& pos, bool mirror) { std::string w, b; for (PieceType pt = KING; pt >= PAWN; --pt) { w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); } return mirror ? b + 'v' + w : w + 'v' + b; } void HashTable::insert(const std::vector& pieces) { StateInfo st; Position pos; std::string code; for (PieceType pt : pieces) code += PieceToChar[pt]; int bk = code.find('K', 1); // Black king TBFile f(code.substr(0, bk) + 'v' + code.substr(bk) + ".rtbw"); if (!f.is_open()) return; f.close(); if (int(pieces.size()) > Tablebases::MaxCardinality) Tablebases::MaxCardinality = pieces.size(); Key keys[] = { pos.set(code, WHITE, &st).material_key(), pos.set(code, BLACK, &st).material_key() }; WDLTable.push_back(WDLEntry(pos.set(code, WHITE, &st), keys)); insert(keys[WHITE], &WDLTable.back()); insert(keys[BLACK], &WDLTable.back()); } int decompress_pairs(PairsData* d, uint64_t idx) { if (!d->idxbits) return d->min_len; // idx = blockidx | litidx where litidx is a signed number of lenght d->idxbits uint32_t blockidx = (uint32_t)(idx >> d->idxbits); int litidx = (idx & ((1ULL << d->idxbits) - 1)) - (1ULL << (d->idxbits - 1)); // indextable points to an array of blocks of 6 bytes representing numbers in // little endian. The low 4 bytes are the block, the high 2 bytes the idxOffset. uint32_t block = number(d->indextable + 6 * blockidx); litidx += number(d->indextable + 6 * blockidx + 4); while (litidx < 0) litidx += d->sizetable[--block] + 1; while (litidx > d->sizetable[block]) litidx -= d->sizetable[block++] + 1; uint32_t* ptr = (uint32_t*)(d->data + (block << d->blocksize)); uint64_t code = number(ptr); int m = d->min_len; uint16_t *offset = d->offset; int sym, bitcnt; ptr += 2; bitcnt = 0; // number of "empty bits" in code for (;;) { int l = m; while (code < d->base[l - d->min_len]) ++l; sym = number(offset + l); sym += (int)((code - d->base[l - d->min_len]) >> (64 - l)); if (litidx < (int)d->symlen[sym] + 1) break; litidx -= (int)d->symlen[sym] + 1; code <<= l; bitcnt += l; if (bitcnt >= 32) { bitcnt -= 32; code |= (uint64_t)number(ptr++) << bitcnt; } } uint8_t *sympat = d->sympat; while (d->symlen[sym] != 0) { uint8_t* w = sympat + (3 * sym); int s1 = ((w[1] & 0xf) << 8) | w[0]; if (litidx < (int)d->symlen[s1] + 1) sym = s1; else { litidx -= (int)d->symlen[s1] + 1; sym = (w[2] << 4) | (w[1] >> 4); } } return sympat[3 * sym]; } template bool check_dtz_stm(Entry*, File, int) { return true; } template<> bool check_dtz_stm(DTZEntry* entry, File f, int stm) { uint8_t flags = entry->hasPawns ? entry->pawn.file[f].flags : entry->piece.flags; return (flags & DTZEntry::Flag::STM) == stm || (entry->symmetric && !entry->hasPawns); } // DTZ scores are sorted by frequency of occurrence and then assigned the // values 0, 1, 2, 3, ... in order of decreasing frequency. This is done // in each of the four ranges. The mapping information necessary to // reconstruct the original values is stored in the TB file and used to // initialise the map[] array during initialisation of the TB. template int map_score(Entry*, File, int value, WDLScore) { return value - 2; } template<> int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) { const int WDLMap[] = { 1, 3, 0, 2, 0 }; uint8_t flags = entry->hasPawns ? entry->pawn.file[f].flags : entry->piece.flags; uint8_t* map = entry->hasPawns ? entry->pawn.map : entry->piece.map; uint16_t* idx = entry->hasPawns ? entry->pawn.file[f].map_idx : entry->piece.map_idx; if (flags & DTZEntry::Flag::Mapped) value = map[idx[WDLMap[wdl + 2]] + value]; // DTZ tables store distance to zero in number of moves but // under some conditions we want to return plies, so we have // to multiply score by 2. if ( (wdl == WDLWin && !(flags & DTZEntry::Flag::WinPlies)) || (wdl == WDLLoss && !