/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "movegen.h" #include "movepick.h" #include "search.h" #include "types.h" namespace { enum MovegenPhase { PH_TT_MOVE, // Transposition table move PH_GOOD_CAPTURES, // Queen promotions and captures with SEE values >= captureThreshold (captureThreshold <= 0) PH_GOOD_PROBCUT, // Queen promotions and captures with SEE values > captureThreshold (captureThreshold >= 0) PH_KILLERS, // Killer moves from the current ply PH_NONCAPTURES_1, // Non-captures and underpromotions with positive score PH_NONCAPTURES_2, // Non-captures and underpromotions with non-positive score PH_BAD_CAPTURES, // Queen promotions and captures with SEE values < captureThreshold (captureThreshold <= 0) PH_EVASIONS, // Check evasions PH_QCAPTURES, // Captures in quiescence search PH_QRECAPTURES, // Recaptures in quiescence search PH_QCHECKS, // Non-capture checks in quiescence search PH_STOP }; CACHE_LINE_ALIGNMENT const uint8_t MainSearchTable[] = { PH_TT_MOVE, PH_GOOD_CAPTURES, PH_KILLERS, PH_NONCAPTURES_1, PH_NONCAPTURES_2, PH_BAD_CAPTURES, PH_STOP }; const uint8_t EvasionTable[] = { PH_TT_MOVE, PH_EVASIONS, PH_STOP }; const uint8_t QsearchWithChecksTable[] = { PH_TT_MOVE, PH_QCAPTURES, PH_QCHECKS, PH_STOP }; const uint8_t QsearchWithoutChecksTable[] = { PH_TT_MOVE, PH_QCAPTURES, PH_STOP }; const uint8_t QsearchRecapturesTable[] = { PH_TT_MOVE, PH_QRECAPTURES, PH_STOP }; const uint8_t ProbCutTable[] = { PH_TT_MOVE, PH_GOOD_PROBCUT, PH_STOP }; // Unary predicate used by std::partition to split positive scores from remaining // ones so to sort separately the two sets, and with the second sort delayed. inline bool has_positive_score(const MoveStack& move) { return move.score > 0; } // Picks and pushes to the front the best move in range [firstMove, lastMove), // it is faster than sorting all the moves in advance when moves are few, as // normally are the possible captures. inline MoveStack* pick_best(MoveStack* firstMove, MoveStack* lastMove) { std::swap(*firstMove, *std::max_element(firstMove, lastMove)); return firstMove; } } /// Constructors for the MovePicker class. As arguments we pass information /// to help it to return the presumably good moves first, to decide which /// moves to return (in the quiescence search, for instance, we only want to /// search captures, promotions and some checks) and about how important good /// move ordering is at the current node. MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h, Search::Stack* ss, Value beta) : pos(p), H(h), depth(d) { captureThreshold = 0; badCaptures = moves + MAX_MOVES; assert(d > DEPTH_ZERO); if (p.in_check()) { killers[0].move = killers[1].move = MOVE_NONE; phasePtr = EvasionTable; } else { killers[0].move = ss->killers[0]; killers[1].move = ss->killers[1]; // Consider sligtly negative captures as good if at low depth and far from beta if (ss && ss->eval < beta - PawnValueMidgame && d < 3 * ONE_PLY) captureThreshold = -PawnValueMidgame; // Consider negative captures as good if still enough to reach beta else if (ss && ss->eval > beta) captureThreshold = beta - ss->eval; phasePtr = MainSearchTable; } ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE); phasePtr += int(ttMove == MOVE_NONE) - 1; go_next_phase(); } MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h, Square recaptureSq) : pos(p), H(h) { assert(d <= DEPTH_ZERO); if (p.in_check()) phasePtr = EvasionTable; else if (d >= DEPTH_QS_CHECKS) phasePtr = QsearchWithChecksTable; else if (d >= DEPTH_QS_RECAPTURES) { phasePtr = QsearchWithoutChecksTable; // Skip TT move if is not a capture or a promotion, this avoids // qsearch tree explosion due to a possible perpetual check or // similar rare cases when TT table is full. if (ttm != MOVE_NONE && !pos.is_capture_or_promotion(ttm)) ttm = MOVE_NONE; } else { phasePtr = QsearchRecapturesTable; recaptureSquare = recaptureSq; ttm = MOVE_NONE; } ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE); phasePtr += int(ttMove == MOVE_NONE) - 1; go_next_phase(); } MovePicker::MovePicker(const Position& p, Move ttm, const History& h, PieceType parentCapture) : pos(p), H(h) { assert (!pos.in_check()); // In ProbCut we consider only captures better than parent's move captureThreshold = PieceValueMidgame[Piece(parentCapture)]; phasePtr = ProbCutTable; if ( ttm != MOVE_NONE && (!pos.is_capture(ttm) || pos.see(ttm) <= captureThreshold)) ttm = MOVE_NONE; ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE); phasePtr += int(ttMove == MOVE_NONE) - 1; go_next_phase(); } /// MovePicker::go_next_phase() generates, scores and sorts the next bunch /// of moves when there are no more moves to try for the current phase. void MovePicker::go_next_phase() { curMove = moves; phase = *(++phasePtr); switch (phase) { case PH_TT_MOVE: lastMove = curMove + 1; return; case PH_GOOD_CAPTURES: case PH_GOOD_PROBCUT: lastMove = generate(pos, moves); score_captures(); return; case PH_KILLERS: curMove = killers; lastMove = curMove + 2; return; case PH_NONCAPTURES_1: lastNonCapture = lastMove = generate(pos, moves); score_noncaptures(); lastMove = std::partition(curMove, lastMove, has_positive_score); sort(curMove, lastMove); return; case