(flags & DTZEntry::Flag::LossPlies)) || wdl == WDLCursedWin || wdl == WDLCursedLoss) value *= 2; return value; } int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } template uint64_t probe_table(const Position& pos, Entry* entry, WDLScore wdl = WDLDraw, int* success = nullptr) { Square squares[TBPIECES]; Piece pieces[TBPIECES]; uint64_t idx; int stm, next = 0, flipColor = 0, flipSquares = 0, size = 0, leadPawnsCnt = 0; bool hasUniquePieces; PairsData* precomp; Bitboard b, leadPawns = 0; File tbFile = FILE_A; // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. // If both sides have the same pieces we have a symmetric material and the // keys are equal. The stored TB entry is calculated always with WHITE side // to move and if the position to lookup has instead BLACK to move, we need // to switch color and flip the squares before the lookup: if (entry->symmetric) { flipColor = pos.side_to_move() * 8; // Switch color flipSquares = pos.side_to_move() * 070; // Vertical flip: SQ_A8 -> SQ_A1 stm = WHITE; } // In case of sides with different pieces, if the position to look up has a // different key form the stored one (entry->key), then we have to switch // color and flip the squares: else { flipColor = (pos.material_key() != entry->key) * 8; flipSquares = (pos.material_key() != entry->key) * 070; // TB entry is stored with WHITE as stronger side, so side to move has // to be flipped accordingly, for example Kvkr (white to move) maps to // KRvk (black to move). stm = (pos.material_key() != entry->key) ^ pos.side_to_move(); } // For pawns, TB files store separate tables according if leading pawn is on // file a, b, c or d after reordering. To determine which of the 4 tables // must be probed we need to extract the position's leading pawns then order // them according to Flap table, in ascending order and finally pick the file // of the pawn with minimum Flap[]. The new pawn order should be preserved // because needed for next steps. if (entry->hasPawns) { Piece pc = Piece(item(entry->pawn, 0, 0).precomp->pieces[0] ^ flipColor); assert(type_of(pc) == PAWN); leadPawns = b = pos.pieces(color_of(pc), PAWN); while (b) squares[size++] = pop_lsb(&b) ^ flipSquares; leadPawnsCnt = size; auto flap = [] (Square i, Square j) { return Flap[i] < Flap[j]; }; std::sort(squares, squares + size, flap); tbFile = file_of(squares[0]); if (tbFile > FILE_D) tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 precomp = item(entry->pawn, stm, tbFile).precomp; } else precomp = item(entry->piece, stm, 0).precomp; // DTZ tables are one-sided, i.e. they store positions only for white to // move or only for black to move, so check for side to move to be stm, // early exit otherwise. if ( std::is_same::value && !check_dtz_stm(entry, tbFile, stm)) { *success = -1; return 0; } // Now we are ready to get all the position pieces (but the lead pawns) and // directly map them to the correct color and square. b = pos.pieces() ^ leadPawns; for ( ; b; ++size) { Square sq = pop_lsb(&b); squares[size] = sq ^ flipSquares; pieces[size] = Piece(pos.piece_on(sq) ^ flipColor); } // Then we reorder the pieces to have the same sequence as the one stored // in precomp->pieces[i], this is important for the next step. The sequence // stored is the one that ensures the best compression. for (int i = leadPawnsCnt; i < size; ++i) for (int j = i; j < size; ++j) if (precomp->pieces[i] == pieces[j]) { std::swap(pieces[i], pieces[j]); std::swap(squares[i], squares[j]); break; } // Now we map again the squares so that the square of the lead piece is in // the triangle A1-D1-D4. We take care that the condition on the diagonal // flip is checked after horizontal and vertical flips are already done. if (file_of(squares[0]) > FILE_D) for (int i = 0; i < size; ++i) squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 // Reorder the leading pawns according to Ptwist table, in descending order, // and encode them. if (entry->hasPawns) { auto ptwist = [] (Square i, Square j) { return Ptwist[i] > Ptwist[j]; }; std::sort(squares + 1, squares + leadPawnsCnt, ptwist); idx = Pawnidx[leadPawnsCnt - 1][Flap[squares[0]]]; for (int i = 1; i < leadPawnsCnt; ++i) idx += Binomial[i][Ptwist[squares[i]]]; next = leadPawnsCnt; goto encode_remaining; // With pawns we have finished special treatments } if (rank_of(squares[0]) > RANK_4) for (int i = 0; i < size; ++i) squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 // Look for the first piece not on the A1-D4 diagonal and ensure it is // mapped below the diagonal. hasUniquePieces = item(entry->piece, stm, 0).hasUniquePieces; for (int i = 0; i < size; ++i) { if (!off_A1H8(squares[i])) continue; if (off_A1H8(squares[i]) > 0 && i < (hasUniquePieces ? 3 : 2)) for (int j = i; j < size; ++j) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); break; } // The encoding function maps a position to its index into the table. // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR // and bK (each 0...63). The simplest way to map this position to an index // is like this: // // index = wK * 64*64 + wR * 64 + bK; // // But this way the TB is going to have 64*64*64 = 262144 positions, with // lots of positions being equivalent (because they are mirrors of each // other) and lots of positions being invalid (two pieces on one square, // adjacent kings, etc.). // Usually the first step is to take the wK and bK together. There are just // 462 ways legal and not-mirrored ways to place the wK and bK on the board. // Once we have placed the wK and bK, there are 62 squares left for the wR // Mapping its square from 0..63 to 0..61 can be done like: // // wR -= (wR > wK) + (wR > bK); // // In words: if wR "comes later" than wK, we deduct 1, and the same if wR // "comes later" than bK. In case of two same pieces like KRRvK we want to // place the two Rs "together". If we have 62 squares left, we can place two // Rs "together" in 62*61/2 ways. // In case we have at least 3 unique pieces (inlcuded kings) we encode them // together. if (hasUniquePieces) { int adjust1 = squares[1] > squares[0]; int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); // MapA1D1D4[] maps the b1-d1-d3 triangle to 0...5. There are 63 squares // for second piece and and 62 (mapped to 0...61) for the third. if (off_A1H8(squares[0])) idx = MapA1D1D4[squares[0]] * 63 * 62 + (squares[1] - adjust1) * 62 + squares[2] - adjust2; // First piece is on diagonal: map to 6, rank_of() maps a1-d4 diagonal // to 0...3 and MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27 else if (off_A1H8(squares[1])) idx = 6 * 63 * 62 + rank_of(squares[0]) * 28 * 62 + MapB1H1H7[squares[1]] * 62 + squares[2] - adjust2; // First 2 pieces are on the diagonal a1-h8 else if (off_A1H8(squares[2])) idx = 6 * 63 * 62 + 4 * 28 * 62 + rank_of(squares[0]) * 7 * 28 + (rank_of(squares[1]) - adjust1) * 28 + MapB1H1H7[squares[2]]; // All 3 pieces on the diagonal a1-h8 else idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 + rank_of(squares[0]) * 7 * 6 + (rank_of(squares[1]) - adjust1) * 6 + (rank_of(squares[2]) - adjust2); next = 3; // Continue encoding form piece[3] } else { // We don't have at least 3 unique pieces, like in KRRvKBB, just map // the kings and set next to 2. idx = KK_idx[MapA1D1D4[squares[0]]][squares[1]]; next = 2; } encode_remaining: idx *= precomp->factor[0]; // Reorder remainig pawns then pieces according to square, in ascending order int remainingPawns = entry->hasPawns ? entry->pawn.pawnCount[1] : 0; while (next < size) { int end = next + (remainingPawns ? remainingPawns : precomp->norm[next]); std::sort(squares + next, squares + end); uint64_t s = 0; // Map squares to lower index if "come later" than previous (as done earlier for pieces) for (int i = next; i < end; ++i) { int adjust = 0; for (int j = 0; j < next; ++j) adjust += squares[i] > squares[j]; s += Binomial[i - next + 1][squares[i] - adjust - (remainingPawns ? 8 : 0)]; } remainingPawns = 0; idx += s * precomp->factor[next]; next = end; } // Now that we have the index, decompress the pair and get the score return map_score(entry, tbFile, decompress_pairs(precomp, idx), wdl); } template int get_pfactor(const T& p, File, typename T::Piece = 0) { return p.hasUniquePieces ? 31332 : 462; } template int get_pfactor(const T& p, File f, typename T::Pawn = 0) { return Pfactor[p.precomp->norm[0] - 1][f]; } template uint64_t set_factors(T& p, int num, int order[], File f) { PairsData* d = p.precomp; int i = d->norm[0]; if (order[1] < 0xF) i += d->norm[i]; int n = 64 - i; uint64_t size = 1; for (int k = 0; i < num || k == order[0] || k == order[1]; ++k) if (k == order[0]) { d->factor[0] = size; size *= get_pfactor(p, f); } else if (k == order[1]) { d->factor[d->norm[0]] = size; size *= Binomial[d->norm[d->norm[0]]][48 - d->norm[0]]; } else { d->factor[i] = size; size *= Binomial[d->norm[i]][n]; n -= d->norm[i]; i += d->norm[i]; } return size; } template void set_norms(T* p, int num, const uint8_t pawns[]) { p->norm[0] = pawns[0]; if (pawns[1]) p->norm[pawns[0]] = pawns[1]; for (int i = pawns[0] + pawns[1]; i < num; i += p->norm[i]) for (int j = i; j < num && p->pieces[j] == p->pieces[i]; ++j) ++p->norm[i]; } void