PH_NONCAPTURES_2: curMove = lastMove; lastMove = lastNonCapture; if (depth >= 3 * ONE_PLY) sort(curMove, lastMove); return; case PH_BAD_CAPTURES: // Bad captures SEE value is already calculated so just pick // them in order to get SEE move ordering. curMove = badCaptures; lastMove = moves + MAX_MOVES; return; case PH_EVASIONS: assert(pos.in_check()); lastMove = generate(pos, moves); score_evasions(); return; case PH_QCAPTURES: lastMove = generate(pos, moves); score_captures(); return; case PH_QRECAPTURES: lastMove = generate(pos, moves); return; case PH_QCHECKS: lastMove = generate(pos, moves); return; case PH_STOP: lastMove = curMove + 1; // Avoid another go_next_phase() call return; default: assert(false); return; } } /// MovePicker::score_captures(), MovePicker::score_noncaptures() and /// MovePicker::score_evasions() assign a numerical move ordering score /// to each move in a move list. The moves with highest scores will be /// picked first by get_next_move(). void MovePicker::score_captures() { // Winning and equal captures in the main search are ordered by MVV/LVA. // Suprisingly, this appears to perform slightly better than SEE based // move ordering. The reason is probably that in a position with a winning // capture, capturing a more valuable (but sufficiently defended) piece // first usually doesn't hurt. The opponent will have to recapture, and // the hanging piece will still be hanging (except in the unusual cases // where it is possible to recapture with the hanging piece). Exchanging // big pieces before capturing a hanging piece probably helps to reduce // the subtree size. // In main search we want to push captures with negative SEE values to // badCaptures[] array, but instead of doing it now we delay till when // the move has been picked up in pick_move_from_list(), this way we save // some SEE calls in case we get a cutoff (idea from Pablo Vazquez). Move m; // Use MVV/LVA ordering for (MoveStack* cur = moves; cur != lastMove; cur++) { m = cur->move; cur->score = PieceValueMidgame[pos.piece_on(move_to(m))] - type_of(pos.piece_on(move_from(m))); if (is_promotion(m)) cur->score += PieceValueMidgame[Piece(promotion_piece_type(m))]; } } void MovePicker::score_noncaptures() { Move m; Square from; for (MoveStack* cur = moves; cur != lastMove; cur++) { m = cur->move; from = move_from(m); cur->score = H.value(pos.piece_on(from), move_to(m)); } } void MovePicker::score_evasions() { // Try good captures ordered by MVV/LVA, then non-captures if // destination square is not under attack, ordered by history // value, and at the end bad-captures and non-captures with a // negative SEE. This last group is ordered by the SEE score. Move m; int seeScore; // Skip if we don't have at least two moves to order if (lastMove < moves + 2) return; for (MoveStack* cur = moves; cur != lastMove; cur++) { m = cur->move; if ((seeScore = pos.see_sign(m)) < 0) cur->score = seeScore - History::MaxValue; // Be sure we are at the bottom else if (pos.is_capture(m)) cur->score = PieceValueMidgame[pos.piece_on(move_to(m))] - type_of(pos.piece_on(move_from(m))) + History::MaxValue; else cur->score = H.value(pos.piece_on(move_from(m)), move_to(m)); } } /// MovePicker::get_next_move() is the most important method of the MovePicker /// class. It returns a new pseudo legal move every time it is called, until there /// are no more moves left. It picks the move with the biggest score from a list /// of generated moves taking care not to return the tt move if has already been /// searched previously. Note that this function is not thread safe so should be /// lock protected by caller when accessed through a shared MovePicker object. Move MovePicker::get_next_move() { Move move; while (true) { while (curMove == lastMove) go_next_phase(); switch (phase) { case PH_TT_MOVE: curMove++; return ttMove; break; case PH_GOOD_CAPTURES: move = pick_best(curMove++, lastMove)->move; if (move != ttMove) { assert(captureThreshold <= 0); // Otherwise we must use see instead of see_sign // Check for a non negative SEE now int seeValue = pos.see_sign(move); if (seeValue >= captureThreshold) return move; // Losing capture, move it to the tail of the array (--badCaptures)->move = move; badCaptures->score = seeValue; } break; case PH_GOOD_PROBCUT: move = pick_best(curMove++, lastMove)->move; if ( move != ttMove && pos.see(move) > captureThreshold) return move; break; case PH_KILLERS: move = (curMove++)->move; if ( move != MOVE_NONE && pos.is_pseudo_legal(move) && move != ttMove && !pos.is_capture(move)) return move; break; case PH_NONCAPTURES_1: case PH_NONCAPTURES_2: move = (curMove++)->move; if ( move != ttMove && move != killers[0].move && move != killers[1].move) return move; break; case PH_BAD_CAPTURES: move = pick_best(curMove++, lastMove)->move; return move; case PH_EVASIONS: case PH_QCAPTURES: move = pick_best(curMove++, lastMove)->move; if (move != ttMove) return move; break; case PH_QRECAPTURES: move = (curMove++)->move; if (move_to(move) == recaptureSquare) return move; break; case PH_QCHECKS: move = (curMove++)->move; if (move != ttMove) return move; break; case PH_STOP: return MOVE_NONE; default: assert(false); break; } } }