calc_symlen(PairsData* d, size_t s, std::vector& tmp) { int s1, s2; uint8_t* w = d->sympat + 3 * s; s2 = (w[2] << 4) | (w[1] >> 4); if (s2 == 0xFFF) d->symlen[s] = 0; else { s1 = ((w[1] & 0xF) << 8) | w[0]; if (!tmp[s1]) calc_symlen(d, s1, tmp); if (!tmp[s2]) calc_symlen(d, s2, tmp); d->symlen[s] = d->symlen[s1] + d->symlen[s2] + 1; } tmp[s] = 1; } uint8_t* set_sizes(PairsData* d, uint8_t* data, uint64_t tb_size) { if (*data++ & 0x80) { d->min_len = *data++; return data; } d->blocksize = *data++; d->idxbits = *data++; d->num_indices = (tb_size + (1ULL << d->idxbits) - 1) >> d->idxbits; // Divide and round upward, like ceil() d->num_blocks = number(data++); d->real_num_blocks = number(data); data += sizeof(uint32_t); d->num_blocks += d->real_num_blocks; d->max_len = *data++; d->min_len = *data++; d->offset = (uint16_t*)data; d->base.resize(d->max_len - d->min_len + 1); for (int i = d->base.size() - 2; i >= 0; --i) d->base[i] = (d->base[i + 1] + number(d->offset + i) - number(d->offset + i + 1)) / 2; for (size_t i = 0; i < d->base.size(); ++i) d->base[i] <<= (64 - d->min_len) - i; d->offset -= d->min_len; data += d->base.size() * sizeof(*d->offset); d->symlen.resize(number(data)); data += sizeof(uint16_t); d->sympat = data; std::vector tmp(d->symlen.size()); for (size_t i = 0; i < d->symlen.size(); ++i) if (!tmp[i]) calc_symlen(d, i, tmp); return data + 3 * d->symlen.size() + (d->symlen.size() & 1); } template void WDLEntry::do_init(T& e, uint8_t* data) { PairsData* d; uint64_t tb_size[8]; enum { Split = 1, HasPawns = 2 }; uint8_t flags = *data++; int split = (flags & Split); File maxFile = (flags & HasPawns) ? FILE_D : FILE_A; assert(hasPawns == !!(flags & HasPawns)); assert(symmetric != !!(flags & Split)); bool pp = (flags & HasPawns) && pawn.pawnCount[1]; // Pawns on both sides assert(!pp || pawn.pawnCount[0]); for (File f = FILE_A; f <= maxFile; ++f) { for (int k = 0; k < 2; k++) item(e, k, f).precomp = new PairsData(); int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; data += 1 + pp; for (int i = 0; i < pieceCount; ++i, ++data) { item(e, 0, f).precomp->pieces[i] = Piece(*data & 0xF); item(e, 1, f).precomp->pieces[i] = Piece(*data >> 4); } uint8_t pn[] = { uint8_t(piece[0].hasUniquePieces ? 3 : 2), 0 }; for (int i = 0; i < 2; ++i) { set_norms(item(e, i, f).precomp, pieceCount, (flags & HasPawns) ? pawn.pawnCount : pn); tb_size[2 * f + i] = set_factors(item(e, i, f), pieceCount, order[i], f); } } data += (uintptr_t)data & 1; // Word alignment for (File f = FILE_A; f <= maxFile; ++f) for (int k = 0; k <= split; k++) data = set_sizes(item(e, k, f).precomp, data, tb_size[2 * f + k]); for (File f = FILE_A; f <= maxFile; ++f) for (int k = 0; k <= split; k++) { (d = item(e, k, f).precomp)->indextable = data; data += 6ULL * d->num_indices; } for (File f = FILE_A; f <= maxFile; ++f) for (int k = 0; k <= split; k++) { (d = item(e, k, f).precomp)->sizetable = (uint16_t*)data; data += 2ULL * d->num_blocks; } for (File f = FILE_A; f <= maxFile; ++f) for (int k = 0; k <= split; k++) { data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment (d = item(e, k, f).precomp)->data = data; data += (1ULL << d->blocksize) * d->real_num_blocks; } } bool WDLEntry::init(const std::string& fname) { uint8_t* data = TBFile(fname).map(&baseAddress, &mapping, WDL_MAGIC); if (!data) return false; hasPawns ? do_init(pawn, data) : do_init(piece, data); return true; } template void DTZEntry::do_init(T& e, uint8_t* data) { PairsData* d; uint64_t tb_size[8]; enum { Split = 1, HasPawns = 2 }; uint8_t flags = *data++; File maxFile = (flags & HasPawns) ? FILE_D : FILE_A; assert(hasPawns == !!(flags & HasPawns)); assert(symmetric != !!(flags & Split)); bool pp = (flags & HasPawns) && pawn.pawnCount[1]; // Pawns on both sides assert(!pp || pawn.pawnCount[0]); for (File f = FILE_A; f <= maxFile; ++f) { item(e, 0, f).precomp = new PairsData(); int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; data += 1 + pp; for (int i = 0; i < pieceCount; ++i, ++data) item(e, 0, f).precomp->pieces[i] = Piece(*data & 0xF); uint8_t pn[] = { uint8_t(piece.hasUniquePieces ? 3 : 2), 0 }; set_norms(item(e, 0, f).precomp, pieceCount, (flags & HasPawns) ? pawn.pawnCount : pn); tb_size[f] = set_factors(item(e, 0, f), pieceCount, order[0], f); } data += (uintptr_t)data & 1; // Word alignment for (File f = FILE_A; f <= maxFile; ++f) { assert(!(*data & 0x80)); item(e, 0, f).flags = *data; data = set_sizes(item(e, 0, f).precomp, data, tb_size[f]); } e.map = data; for (File f = FILE_A; f <= maxFile; ++f) { if (item(e, 0, f).flags & 2) for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x item(e, 0, f).map_idx[i] = (uint16_t)(data - e.map + 1); data += *data + 1; } } data += (uintptr_t)data & 1; for (File f = FILE_A; f <= maxFile; ++f) { (d = item(e, 0, f).precomp)->indextable = data; data += 6ULL * d->num_indices; } for (File f = FILE_A; f <= maxFile; ++f) { (d = item(e, 0, f).precomp)->sizetable = (uint16_t*)data; data += 2ULL * d->num_blocks; } for (File f = FILE_A; f <= maxFile; ++f) { data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment (d = item(e, 0, f).precomp)->data = data; data += (1ULL << d->blocksize) * d->real_num_blocks; } } bool DTZEntry::init(const std::string& fname) { uint8_t* data = TBFile(fname).map(&baseAddress, &mapping, DTZ_MAGIC); if (!data) return false; hasPawns ? do_init(pawn, data) : do_init(piece, data); return true; } WDLScore probe_wdl_table(Position& pos, int* success) { Key key = pos.material_key(); if (!(pos.pieces() ^ pos.pieces(KING))) return WDLDraw; // KvK WDLEntry* entry = WDLHash[key]; if (!entry) { *success = 0; return WDLDraw; } // Init table at first access attempt. Special care to avoid // one thread reads ready == 1 while the other is still in // init(), this could happen due to compiler reordering. if (!entry->ready.load(std::memory_order_acquire)) { std::unique_lock lk(TB_mutex); if (!entry->ready.load(std::memory_order_relaxed)) { std::string fname = file_name(pos, entry->key != key) + ".rtbw"; if (!entry->init(fname)) { // Was ptr2->key = 0ULL; Just leave !ptr->ready condition *success = 0; return WDLDraw; } entry->ready.store(1, std::memory_order_release); } } assert(key == entry->key || !entry->symmetric); return (WDLScore)probe_table(pos, entry); } int probe_dtz_table(const Position& pos, WDLScore wdl, int *success) { Key key = pos.material_key(); if (DTZTable.front().key != key && DTZTable.front().key2 != key) { // Enforce "Most Recently Used" (MRU) order for DTZ list for (auto it = DTZTable.begin(); it != DTZTable.end(); ++it) if (it->key == key) { // Move to front without deleting the element DTZTable.splice(DTZTable.begin(), DTZTable, it); break; } // If still not found, add a new one if (DTZTable.front().key != key) { WDLEntry* wdlEntry = WDLHash[key]; if (!wdlEntry) { *success = 0; return 0; } StateInfo st; Position p; std::string wdlCode = file_name(pos, wdlEntry->key != key); std::string fname = wdlCode + ".rtbz"; wdlCode.erase(wdlCode.find('v'), 1); Key wdlKeys[] = { p.set(wdlCode, WHITE, &st).material_key(), p.set(wdlCode, BLACK, &st).material_key() }; DTZTable.push_front(DTZEntry(*wdlEntry, wdlKeys)); if (!DTZTable.front().init(fname)) { // In case file is not found init() fails, but we leave // the entry so to avoid rechecking at every probe (same // functionality as WDL case). // FIXME: This is different form original functionality! /* DTZTable.pop_front(); */ *success = 0; return 0; } // Keep list size within 64 entries // FIXME remove it when we will know what we are doing if (DTZTable.size() > 64) DTZTable.pop_back(); } } if (!DTZTable.front().baseAddress) { *success = 0; return 0; } return probe_table(pos, &DTZTable.front(), wdl, success); } // Add underpromotion captures to list of captures. ExtMove *add_underprom_caps(Position& pos, ExtMove *stack, ExtMove *end) { ExtMove *moves, *extra = end; for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (type_of(move) == PROMOTION && !pos.empty(to_sq(move))) { (*extra++).move = (Move)(move - (1 << 12)); (*extra++).move = (Move)(move - (2 << 12)); (*extra++).move = (Move)(move - (3 << 12)); } } return extra; } WDLScore probe_ab(Position& pos, WDLScore alpha, WDLScore beta, int *success) { WDLScore value; ExtMove stack[64]; ExtMove *moves, *end; StateInfo st; // Generate (at least) all legal non-ep captures including (under)promotions. // It is OK to generate more, as long as they are filtered out below. if (!pos.checkers()) { end = generate(pos, stack); // Since underpromotion captures are not included, we need to add them. end = add_underprom_caps(pos, stack, end); } else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if ( !pos.capture(capture) || type_of(capture) == ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); value = -probe_ab(pos, -beta, -alpha, success); pos.undo_move(capture); if (*success == 0) return WDLDraw; if (value > alpha) { if (value >= beta) { *success = 2; return value; } alpha = value; } } value = probe_wdl_table(pos, success); // FIXME why this is not at the beginning? if (*success == 0) return WDLDraw; if (alpha >= value) { *success = 1 + (alpha > 0); return alpha; } else { *success = 1; return value; } } int probe_dtz(Position& pos, int *success); // This routine treats a position with en passant captures as one without. int probe_dtz_no_ep(Position& pos, int *success) { int dtz; WDLScore wdl = probe_ab(pos, WDLLoss, WDLWin, success); if (!*success) return 0; if (wdl == WDLDraw) return 0; if (*success == 2) return wdl == WDLWin ? 1 : 101; ExtMove stack[MAX_MOVES]; ExtMove *moves, *end = nullptr; StateInfo st; CheckInfo ci(pos); if (wdl > 0) { // Generate at least all legal non-capturing pawn moves // including non-capturing promotions. if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); for (moves = stack; moves < end; ++moves) { Move move = moves->move; if ( type_of(pos.moved_piece(move)) != PAWN || pos.capture(move) || !pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); WDLScore v = -probe_ab(pos, WDLLoss, -wdl + WDLCursedWin, success); pos.undo_move(move); if (*success == 0) return 0; if (v == wdl) return v == WDLWin ? 1 : 101; } } dtz = 1 + probe_dtz_table(pos, wdl, success); if (*success >= 0) { if (wdl & 1) dtz += 100; return wdl >= 0 ? dtz : -dtz; } if (wdl > 0) { int best = 0xffff; for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN || !pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); int v = -probe_dtz(pos, success); pos.undo_move(move); if (*success == 0) return 0; if (v > 0 && v + 1 < best) best = v + 1; } return best; } else { int best = -1; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); for (moves = stack; moves < end; ++moves) { int v; Move move = moves->move; if (!pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); if (st.rule50 == 0) { if (wdl == -2) v = -1; else { v = probe_ab(pos, WDLCursedWin, WDLWin, success); v = (v == 2) ? 0 : -101; } } else { v = -probe_dtz(pos, success) - 1; } pos.undo_move(move); if (*success == 0) return 0; if (v < best) best = v; } return best; } } // Probe the DTZ table for a particular position. // If *success != 0, the probe was successful. // The return value is from the point of view of the side to move: // n < -100 : loss, but draw under 50-move rule // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) // 0 : draw // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) // 100 < n : win, but draw under 50-move rule // // The return value n can be off by 1: a return value -n can mean a loss // in n+1 ply and a return value +n can mean a win in n+1 ply. This // cannot happen for tables with positions exactly on the "edge" of // the 50-move rule. // // This implies that if dtz > 0 is returned, the position is certainly // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine // picks moves that preserve dtz + 50-move-counter <= 99. // // If n = 100 immediately after a capture or pawn move, then the position // is also certainly a win, and during the whole phase until the next // capture or pawn move, the inequality to be preserved is // dtz + 50-movecounter <= 100. // // In short, if a move is available resulting in dtz + 50-move-counter <= 99, // then do not accept moves leading to dtz + 50-move-counter == 100. // int probe_dtz(Position& pos, int *success) { *success = 1; int v = probe_dtz_no_ep(pos, success); if (pos.ep_square() == SQ_NONE) return v; if (*success == 0) return 0; // Now handle en passant. int v1 = -3; ExtMove stack[MAX_MOVES]; ExtMove *moves, *end; StateInfo st; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) != ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); WDLScore v0 = -probe_ab(pos, WDLLoss, WDLWin, success); pos.undo_move(capture); if (*success == 0) return 0; if (v0 > v1) v1 = v0; } if (v1 > -3) { v1 = wdl_to_dtz[v1 + 2]; if (v < -100) { if (v1 >= 0) v = v1; } else if (v < 0) { if (v1 >= 0 || v1 < -100) v = v1; } else if (v > 100) { if (v1 > 0) v = v1; } else if (v > 0) { if (v1 == 1) v = v1; } else if (v1 >= 0) { v = v1; } else { for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (type_of(move) == ENPASSANT) continue; if (pos.legal(move, ci.pinned)) break; } if (moves == end && !pos.checkers()) { end = generate(pos, end); for (; moves < end; ++moves) { Move move = moves->move; if (pos.legal(move, ci.pinned)) break; } } if (moves == end) v = v1; } } return v; } } // namespace void Tablebases::init(const std::string& paths) { DTZTable.clear(); WDLTable.clear(); WDLHash.clear(); MaxCardinality = 0; TBPaths = paths; if (TBPaths.empty() || TBPaths == "") return; // Fill binomial[] with the Binomial Coefficents using Pascal triangle Binomial[0][0] = 1; for (int n = 1; n < 64; n++) for (int k = 0; k < 6 && k <= n; ++k) Binomial[k][n] = (k > 0 ? Binomial[k-1][n-1] : 0) + (k < n ? Binomial[k][n-1] : 0); for (int i = 0; i < 5; ++i) { int k = 0; for (int j = 1; j <= 4; ++j) { int s = 0; for ( ; k < 6 * j; ++k) { Pawnidx[i][k] = s; s += Binomial[i][Ptwist[Invflap[k]]]; } Pfactor[i][j - 1] = s; } } // Compute KK_idx[] that encodes all the 461 possible legal positions of a couple of // kings where first king is on a1-d1-d4 triangle. When first king is on the a1-d4 // diagonal, second king is assumed not to be above the a1-h8 diagonal. int code = 0; std::vector> bothOnDiagonal; for (int idx = 0; idx < 10; idx++) for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) if (idx == MapA1D1D4[s1] && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) { if ((StepAttacksBB[KING][s1] | s1) & s2) // Illegal position KK_idx[idx][s2] = -1; else if (!off_A1H8(s1) && off_A1H8(s2) > 0) KK_idx[idx][s2] = -1; // First king on diagonal, second above else if (!off_A1H8(s1) && !off_A1H8(s2)) bothOnDiagonal.push_back(std::make_pair(idx, s2)); else KK_idx[idx][s2] = code++; } // Legal positions with both kings on diagonal are encoded as last ones for (auto p : bothOnDiagonal) KK_idx[p.first][p.second] = code++; for (PieceType p1 = PAWN; p1 < KING; ++p1) { WDLHash.insert({KING, p1, KING}); for (PieceType p2 = PAWN; p2 <= p1; ++p2) { WDLHash.insert({KING, p1, p2, KING}); WDLHash.insert({KING, p1, KING, p2}); for (PieceType p3 = PAWN; p3 < KING; ++p3) WDLHash.insert({KING, p1, p2, KING, p3}); for (PieceType p3 = PAWN; p3 <= p2; ++p3) { WDLHash.insert({KING, p1, p2, p3, KING}); for (PieceType p4 = PAWN; p4 <= p3; ++p4) WDLHash.insert({KING, p1, p2, p3, p4, KING}); for (PieceType p4 = PAWN; p4 < KING; ++p4) WDLHash.insert({KING, p1, p2, p3, KING, p4}); } for (PieceType p3 = PAWN; p3 <= p1; ++p3) for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) WDLHash.insert({KING, p1, p2, KING, p3, p4}); } } std::cerr << "info string Found " << WDLTable.size() << " tablebases" << std::endl; } // Probe the WDL table for a particular position. // If *success != 0, the probe was successful. // The return value is from the point of view of the side to move: // -2 : loss // -1 : loss, but draw under 50-move rule // 0 : draw // 1 : win, but draw under 50-move rule // 2 : win WDLScore Tablebases::probe_wdl(Position& pos, int *success) { *success = 1; WDLScore v = probe_ab(pos, WDLLoss, WDLWin, success); // If en passant is not possible, we are done. if (pos.ep_square() == SQ_NONE) return v; if (*success == 0) return WDLDraw; // Now handle en passant. WDLScore v1 = WDLScore(-3); // FIXME use a proper enum value here // Generate (at least) all legal en passant captures. ExtMove stack[MAX_MOVES]; ExtMove *moves, *end; StateInfo st; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) != ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); WDLScore v0 = -probe_ab(pos, WDLLoss, WDLWin, success); pos.undo_move(capture); if (*success == 0) return WDLDraw; if (v0 > v1) v1 = v0; } if (v1 > -3) { if (v1 >= v) v = v1; else if (v == 0) { // Check whether there is at least one legal non-ep move. for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) == ENPASSANT) continue; if (pos.legal(capture, ci.pinned)) break; } if (moves == end && !pos.checkers()) { end = generate(pos, end); for (; moves < end; ++moves) { Move move = moves->move; if (pos.legal(move, ci.pinned)) break; } } // If not, then we are forced to play the losing ep capture. if (moves == end) v = v1; } } return v; } // Check whether there has been at least one repetition of positions // since the last capture or pawn move. static int has_repeated(StateInfo *st) { while (1) { int i = 4, e = std::min(st->rule50, st->pliesFromNull); if (e < i) return 0; StateInfo *stp = st->previous->previous; do { stp = stp->previous->previous; if (stp->key == st->key) return 1; i += 2; } while (i <= e); st = st->previous; } } // Use the DTZ tables to filter out moves that don't preserve the win or draw. // If the position is lost, but DTZ is fairly high, only keep moves that // maximise DTZ. // // A return value false indicates that not all probes were successful and that // no moves were filtered out. bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) { int success; int dtz = probe_dtz(pos, &success); if (!success) return false; StateInfo st; CheckInfo ci(pos); // Probe each move for (size_t i = 0; i < rootMoves.size(); ++i) { Move move = rootMoves[i].pv[0]; pos.do_move(move, st, pos.gives_check(move, ci)); int v = 0; if (pos.checkers() && dtz > 0) { ExtMove s[MAX_MOVES]; if (generate(pos, s) == s) v = 1; } if (!v) { if (st.rule50 != 0) { v = -probe_dtz(pos, &success); if (v > 0) ++v; else if (v < 0) --v; } else { v = -probe_wdl(pos, &success); v = wdl_to_dtz[v + 2]; } } pos.undo_move(move); if (!success) return false; rootMoves[i].score = (Value)v; } // Obtain 50-move counter for the root position. // In Stockfish there seems to be no clean way, so we do it like this: int cnt50 = st.previous->rule50; // Use 50-move counter to determine whether the root position is // won, lost or drawn. int wdl = 0; if (dtz > 0) wdl = (dtz + cnt50 <= 100) ? 2 : 1; else if (dtz < 0) wdl = (-dtz + cnt50 <= 100) ? -2 : -1; // Determine the score to report to the user. score = WDL_to_value[wdl + 2]; // If the position is winning or losing, but too few moves left, adjust the // score to show how close it is to winning or losing. // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). if (wdl == 1 && dtz <= 100) score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200); else if (wdl == -1 && dtz >= -100) score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200); // Now be a bit smart about filtering out moves. size_t j = 0; if (dtz > 0) { // winning (or 50-move rule draw) int best = 0xffff; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v > 0 && v < best) best = v; } int max = best; // If the current phase has not seen repetitions, then try all moves // that stay safely within the 50-move budget, if there are any. if (!has_repeated(st.previous) && best + cnt50 <= 99) max = 99 - cnt50; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v > 0 && v <= max) rootMoves[j++] = rootMoves[i]; } } else if (dtz < 0) { // losing (or 50-move rule draw) int best = 0; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v < best) best = v; } // Try all moves, unless we approach or have a 50-move rule draw. if (-best * 2 + cnt50 < 100) return true; for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == best) rootMoves[j++] = rootMoves[i]; } } else { // drawing // Try all moves that preserve the draw. for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == 0) rootMoves[j++] = rootMoves[i]; } } rootMoves.resize(j, Search::RootMove(MOVE_NONE)); return true; } // Use the WDL tables to filter out moves that don't preserve the win or draw. // This is a fallback for the case that some or all DTZ tables are missing. // // A return value false indicates that not all probes were successful and that // no moves were filtered out. bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) { int success; WDLScore wdl = Tablebases::probe_wdl(pos, &success); if (!success) return false; score = WDL_to_value[wdl + 2]; StateInfo st; CheckInfo ci(pos); int best = WDLLoss; // Probe each move for (size_t i = 0; i < rootMoves.size(); ++i) { Move move = rootMoves[i].pv[0]; pos.do_move(move, st, pos.gives_check(move, ci)); WDLScore v = -Tablebases::probe_wdl(pos, &success); pos.undo_move(move); if (!success) return false; rootMoves[i].score = (Value)v; if (v > best) best = v; } size_t j = 0; for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == best) rootMoves[j++] = rootMoves[i]; } rootMoves.resize(j, Search::RootMove(MOVE_NONE)); return true; }